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Abstract

Respiratory failure (RF) is a frequent occurrence in critically ill patients and is associated with significant
morbidity and mortality as well as resource use. To improve the monitoring and management of RF in
intensive care unit (ICU) patients, we used machine learning to develop a monitoring system covering the
entire management cycle of RF, from early detection and monitoring, to assessment of readiness for
extubation and prediction of extubation failure risk. For patients in the ICU in the study cohort, the system
predicts 80% of RF events at a precision of 45% with 65% identified 10h before the onset of an RF event.
This significantly improves upon a standard clinical baseline based on the SpO2/FiO2 ratio. After a careful
analysis of ICU differences, the RF alarm system was externally validated showing similar performance for
patients in the external validation cohort. Our system also provides a risk score for extubation failure for
patients who are clinically ready to extubate, and we illustrate how such a risk score could be used to
extubate patients earlier in certain scenarios. Moreover, we demonstrate that our system, which closely
monitors respiratory failure, ventilation need, and extubation readiness for individual patients can also be
used for ICU-level ventilator resource planning. In particular, we predict ventilator use 8-16h into the future,
corresponding to the next ICU shift, with a mean absolute error of 0.4 ventilators per 10 patients effective
ICU capacity.

Introduction

Respiratory failure (RF) is common among patients in intensive care units (ICUs) and is associated with
high morbidity and mortality1. RF severity is defined by the P/F ratio (PaO2/FiO2 ratio) with values below 200
mmHg corresponding to moderate and below 100 mmHg to severe RF. Treating patients with RF involves a
sequence of clinical evaluations. This includes identifying RF and the need for mechanical ventilation,
tracking lung function improvements, determining the right time to stop mechanical ventilation, and
assessing the risk of complications after extubation.

Optimizing clinical decision-making requires continuous monitoring of the patient state and prediction of the
future clinical course. ICU physicians base their treatment decisions mostly on intermittent clinical
assessments and evaluation of monitored vital signs stored in electronic patient-data management systems
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(PDMS). In the increasingly complex ICU environment, clinicians are confronted with large amounts of data
from a multitude of monitoring systems for numerous patients. The quantity of data increases the risk that
clinicians do not readily recognize, interpret, and act upon relevant information, contributing to poorer
patient outcomes as well as increased ICU resource expenditure2. These large data quantities are ideal for
automatic processing by machine learning (ML) algorithms3,4, which have been used to develop decision
support systems for various conditions, such as acute respiratory distress syndrome (ARDS)5–9, circulatory
failure10, sepsis11–13, and renal failure14.

We aim to develop a comprehensive, ML-based Respiratory Monitoring System (RMS) to simplify
monitoring, expedite treatment of individual patients with RF, and optimize ICU resource planning. For
individual patients, the system predicts the risk of RF and the need for mechanical ventilation, continuously
monitors changes and improvements of the respiratory state, and predicts the probability of successful
extubation. To facilitate total ICU resource management, we demonstrate how using respiratory state
predictions from all individual patients admitted to the ICU enables estimating the future number of patients
needing mechanical ventilation.

All models are developed on HiRID-II15, a new open-source dataset containing more than 55,000
admissions to a tertiary care ICU in Switzerland, which forms an integral part of this work. The models for
respiratory and extubation failure are externally validated in the Amsterdam University Medical Center
database16 (UMCdb).

We hypothesize that RMS can predict the relevant respiratory events throughout the treatment process of
individual patients accurately and early; both in the development dataset and when validated in externally
sourced data. In addition, we aim to show that ICU-level resource requirements for the respiratory
treatment of patients can be accurately predicted by integrating the various RMS scores across patients in
the ICU.

Results

Preparation of an extended HiRID dataset (HiRID-II)

We present the High time Resolution Intensive care unit Dataset II (HiRID-II), a substantial update to
HiRID-I15, that we aim to make available to the research community on physionet.org17,18. This new dataset
contains 60% more ICU admissions than its predecessor (Table 1, Extended Data Fig. 1a). Additionally,
the number of meta-variables increased from 209 to 310 by merging equivalent clinical concepts and
including additional respiratory variables (Extended Data Fig. 1b). The dataset was k-anonymized with
respect to the variables age, weight, height & gender, reducing the number of admissions from 60,503 to
55,858. To further reduce the risk of individual patient identification, admission dates were randomly shifted.
To allow the assessment of model generalization to the future, the data set was divided into temporal splits
while respecting k-anonymization (Extended Data Fig. 1c). To test generalization to other health systems,
an external high-resolution evaluation data set was extracted from the Amsterdam UMCdb16 and
harmonized with the HIRID-II dataset (Extended Data Fig. 1d). Preliminary analysis of the HiRiD-II data
set revealed strong correlations between occurrence of RF and extubation failure with ICU mortality,
motivating our proposed respiratory monitoring system (Extended Data Fig. 2) and confirming prior
results1.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.23.24301516doi: medRxiv preprint 

https://paperpile.com/c/OXEngF/9V6l
https://paperpile.com/c/OXEngF/yusQ+eh23
https://paperpile.com/c/OXEngF/bDnl+1WJe+noim+mOZy+APWm
https://paperpile.com/c/OXEngF/gkSN
https://paperpile.com/c/OXEngF/OZIz+WgIN+4mNg
https://paperpile.com/c/OXEngF/kVzo
https://paperpile.com/c/OXEngF/eW0P
https://paperpile.com/c/OXEngF/FdaK
https://paperpile.com/c/OXEngF/eW0P
https://paperpile.com/c/OXEngF/h7Rs+B7Yz
https://paperpile.com/c/OXEngF/FdaK
https://paperpile.com/c/OXEngF/aEDD
https://doi.org/10.1101/2024.01.23.24301516
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: Characteristics of the HiRID-I and HiRID-II datasets. Age is reported as median and interquartile range (IQR). The
statistics are computed on the HiRID datasets after k-anonymization.

