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Abstract

Spectral computed tomography (SCT) is an powerful imaging modality
with broad applications and advantages such as contrast enhancement,
artifact reduction, and material differentiation. The positive process or
data collected process of SCT is a nonlinear physical process existing
scatter and noise, which make it is an extremely ill-posed inverse prob-
lem in mathematics. In this paper, we propose a dual-domain iterative
network combining a joint learning reconstruction method (JLRM) with
a physical process. Specifically, a physical module network is constructed
according to the SCT physical process to accurately describe this forward
process, which makes the nonlinear use of the traditional mathematical
iterative algorithm effective and stable. Additionally, we build a residual-
to-residual strategy with an attention mechanism to overcome the slow
speed of the traditional mathematical iterative algorithm. We have veri-
fied the feasibility of the method through our winning submission to the
AAPM DL-spectral CT challenge, and demonstrated that high-accuracy
also basis material decomposition results can be achieved with noisy data.
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1 Introduction

Spectral computed tomography (SCT) is popular and promising in clinical and
industrial nondestructive testing. Traditional CT aims to accurately recover a
detailed internal image of an object by scanning it from different angles. How-
ever, it does not consider the polychromaticity of x-rays. SCT, as shown in Fig.
1, considers the beam spectrum is broad and the polychromatic nature of the
x-ray beam makes quantitative imaging. Considering the x-ray spectral infor-
mation, this leads to more complex reconstruction problems. Hence, in SCT,
an object is scanned with different x-ray spectra or spectral separations from
the broad spectrum to supplement the information. Spectral x-ray data col-
lection methods include kVp-switching [1], dual-source scanning [2], dual-layer
detection, simplistic two-pass scanning, and photon counting detectors [3, 4].
Generally, the collected data of SCT, also known as polychromatic projection
data, are utilized to perform energy- and material-selective reconstructions [5–
8]. In other words, SCT not only can distinguish materials better but allows
quantification of the mass density of two or more materials in a tissue or a
mixture with known elemental composition [9].

In mathematics, the SCT reconstruction problem can be seen as solving for
µ(x,E) from K sets of polychromatic projection data under different spectra
or spectral separation,

qk,L(~x) = −ln
∫
Sk(E)e−

∫
L
µ(~x,E)dLdE + εk, k = 1, 2, · · ·K, (1)

where µ(~x,E) is the linear attenuation coefficient of the scanned object at
point ~x = (x1, x2, x3) with energy E and Sk(E), k = 1, 2.is normalized effec-
tive spectrum,

∫
Sk(E)dE = 1 and εk represent scatter or noise of the kth

projection. In SCT, the linear attenuation coefficient is generally decomposed
as a linear combination of some predefined basis functions,

µ(~x,E) =

M∑
i=1

θi(E)fi(~x), (2)

where θi(E) are energy-dependent functions, and fi(~x) are functions of spatial
position. There are two physical explanations for this equation. The first one
is the decomposition method based on the physical effect, where M = 2 in this
case and the functions based on the photoelectric effect and Compton scatter-
ing.The second explanation is basis material decomposition. θi(E), represent
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the mass attenuation coefficients of the selected basis materials. The recon-
structed fi(~x), represent the densities of the basis materials of the scanned
object.

Substituting (2) into (1), we can obtain the discrete form of SCT as follow:

qk.L(~x) = −ln
Nk∑
E=1

Sk(E)e
−

M∑
i=1

θi,k(E)Ri,kfi(~x)
+ εk, k = 1, 2 · · ·K, (3)

where Ri,k, k = 1, 2, · · · ,K, represents the kth Radon transform.
Compared with traditional CT, the reconstruction problem of SCT is

nonlinear and ill-posed. Moreover, real projection data may be inconsistent.
Algorithms to solve this problem can be classified in two ways. According to
the domain where the data are processed, the methods can be divided into
image domain methods [8–14] and projection domain methods [15, 16]. They
can also be categorized into direct mapping methods [5, 10–15, 17–19], iterative
algorithms [16, 20–31], and deep-learning methods [32–40]. Several researchers
combine these classifications.

Scanned object Polychromatic  projection data
Detector

Projection domainImage domain

X-ray source

Fig. 1 Spectral computed tomography imaging process.