Development of a continuous monitoring system for respiratory management

Continuous PaO2 estimation The partial pressure of oxygen in arterial blood (PaO2) is one of the main
determinants of arterial oxygen content, a parameter that we aim to estimate continuously. The ratio of
fraction of oxygen in the inspiratory gas (FiO2) and PaO2 (P/F ratio, PaO2/FiO2 in mmHg) is commonly used
to determine the severity of RF19. To measure PaO2, an arterial blood sample is necessary. Contrary to
PaO2, arterial oxygen saturation (SpO2) can be continuously monitored in ICU patients using pulse
oximetry. The underlying physiological principles governing the binding and release of oxygen to and from
hemoglobin create a correlation between SpO2 and PaO2

20–22. This relationship allows for the use of SpO2

values to infer PaO2 levels accurately. Firstly, we developed an algorithm to continuously estimate PaO2

using SpO2 and other relevant variables determining the hemoglobin-oxygen dissociation curve. This
enables us to obtain PaO2 estimates every five minutes. The algorithm outperforms the non-linear
Severinghaus-Ellis baseline23 for estimating PaO2 values from non-invasive SpO2 measurements
(Extended Data Fig. 3).

Patient State Annotation and Labeling We aim to predict the risk of a patient developing RF within the
next 24 hours throughout the ICU stay, with a risk score produced continuously every 5 minutes (Fig. 1a).
For each time-point it was determined if a patient is currently in (moderate or severe) RF (P/F ratio < 200
mmHg), ventilated, or ready to be extubated. Readiness to extubate status at each time-point was defined
using a clinical scoring system (REXT status score), and a score threshold was manually selected after
inspection of the time series by an experienced ICU clinician (Fig. 1b). Current ventilation status was
deduced from the presence of ventilator-specific requirements.

Positive labels for future RF are defined as time-points when the patient is not currently in failure, but RF
occurs in the next 24 hours (“impending RF”), while a negative label is assigned if the patient remains
stable in the next 24 hours. For every extubation event, we determine whether it failed (reintubation
necessary within 48h after extubation) and use it as the label for extubation failure (EF). Labels for
ventilation onset and readiness to extubate prediction are positive, if the patient is currently not
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ventilated/ready-to-extubate, but will be in the next 24 hours (Fig. 1b). In HiRID-II, 43.7% and 46.2% of all
patients had RF events and required mechanical ventilation, respectively. Moreover, the dataset contains
23,861 extubations of which 11.1% failed. As the original dates were removed during anonymization for
HIRID-II, we used an additionally provided dataset with the admission dates of the ICU patients in order to
reconstruct the number of patients within the ICU and the ventilator resource use.

Fig. 1: Overview of the RMS decision support system for Respiratory State Management, and its extension for ICU-level resource
planning. a. Flow diagram for the development of RMS predictors at the individual patient level. Time series were extracted from
the HiRID-II database and gridded to a 5-minute resolution, and features were computed. Respiratory
failure/ventilation/ready-to-extubate periods are annotated and machine learning labels created. b. The respiratory monitoring
system consists of four scores which are active at different parts of the ICU stay, according to the respiratory and ventilation state of
the patient c. Flow diagram for the development of a resource monitoring system at the ICU level. For all current patients in the
ICU, the four scores are integrated to predict the probability that a patient will require mechanical ventilation within a future time
horizon. The sum of the individual predictions and a number of ICU-level static features are used to obtain an estimate of the
number of patients on mechanical ventilation within a future time window. d. Example of 3 months in an ICU, displaying the actual
number of ventilated patients and the predicted number as estimated by RMS in the next 8 to 16 hours. e. Overview of prediction
tasks solved by RMS for individual patients (RMS-RF/RMS-EF/RMS-VENT/RMS-REXT) as well as on the ICU-level. For RF, VENT
and REXT we provide the event prevalences in the test set at times when the patient is stable, not ventilated, ventilated,
respectively.
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Development of RMS Predictors The developed RMS consists of four individual scores which are active
at different stages of the RF management process. All four models are based on manual feature
engineering and LightGBM24 predictors, similar to what was previously described in Hyland et al.10 Prior
analyses on HIRID-I for circulatory and a related respiratory failure task have shown its superior
performance compared to others, including deep learning models10,25. The predictor for RF (RMS-RF) uses
15 clinical variables (Supplemental Table 3). As in Hyland et al.10, the system raises an alarm, if the RF
score raises above a certain threshold and is silenced for 4 hours afterwards; the alarm system is reset
after the patient just recovered from an event and is able to raise an alarm again 30 minutes after the
recovery. The extubation failure (RMS-EF) predictor uses 20 clinical variables (Supplemental Table 3).
The RMS-RF & RMS-EF variable sets were identified using greedy forward selection on the validation set
of five data splits, separately for the two tasks. The models for the ventilator use (RMS-VENT) and
extubation readiness (RMS-REXT) use the union of the parameters of the two main tasks, yielding a total of
26 variables (Supplemental Table 3).