Image domain methods, also known as post-processing methods, directly
process images that have been reconstructed from collected raw data. The
reconstructed image is generally solved using a linear algorithm, such as
the algebra reconstruction technique (ART) or filter back-projection (FBP).
This is actually a first-order approximation of the original nonlinear data,
although image domain methods use different basis functions [10, 11, 15, 18]
to approximate it. Hence, the reconstructed images still suffer from arti-
facts such as beam-hardening. Projection domain methods process either raw
or log-transformed data before image reconstruction. Theoretically, projec-
tion domain methods can obtain better images than image domain methods,
because they can compensate for nonlinear effects on material decomposition
and suppress artifacts in the decomposition process. However, polychromatic
projections require geometric consistency, and it is notoriously difficult to prac-
tical SCT system. Direct mapping constructs a basis function and establishes
a mapping between the SCT data and basis material. While direct mapping
methods are quick and simple and do not consider the spectrum information
and attenuation coefficient of materials, they are highly dependent on the
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calibration phantom, which limits the accuracy of the reconstructed images.
Iteration reconstruction algorithms are the most effective way to solve ill-posed
nonlinear inverse problems. Unfortunately, they are time-consuming when
the geometric parameters of different spectral scans are inconsistent. Many
researchers combine the statistical assumptions of raw data and prior informa-
tion on images, but this involves hyperparameters that can only be adjusted
empirically and do not offer consistent image quality improvement [41]. source-
dual-detector CT systems [42, 43]. In recent years, deep learning methods
have obtained high-quality reconstructed images with complete training sam-
ples. However, much training data are required to train the network-trainable
parameters, and it is difficult to obtain in many cases. Sidky et al. lead
to the AAPM challenge named DL-spectral CT. This challenge provides an
opportunity for investigators in SCT image reconstruction, using data-driven
or iterative techniques, to compete with their colleagues on the accuracy of
their methodology for solving the inverse problem associated with spectral CT
acquisition from incomplete, noiseless measurements.a

This study aims to demonstrate whether deep neural networks can real-
ize high-precision decomposition images of basis materials and establish a
foundation for SCT reconstruction algorithms based on big data and deep
learning [41]. We propose an iterative network method that fuses SCT phys-
ical processes and traditional mathematical algorithms. Although the AAMP
challenge provides accurate physical processes (including spectrum and atten-
uation coefficient information), our method describes the physical process and
relevant physical quantities as learnable network parameters, which is more
flexible. As with DL-sparse-view CT, high reconstruction accuracy is only pos-
sible if the forward model is explicitly incorporated into the solution map, e.g.,
by an iterative promotion of data-consistency [44]. Here, we also build physical
process into precise physical module, which can realize the accurate expression
of the positive process in iterative steps, so as to realize the residual transmis-
sion correctly. For the noisy case, we add regularization terms, which is more
practical. The main contributions of our work are as follows:

• The proposed method is based on the complementary advantages of physi-
cal processing, traditional mathematical iteration algorithms (TMIAs), and
deep learning. Physical processing realizes the accurate expression of phys-
ical phenomena, TMIAs robustly achieve domain transformation, and deep
learning can accurately materials decomposition.

• A network joint physical model governs SCT projection data generation.
Hence, the network can more accurately express the SCT physical process.
Only when the physical process can be accurately and adequately described
by one model can the iterative process continuously improve reconstruction
accuracy. The physical model of SCT is defined as a module of the network
whose x-ray spectra Sk(E) and attenuation coefficient θ(E) correspond to
the learnable parameters.

ahttps://dl-sparse-view-ct-challenge.eastus.cloudapp.azure.com/competitions/3

https://dl-sparse-view-ct-challenge.eastus.cloudapp.azure.com/competitions/3
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• In the iteration process, the input/label data of networks use residual-to-
residual to train the network model, rather than image-to-image or image-
to-residual. Because places with large errors are observable in the residual
image, it is difficult to distinguish them in the image. Moreover, residual-to-
residual builds into the residual attention mechanism. Attention operations
in residual images make network training easier.

• The network structure is combined with practical problems. The SCT
projection data and reconstructed image are domain-related, but even in
inconsistent projections, the associated region is relatively small. Therefore,
CNN can apply SCT, but the receptive field should not be generous, so as
to avoid phenomena such as overfitting and poor robustness.

2 Method

2.1 JLRM architecture

We formulate SCT reconstruction as a nonlinear optimization problem to solve
basis material images ~x? from acquired polychromatic projections q?k:

f(~x?) = argmin
f(~x)
‖q(f(~x))− q?k‖22 + λ1R1(q(f(~x))) + λ2R2(f(~x)), (4)

where q(~x) corresponds to the nonlinear SCT physical process, and R1 and
R2 are network regularization terms in the projection and image domains,
respectively, which are used for the case of existing noise or scattering. In
this way, R1 can more accurately describe the physical model for the noise
or scattering case. R2 can effectively suppress noise or scattering and obtain
better reconstructed images.

In our experiments, the traditional mathematical iteration algorithm
(TMIA) uses the SART algorithm during iteration process and the other TMIA
also support. The third step is worth noting. We first calculate the projection
residuals for reconstruction, and the results are input to the CNN to obtain the
residuals of the base material images. That is, we use the residual-to-residual
strategy for network training, which can more effectively improve the image
quality.

Generally, the initial value also has a pronounced influence on the
convergence speed of the iterative algorithm. Therefore, we incorporate a
pre-decomposition module before the iterative process.