We use the four risk scores to estimate mechanical ventilator resource requirements in the short-term
future by training a meta-model (Fig. 1c). The resource planning problem is divided into two sub–problems;
predicting the future ventilator use for already admitted ICU patients, and predicting near future ventilator
requirement for newly admitted non-elective patients. We excluded elective patients as their resource use is
typically known well in advance. The predictor uses date and time information as well as summary statistics
regarding ventilator use and patient numbers from the ICU. A LightGBM24 regressor is used to solve both
sub-problems. For admitted ICU patients, it predicts the necessity for mechanical ventilation in the
short-term future, as well as the total number of ventilators required for all admitted patients as an
aggregate of the individual predictions (Fig. 1d).

Open Source Release All elements of the developed system, including data preprocessing, annotation,
prediction task labeling (Fig. 1e), and both training and prediction pipelines are made available under an
open source license facilitating the reproducibility and reuse of the methodology and results.

RMS-RF predicts RF early with high precision and reduces false alarms compared
to clinical baselines

The early prediction of RF is crucial for timely intervention, potentially reducing the severity of patient
outcomes and improving overall healthcare efficiency. By accurately forecasting these events, RMS-RF
may not only improve clinical decision-making but also allow physicians to commence treatment early,
thereby mitigating the risk of more severe respiratory complications. We observe that the developed early
alarm system RMS-RF significantly outperforms a decision tree that uses the current value of the four most
relevant respiratory parameters (SpO2, FiO2, PaO2, and Positive End-Expiratory Pressure (PEEP)) as well
as a clinical threshold-based system based on the SpO2/FiO2 ratio (Fig. 2a). It achieves an area under the
alarm/event precision recall curve10 (AUPRC) of 0.559 with an alarm precision of 45% at an event recall of
80%. Its underlying risk score has an area under the receiver operating characteristic curve (AUROC) of
0.839 (Extended Data Fig. 4a) and is well calibrated, in contrast to the two baselines (Extended Data Fig.
4b). The system detects 65% and 78% of events at least 10 hours before they occur when set to an event
recall of 80% and 90%, respectively (Fig. 2b). Compared to the SpO2/FiO2 threshold-based system, our
system generates two-thirds fewer false alarms per day on days where the patient experiences no
respiratory failure (Fig. 2c). We find performance increases with more data up to 25% of the total dataset
size (Extended Data Fig. 4c). Performance in patients from the cardiovascular and respiratory diagnostic
groups is higher than average (alarm precisions 55% and 60% at 80% event recall, respectively). Lower
performance is observed in neurologic and trauma patients (Fig. 2d). Performance varies in groups
determined by age and gender26 (Extended Data Fig. 4d/e). RMS-RF is inspectable to the clinician using
SHapley Additive exPlanations (SHAP)27 values and exhibits physiologically plausible relationships of risk
and clinical variables (Fig. 2e, Extended Data Fig. 5).
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The proposed RMS-RF model only uses a small number of physiological parameters and ventilator
settings. We excluded medication variables to reduce the effect of differences in medication policies in
different hospitals. When externally validated in the Amsterdam UMCdb database16, a somewhat reduced
performance is observed when the HIRID-II-based model is used and no major performance gains are
achieved by retraining using local data (Fig. 2f; 38% vs. 45% alarm precision at 80% event recall). A variant
of RMS-RF including medication variables (RFS-RF-p) achieved only minor gains in internal HiRID performance
(Fig. 2g) and exhibited poor transfer performance to UMCdb (Extended Data Fig. 6a).To understand these
transfer issues, medication policy differences between HiRID-II and UMCdb were analyzed and could be
attributed to the medications loop diuretics, heparin and propofol (Fig. 2g, Extended Data Fig. 6b/c).

Fig. 2: RMS-RF: Model performance / feature inspection of the respiratory failure prediction model. a. Model performance of
RMS-RF compared with a decision-tree based clinical baseline and a threshold-based alarm system based on the current
SpO2/FiO2 ratio. b. The RMS-RF system's performance is evaluated by the earliness of its alarms. Specifically, this is measured as
the proportion of events for which it provides early warnings at least a fixed time before a respiratory failure event, considering only
those events that have a sufficient stability period beforehand. c. Comparison of generated false/true alarm counts of RMS-RF
compared with a fixed threshold alarm system, both for patients with events, and patients without events on a given day. d.
Performance of the RMS-RF model by admission group category, in terms of alarm precision at event recalls of 80% and 90%. The
model was re-calibrated for each sub-group using information available at admission time, to achieve a comparable event recall. e.
Feature inspection using SHAP values for the most important features for predicting respiratory failure, depicting the relationship
between feature values and SHAP values. f. External validation of RMS-RF in the Amsterdam UMCdb database16. Internal, transfer
as well as retrain performance in UMCdb is displayed. g. RMS-RF performance changes as the most important variables are added
incrementally to the model, for the internal HiRID setting, and the transfer setting to UMCdb. Model transfer issues between the two
hospital centers exist if medication variables were included in RMS-RF, denoted as the RMS-RF-p model variant. Markers denote
the variables included in the models, and red colors denote variables which decrease performance when added to the model in the
transfer setting.
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RMS-EF predicts extubation failure with high precision and is well-calibrated

The accurate prediction of extubation failure is a critical aspect of patient management in intensive care,
enabling clinicians to make informed decisions about the ideal timing of extubation. By utilizing RMS-EF to
predict the risk of extubation failure, physicians could judiciously determine whether to proceed with or
delay extubation based on a quantifiable risk threshold, potentially reducing the likelihood of complications
associated with both, premature extubation or unnecessary prolongation of mechanical ventilation. We
compare the developed RMS-EF predictor to a threshold-based scoring system, which counts the number
of violations of clinically established criteria for readiness to extubate at the time point when the prediction
is made (REXT status score). RMS-EF significantly outperforms the baseline (Fig. 3a) with an AUPRC of
0.535 and an AUROC of 0.865 (Extended Data Fig. 7a). We also analyzed calibration and observed high
concordance between observed risk of extubation failure and RMS-EF with a Brier score of 0.078, in
contrast to the baseline (Fig. 3b). The precision for predicting EF is 80% at a recall of 20% indicating that
RMS-EF can confidently identify the highest risk patients. For 25% of correctly predicted successful
extubations, RMS-EF would predict success at least 3h prior to the time point when extubation effectively
takes place (Fig. 3c). As with RMS-RF, no major improvements are observed when using more than 25%
of the training data (Extended Data Fig. 7b). Performance in sub-cohorts according to the diagnostic group
is similar, with RMS-EF performing best in respiratory patients (Fig. 3d). We observe that the performance
in female patients and older age groups is slightly inferior (Extended Data Fig. 7c/d). As RMS-EF is based
almost exclusively on variables that are influenced by clinical policies which likely differ in different
hospitals, it transfers poorly to the UMCdb database16 (External Data Fig. 7e). However, a variant of
RMS-EF can be constructed without medication variables, which transfers better to the UMCdb database
with only slightly reduced internal performance (Fig. 3e; AUPRC 53.5% vs. 49% for HIRID). Accordingly,
the analysis of medication policies revealed major differences for ready-to-extubate patients between
HiRID-II and UMCdb (Extended Data Fig. 7f/g). SHAP value analysis28 shows that the RMS-EF risk score
is dependent on several parameters determined by treatment-policies, such as medications and ventilator
settings (Fig. 3f, Extended Data Fig. 8). Severe loss of transfer performance resulted from the inclusion of
sedatives and vasopressors in the model (Fig. 3g).
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Fig. 3: RMS-EF: Model performance analysis and feature inspection. a. Model performance compared with a baseline based
on clinically established criteria for readiness to extubate in terms of recall/precision. b. Risk calibration of the score for predicting
extubation failure at the time of extubation, compared with the baseline. c. Distribution of time span between the earliest extubation
success prediction of RMS-EF prior to the time point of successful extubation, for correctly predicted successful extubations. The
earliest time is defined as the first time-point from which RMS-EF continuously predicts ‘extubation success’ while the patient is
ready-to-extubate. Red dashed lines denote the 25, 75 percentiles, and the red solid line denotes the median, respectively. d.
Performance in different sub-cohorts of the test set, according to diagnostic group, in terms of precision at 80% and 20% recall. The
model was re-calibrated for each sub-group using information available at admission time, to achieve a comparable recall. e.
Performance of the RMS-EF-lite model, which is obtained by excluding medication variables from RMS-EF, when trained/tested on
the HIRID-II database, transferred to the UMCdb data-base, and retrained in the UMCdb database. f. Summary of SHAP value vs.
variable distribution for the most important feature of each of the top 10 important variables contained in the RMS-EF model. g.
Performance of the RMS-EF, RMS-EF-lite models in the internal and transfer settings as variables are added incrementally to the
model ordered by performance contribution (greedy forward selection performance on the validation set). Red marked percentages
on the orange curve denote relative performance loss in the transfer, when adding the variable to the model. Variables are in red
font if their inclusions leads to performance loss in the transfer setting.

Integrating RMS scores of individual patients for ICU-level resource planning

Using the predictions for the four models focusing on respiratory failure (RMS-RF), extubation failure
(RMS-EF), ventilation onset (RMS-VENT), and readiness to extubate (RMS-REXT), we develop a
combined model predicting the number of ventilators in use at a specific future horizon. Preliminary analysis
of the HiRID-II dataset shows substantial variation in demand for ventilators each day, underscoring the
need for a model to aid resource planning (Fig. 4a). In a first step, we evaluated ventilation onset
(RMS-VENT) and readiness to extubate (RMS-REXT) prediction 24h prior to the event on a patient-level.
We observe a high discriminative performance with AUROCs of 0.914 and 0.809 (Extended Data Fig.
9a/b), event-based AUPRCs of 0.528 and 0.910 (Extended Data Fig. 9c/d), respectively, and the models
are well calibrated (Extended Data Fig. 9e/f).

We then train a meta-model using the four scores to predict ventilator usage in the ICU at future time
horizons every hour (4-8h, 4-12h, 8-12h, 8-16h, 16-24h; Fig. 4b). We compare it with a baseline that
predicts that the future ventilator resource remains unchanged. We observe that the proposed model
clearly outperforms this baseline in terms of mean absolute error (MAE), with the largest relative gain in
longer prediction horizons (Fig. 4b). We observe that in 39% of time-points the model’s predictions are at
least two ventilators closer to ground-truth, for predicting ventilator use in 8-16 hours into the future (Fig.
4c/d). RMS outperforms the baseline for the vast majority of ICU ventilator utilization scenarios (Fig. 4e)
with the largest improvement over the baseline when the respirator use is below the maximum capacity
(Fig. 4e) and for predictions of ventilator use during day hours (Fig. 4f).
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Fig. 4: Model performance of the integrated system for resource planning (RMS) in an ICU with an effective capacity of 42
beds. a. Observed ventilator usage pattern in the HiRID-II dataset, in terms of days on which a particular number of ventilators is
used. b. Performance of RMS compared with the baseline, in terms of mean absolute error for predicting the maximum number of
used ventilators at a fixed horizon in the future. c. Example of a typical ICU setting shown for a duration of one day, annotated with
ground-truth, RMS and baseline predictions. In the rug plot, relevant better predictions are marked for the offsets 1-4. d. RMS
compared with the baseline, for different absolute differences of predictions (1-4) in the rows, for a prediction horizon of 8-16 hours
in the future. The table entries denote the proportion of time-points in which either RMS or the baseline is better by at least the
difference of the row. e. Performance of RMS for different current ventilator ICU usage scenarios, ranging from low usage, to high
usage, compared with the baseline, for a prediction horizon of 8-16 hours in the future. The number of time-points falling into each
bin is denoted in parentheses. f. Performance of RMS, by hour of the day when the prediction is performed, compared with the
baseline, for a prediction horizon of 8-16 hours in the future.

Explorative joint analysis of RMS scores throughout the ICU stay

We analyzed the relationship of the four RMS scores produced at each time point of the ICU stay by
embedding the most important parameters for respiratory failure and extubation failure prediction (union of
the top 10 variables identified for each task, current value feature) using t-distributed Stochastic Neighbour
Embedding (t-SNE29) with subsequent discretization into hexes. This approach produces a two-dimensional
hex-map that defines subsets of comparable patient states that can be compared across different
characteristics, i.e., between the panels for the hex. We observe that the space is divided into two distinct
states, corresponding to time-points when the patient is ventilated or not ventilated (Fig. 5a). The region of
ventilated patients is further subdivided, with patients in the upper part being more likely to be
ready-to-extubate (Fig. 5b). As expected, the ventilated and not ready-to-extubate region has the highest
observed 24h mortality (Fig. 5c). Patients currently experiencing respiratory failure are concentrated in a
compact region in the non-ventilated space, as well as scattered throughout the ventilated space (Fig. 5d).
States with high risk of future ventilation need according to RMS-VENT are close to the boundary of the
ventilated region (Fig. 5e). Readiness to extubate scores show a less clear pattern, but scores tend to be
higher in the upper part of the ventilated region, which is also enriched in states in which patients are
ready-to-extubate (Fig. 5f). For RMS-EF, high scores are concentrated in two distinct regions at the edge of
the ventilated region (Fig. 5g). Lastly, RMS-RF scores are high close to the boundary of patients already in
respiratory failure (Fig. 5h). The median risk scores of hexes for respiratory failure/ventilation need are
strongly positively correlated with an R2 of 0.471 (Fig. 5i). Likewise, respiratory failure and extubation
failure scores are moderately positively correlated (Fig. 5j). For RMS-EF/RMS-REXT scores, no correlation
could be observed (Extended Data Fig. 10). For three exemplary hexes with predominantly (1)
non-ventilated patients but high RMS-RF score, (2) ready-to-extubate patients but high RMS-EF score, and
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(3) not-ready-to-extubate patients but high RMS-RF score, the distribution of clinical parameters was
analyzed, showing plausible relationships with clinical parameters (Fig. 5k).

Fig. 5: Joint analysis of the four scores produced by RMS overlaid on a t-SNE embedding based on important respiratory
parameters. a. Hexes are colored by the proportion of time-points in the hex for which the patient is ventilated. b. Hexes are colored
by the proportion of time-points in the hex for which the patient is ready-to-extubate given the patient is ventilated. c. Hexes are
colored by observed 24h mortality risk. d. Hexes are colored by the proportion of time-points in the hex for which the patient is in
respiratory failure. e-h. The color of the hex denotes the median RMS-VENT/RMS-REXT/RMS-EF/RMS-RF scores of the time
points assigned to the hex, respectively. i. Relationship of median respiratory failure score (RMS-RF) and median ventilation need
score (RMS-VENT) in hexes for time-points where both scores are active. The p-value of a Wald test for a non-zero regression line
slope is 1.5ᐧ10-36. j. Relationship of median respiratory failure score (RMS-RF) and median extubation failure score (RMS-EF) in
hexes for time-points where both scores are active. The p-value of a Wald test for a non-zero regression line slope is 2.7ᐧ10-5. k.
Score and input value distribution of time points assigned to three selected hexes for the 16 variables used as input for the t-SNE.
The median is reported, and numbers in square brackets refer to the interquartile range.

Discussion
We present a ML-based system for the comprehensive monitoring of the respiratory state of ICU patients.
The respiratory monitoring system (RMS) consists of four highly accurate scoring models that predict the
occurrence of respiratory failure, start of mechanical ventilation, readiness to extubate as well as extubation
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failure. By combining the prediction scores of all admitted patients at any time point and by accounting for
the likelihood of future admissions, RMS facilitates the accurate prediction of the near future cumulative
number of patients requiring mechanical ventilation to help optimize resource allocation at the ICU level.

In conjunction with our study, we aim to release the extensive HiRID-II dataset, a rich resource for
broad-scale analyses of ICU patient data. This dataset represents a significant advancement to HiRID-I,
both in terms of number of included patients and clinical parameters. Our initial analysis of the HiRID-II
dataset identified significant links: both the presence and duration of respiratory failure, as well as
extubation failure, are associated with increased ICU mortality, highlighting distinct yet interconnected risk
factors. These insights highlight the critical need for advanced alarm systems in clinical settings to reduce
the risks associated with respiratory and extubation failure. The future availability of the HiRID-II dataset to
the research community on Physionet17,18 will open up numerous possibilities for further research, allowing
for more in-depth investigations into various aspects of ICU patient care and outcomes.

RMS-RF predicts respiratory failure throughout the ICU stay, and alarms for impending failure are typically
triggered at least 10 hours before the event. This early warning is sufficient to enable adjustments in the
patient's medical management well in advance of the potential respiratory failure. It outperforms a baseline
representing standard clinical decision-making based on SpO2 and FiO2, and reduces the number of false
alarms by a factor of 3 at 80% event recall (Fig. 2c). RMS produces RF-specific alarms and silences them
within a specified period of time after the model triggers an alarm, reducing alarm fatigue, which is a major
issue for ventilator alarms30. Prior to respiratory failure, only 1.5 alarms per patient/day are raised, which is
manageable for the clinical personnel, and unlikely to cause alarm fatigue. Reassuringly, only variables
directly associated with respiratory physiology or ventilator settings were found consistently predictive of
impending respiratory failure. RMS-RF demonstrates its highest precision in individuals admitted with
cardiovascular or respiratory admission diagnoses, while its performance notably declines in neurologic
patients. In these patients ventilatory management is often determined by the need to protect a
compromised airway in patients with altered levels of consciousness and not by the presence of RF per se.
A similar pattern was previously observed for circulatory failure10 and suggests that patients in the
neurologic category deserve additional attention and may need to be excluded in a clinical implementation
of an early alarm system based on RMS-RF. To date, few externally validated ML models to continuously
predict acute respiratory failure in the ICU have been reported. Recent works by Le et al.8, Zeiberg et al.31,
and Singhal et al.32 focus on mild respiratory failure (P/F index < 300 mmHg). Other models predict
respiratory failure at the time of ICU admission or are only valid for specific cohorts33–35.

RMS-EF predicts extubation failure and significantly outperforms a clinical baseline based on common
clinical criteria for readiness to extubate status. The model is well calibrated, with almost ideal concordance
of the prediction score and observed risk of extubation failure. A potential use case would be to assess the
predicted EF risk when considering extubation for patients that are ready to extubate in order to decide
whether to accelerate or delay the extubation of the patient. For instance, if the risk is very low, one may
speed up extubation of patients that are ready to extubate. At about 80% recall, a quarter of correctly
predicted extubation successes are recommended more than 3h before the actual extubation. This
suggests that our model could help clinicians to extubate patients earlier. However, in our analysis we could
not ascertain whether a patient was not extubated for another reason not apparent from the data, such as
availability staff. For clinical use the model could also be operated at 20% recall with very high precision
(80%), to identify patients with a high likelihood that extubation will be unsuccessful. This could guide
attention towards critical patients, and may caution clinicians from prematurely extubating patients. For the
prediction of extubation failure, various models have been proposed36–41. The largest cohorts to date were
used in the works by Zhao et al.41, who only validated the model in a cardiac ICU cohort, which limits the
generalizability of the results, and Chen et al.42, who restricted the evaluation to ROC-based metrics only,
which makes clinical interpretation difficult.

Machine learning (ML) has previously been used to develop support systems for the management of RF
patients in the ICU. These include models for recognition of acute respiratory distress syndrome (ARDS)5–9

and COVID-19, pneumonitis patients32,43, prediction of readiness-to-extubate44–46, need for mechanical
ventilation47,48, and detection of patient-ventilator asynchrony49. Existing work focuses on single aspects of
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RF management, often in specific patient cohorts only. Our approach aims to comprehensively monitor the
respiratory state throughout the RF treatment process, by integrating relevant respiratory-system related
tasks and allowing for joint analysis of risk scores and trajectories. We believe a single and universally
applicable system is much more likely to be successfully implemented than multiple fragmented models
pertaining to specific disease entities. A further distinguishing feature of RMS is the five-minute time
resolution at which predictions are made, enabling longitudinal analysis of risk trajectories. This dynamic
prediction paradigm is more flexible than traditional severity scores, which are evaluated at fixed
time-points, such as at 24 h after ICU admission50, mainly to predict ICU mortality51.

For successful external validation of RMS-RF, it was key to exclude medication variables from the model,
as their inclusion was detrimental to model transferability. We hypothesize that this difficulty is caused by
the observed medication policy differences between the centers. Interestingly, ventilator settings, while also
policy-dependent, do not appear to compromise transfer performance in the same way. Investigating and
quantifying the underlying policy differences, which make transfer difficult, needs additional research. Model
transferability is an emergent topic in robust machine learning for ICU settings, and recent works study it for
sepsis13,52,53 or mortality prediction54. Our results suggest that medication variables require special attention
to enable transfer. In contrast to RMS-RF, we suggest that RMS-EF to be re-trained and fine-tuned using
the data from the center where it should be applied. As extubation failure predictions are necessarily tied to
policy, the policy differences between different centers proved more relevant than in the case of RMS-RF.

While clinical prediction models for individual patients have been extensively studied, resource planning in
the ICU has received little attention in the ML literature, but came into renewed focus due to the COVID-19
crisis55. During the COVID-19 pandemic, the first ML-based models to predict ICU occupation were
proposed, such as by Lorenzen et al.55, who predict daily ventilator use up to 15 days into the future, as well
as more generally hospitalization, using patient-specific features56. The proposed RMS clearly outperforms
a baseline method for predicting future ventilator use at the ICU level. With a mean absolute error of 0.39
ventilators per 10 ICU patient beds used during the next shift (8 to 16 hours), it is sufficiently precise for
practical purposes. Since resource allocation in the ICU depends on local policies and procedures, such a
system likely needs to be retrained for every clinical facility for reliable predictions.

In this study, we developed comprehensive predictors of key aspects of respiratory failure management,
including RF, EF, ventilation need, and readiness to extubate. These predictors collectively describe various
aspects of a patient's respiratory health state in the ICU which can be used for exploratory analysis. The
joint analysis and visualization of risk scores alongside other vital clinical variables yield discernible clusters
that correspond to specific patient states, indicating the potential for risk stratification within the patient
population. We observed a separation of patient states into two main clusters that align with ventilated and
non-ventilated states, with substructures within these clusters, in particular the patients that are not ready to
be extubated among the ventilated patients (Fig. 5b). A subset of patients with low predicted readiness to
extubate within the next 24h have the highest mortality risk (Fig. 5f,c). These patients often have a low
GCS, are more likely to require controlled ventilation modes, have higher ventilator peak pressure and
require higher PEEP (Fig. 5k); all indicators of more severe underlying lung pathology. We can also identify
a distinct cluster of patients that are clinically ready to be extubated, have a lower risk of RF but have a very
high EF risk (Fig. 5g). These patients require relatively higher ventilation pressure support and have a low
respiratory rate (Fig. 5k); again established risk factors for extubation failure. Among the patients that are
not currently ventilated, we find a wide range of risks for RF. Those patients with the highest RF risks have
low PaO2, high (supplemental) FiO2 and high respiratory rates (Fig. 5k). However, mortality risks are
relatively low (Fig. 5c).

The hex-map visualization provides a snapshot of the ICU population at any given time and allows for the
monitoring of patient states over time with updates, akin to those seen in methodologies like T-DPSOM57,58.
This dynamic tracking is based on the automated integration of multiple respiratory state dimensions and uses
nonlinear dimensionality reduction to provide the position of an individual patient on the map of respiratory
health states. We hypothesize that this visualization could assist clinicians in identifying shifts in patient
states, although the practical implications of this feature require further validation. This represents a
different approach to previous works, that mainly tries to understand biological phenotypes of ARDS
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patients59–62 or longitudinal sub-phenotypes of a more specific patient set, like COVID-19 patients63,64.
Overall, while the visualization provides an interesting perspective for an alternative modality for monitoring
of respiratory state in the ICU and can serve as a tool for a more detailed exploration, the presented
analysis is primarily exploratory. Further research is needed to substantiate the clinical relevance of the
identified clusters and to explore how this system might integrate into the decision-making processes within
the ICU.

Our study, while robust, has certain limitations. Unlike typical single-center studies, our research utilized
data from two distinct centers, one for development and another for validation. This approach reduces the
risk of overfitting models to a local patient cohort, although it is important to note that external applicability
may still vary and retraining on local data will still be needed for parts of the proposed RMS. In our machine
learning models, we have incorporated improvements based on our previous work. Unlike earlier systems
heavily reliant on sporadic clinical measurements like lactate levels10, our current model leverages
continuous SpO2 monitoring and ventilator data. This reduces the influence of clinician-driven decisions on
our alarm systems, ensuring a more objective assessment of the patient's condition. However, a limitation
remains in the retrospective nature of our data collection. Missing data was partially imputed for respiratory
failure annotation, and while this aids in model development, it introduces potential biases. Additionally, our
study could not evaluate the impact of system implementation in actual clinical practice, which might alter
treatment or monitoring strategies (domain shift)65. Lastly, our assessment of the extubation failure (EF) risk
score was limited to scenarios of actual extubation events. While we hypothesize that the accuracy of this
score would be similar in patients nearing readiness for extubation, this cannot be definitively concluded
from our retrospective data. Future prospective studies are needed to fully understand the implications of
our model in a live clinical setting.

Overall, we have proposed a comprehensive monitoring system for the entire respiratory failure
management cycle, including resource planning at the ICU level. We hypothesize that our system can
facilitate early reassessment of deteriorating patients, enable rapid treatment and improve their outcomes.
However, this has to be validated in prospective randomized controlled trials, assessing the impact of using
RMS-RF/RMS-EF on patient outcomes. Using gradient-boosted decision trees for constructing RMS allows
for the introspection on individual predictions using SHAP values, offering valuable insights to clinicians,
and ultimately increasing trust in the predictions66. Resource planning at the ICU level, which has not only
become an important topic in the context of the COVID-19 pandemic55, is facilitated by a meta-model, built
on top of RMS. Testing such an approach for resource planning and contrasting it with current clinical
practice also lies in the scope of future clinical studies.
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Extended data figures

Extended Data Fig 1. Patient inclusion & Experimental design. a. Patient inclusion schema in the HiRID-II dataset. b. Inclusion
of clinical parameters in the data extraction pipeline of the HIRID-II dataset. c. Split design schema for performance evaluation. A
fixed test set consisting of admissions starting in Mid June 2018 to the end of 2019 was used, which is shared by all five temporal
splits, and is marked by a black block in all five splits. The remaining patients were randomly partitioned five times into train and
validation set, each defining a temporal split, which is indicated by the horizontal white and grey bars. d. Patient inclusion schema
in the UMCdb dataset used for external validation.
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Extended Data Fig 2. Association of ICU Mortality with Respiratory Failure / Extubation Failure / Ventilation. a. Mortality
statistics for patients with respiratory failure at some time during their ICU stay, and those without respiratory failure during their ICU
stay. b. Relationship of ICU mortality rate with fraction of the stay in which patients experience respiratory failure. c. Mortality
statistics for patients with extubation failure, and those without extubation failure but with at least one successful extubation. d.
Mortality statistics for patients receiving mechanical ventilation during their ICU stay, and those not ventilated. e. Relationship of
ICU mortality rate with fraction of their stay during which patients are mechanically ventilated.

Extended Data Fig 3. Performance of PaO2 estimation model. a. Performance evaluation of PaO2-estimation model on HiRID-II
test set in terms of MAE vs. ground-truth PaO2 from invasive blood tests, compared with the non-linear Severinghaus-Ellis baseline.
b. Example time series of predicted and ground-truth PaO2 values, as well as SpO2 values, and baseline predictions. A patient was
selected for which the median absolute error of both model and baseline is close to their population median reported in panel a.
The tendency of the PaO2 model to predict closer to the ground-truth observations in case of outliers is clearly visible.
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Extended Data Fig 4. Evaluation of RMS-RF. a. ROC-based performance of the RMS-RF score, compared with the two
baselines. b. Calibration of the RMS-RF model compared with the two baselines. c. Performance of the RMS-RF model, as the
training set size is varied, in terms of complete patients d. Performance of the RMS-RF model by age group, for event recalls of
80/90 %. The model was re-calibrated for each sub-group using information available at admission time, to achieve a comparable
event recall. e. Performance of the RMS-RF model by gender, for event recalls of 80/90 %. The model was re-calibrated for each
sub-group using information available at admission time, to achieve a comparable event recall.

Extended Data Fig 5. Model introspection of RMS-RF. SHAP value - feature value interactions of the top feature of the top 10
most important variables contained in RMS-RF.
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Extended Data Fig 6. External validation of RMS-RF-p / Medication policy comparison HiRID-II/UMCdb. a. Performance of
the RMS-RF-p model, which additionally includes medication variables, when trained and tested on HIRID-II, transferred to UMCdb
and retrained in the UMCdb database b. t-SNE embedding of time-points in the test set of a pooled dataset between samples from
HiRID-II and UMCdb (1:1 ratio of two datasets), of physiological parameters. Only time-points when the patient is not in respiratory
failure are taken into account, for which the RMS-RF-p model is active. The color indicates the proportion of time-points in the
UMCdb dataset in a given hex. c. The same t-SNE embedding as in b is displayed separately for time-points from the HiRID-II
dataset, and the UMCdb dataset, corresponding to the rows. The hexes in the t-SNE are colored by the mean drug dosage of all
time-points assigned to the hex. The four medication variables, for which transfer issues of the RMS-RF-p model were detected,
are analyzed in the columns. Medication policy differences are visible for all four variables, in particular for Heparin & Propofol.
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Extended Data Fig 7. Evaluation of RMS-EF / Medication policy comparison HiRID-II/UMCdb. a. ROC-based performance of
RMS-EF, compared with the baseline. b. Performance of RMS-EF as the training set size is varied between 1 % and 100 % of the
original dataset size, by subsampling complete patient records in the training set. c. Performance of RMS-EF for different genders,
at recalls of 80/20 %. The model was re-calibrated for each sub-group using information available at admission time, to achieve a
comparable recall. d. Performance of RMS-EF for different age groups, at recalls of 80/20 %. The model was re-calibrated for each
sub-group using information available at admission time, to achieve a comparable recall. e. Performance of the RMS-EF model,
when trained/tested in the HIRID-II database, transferred to the UMCdb database, and retrained in the UMCdb database. f. t-SNE
embedding of time-points in the test set of a pooled dataset between samples from HiRID-II and UMCdb (1:1 ratio of two datasets),
of physiological input variables. Only time-points when the patient is ready-to-extubate are taken into account, for which the
RMS-EF model is active. The color indicates the proportion of time-points in the UMCdb dataset in a given hex. g. The same t-SNE
embedding as in g is displayed separately for time-points from the HiRID-II dataset, and the UMCdb dataset, corresponding to the
rows. The hexes in the t-SNE are colored by the mean drug dosage of all time-points assigned to the hex. The four medication
variables, for which transfer issues of the RMS-EF model were detected, are analyzed in the columns. Medication policy
differences are visible for all four variables, in particular for Benzodiacepine & Norepinephrine.
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Extended Data Fig 8. Model introspection of RMS-EF. SHAP value - feature value interactions for the top feature of the top 10
most important variables contained in the RMS-EF model.

Extended Data Fig 9. Evaluation of RMS-VENT/RMS-REXT. a. ROC-based performance of RMS-VENT, predicting ventilation
onset within the next 24h. b. ROC-based performance of RMS-REXT, predicting being newly ready to extubate within the next 24h.
c. Event-based PRC of the RMS-VENT alarm system. d. Event-based PRC of the RMS-REXT alarm system. e. Calibration of the
RMS-VENT score. f. Calibration of the RMS-REXT score.
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Extended Data Fig 10. Joint task analysis details. Scatter plot of median respiratory failure vs. median readiness to extubate
score in the hexes analyzed in the explorative joint analysis of RMS scores (see Fig. 5). A light positive correlation between
respiratory failure and readiness to extubate scores can be observed, which is barely significant at 5 % level. A Wald test which
tests non-zero slope of the regression line (shown in red) was performed.

Supplemental Materials
Supplemental Table 1. Details on the clinical parameters extracted in the HiRID-II dataset (downloadable XLSX file).

Supplemental Table 2. Details on the imputation parameters, such as normal value, and imputation models, for the clinical parameters
(downloadable XLSX file).

Supplemental Table 3. List of important variables used for computing complex features, as a basis for variable selection, and for
building the final models RMS-RF/RMS-EF/RMS-VENT/RMS-REXT (downloadable XLSX file).

Supplemental Table 4. List of severity levels for computing ‘instability history’ features, for a subset of the important variables. (downloadable XLSX
file).

Supplemental Table 5. Model training parameters and grid used for selection of hyperparameters for the LightGBM library (downloadable XLSX
file).
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