Our SCI network includes a pre-decomposition module and an iteration
process, as shown in Fig. 2. The pre-decomposition module includes TMIA
and CNN steps. For TMIA, we use the E-ART method, which is not sensitive
to spectral information, and the quality of reconstructed images is higher than
with other analytic algorithms. For the iterative process, the three steps of the
incremental method are consistent. As mentioned above, we use a residual-
to-residual strategy for effective network training. An attention mechanism is
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Fig. 2 Architecture of proposed method, including pre-decomposition module and iteration
process.

incorporated before the residual image input CNN, for easy network train-
ing and quick convergence. Below we show pseudocode for the training stage
(Algorithm 1) and test stage (Algorithm 2).

Algorithm 1 Training stage

1: Input: projection data q = (q1, q2), ground truth data f? =
(f?1 (x), f?2 (x), f?3 (x)), iteration number n, relaxation factor ω1 of E-ART
and ω2 of ART, initial value f (0) = 0.

2: Output: fn+1 = (fn+1
1 , fn+1

2 , fn+1
3 )

3: # step 1: Pre-decomposition (projection domain to image domain)

4: f (0) = (f
(0)
1 , f

(0)
2 , f

(0)
3 ) =CNN1(E-ART(p; ω1, f

(0)); Θ
(0)
1 ,Θ

(0)
2 ,Θ

(0)
3 )

5: loss function = MSELoss(f (0), f?)

6: update network parameters Θ
(0)
1 ,Θ

(0)
2 ,Θ

(0)
3

7: # step 2: iteration for residual-to-residual assign
8: for j = 0 to n do
9: # nonlinear physical module (image domain to projection domain)

10: q
(j+1)
k.L (~x) = −ln

Nk∑
E=1

Sk(E)e
−

M∑
i=1

θi(E)Rif
(j)
i (~x)

+ εk, k = 1, 2, · · · ,K

11: # residual-to-residual assign (projection domain to image domain)

12: ∆f (j) =CNN2(ART(q(j+1) − q?; ω2), f
(j)
1 , f

(j)
2 , f

(j)
3 ; Θ

(j)
1 ,Θ

(j)
2 ,Θ

(j)
3 )

13: loss function = MSELoss(∆f (j), f? − f (j))

14: update network parameter Θ
(j)
1 ,Θ

(j)
2 ,Θ

(j)
3

15: # update basis material images

16: f
(j+1)
1 = f

(j)
1 + ∆f

(j)
1 , f

(j+1)
2 = f

(j)
2 + ∆f

(j)
2 , f

(j+1)
3 = f

(j)
3 + ∆f

(j)
3

17: end for

The proposed method is based on the complementary advantages of phys-
ical processing, TMIAs, and deep learning. Physical processing realizes the
accurate expression of physical phenomena, while TMIAs achieve domain
transformation, and deep learning can accurately materials decomposition.
The three parts are interdependent and complementary.
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Algorithm 2 test stage

1: Input: projection data q = (q1, q2) iteration number n, relaxation factor
ω1 of E-ART and ω2 of ART.

2: Output: fn+1 = (fn+1
1 , fn+1

2 , fn+1
3 )

3: # step 1: Pre-decomposition

4: f (0) = (f
(0)
1 , f

(0)
2 , f

(0)
3 ) =CNN1(E-ART(p; ω1); Θ

(0)
1 ,Θ

(0)
2 ,Θ

(0)
3 )

5: # step 2: Iteration for residual-to-residual assign
6: for j = 0 to n do
7: # nonlinear physical module (image domain to projection domain)

8: q
(j+1)
k.L (~x) = −ln

Nk∑
E=1

Sk(E)e
−

M∑
i=1

θi(E)Rif
(j)
i (~x)

+ εk, k = 1, 2, · · · ,K

9: # residual-to-residual assign (projection domain to image domain)

10: ∆f (j) =CNN2(ART(q(j+1) − q?; ω2), f
(j)
1 , f

(j)
2 , f

(j)
3 ; Θ

(j)
1 ,Θ

(j)
2 ,Θ

(j)
3 )

11: # update basis material images

12: f
(j+1)
1 = f

(j)
1 + ∆f

(j)
1 , f

(j+1)
2 = f

(j)
2 + ∆f

(j)
2 , f

(j+1)
3 = f

(j)
3 + ∆f

(j)
3

13: end for

2.1.1 Physical module for nonlinear physical process

Only when the physical process can be accurately described by the model can
the iterative reconstruction process continuously improve reconstruction accu-
racy. Here, to accurately describe the nonlinear physical process of SCT, its
positive process is equivalently mapped into a network module. As shown in
Fig. 3, Firstly, do a Radon transform for three basis material. This can be
achieved by a projection layer [45, 46]. Here, we have overridden the inter-
face which projection and back-projection operators are provide by official.
Next, the module can be constructed according to the discrete polychro-
matic projection formula, where the spectral information and attenuation
coefficient can be set as corresponding learning parameters. In fact, both
sets of learnable parameters can be achieved by a convolution operator. For
the attenuation coefficient, this layer can set K convolution kernels, of size
Nk ×M × 1× 1 (out channels× in channels× height×width). For spectral
information, the size of K convolution kernels is 1×Nk × 1× 1. For the noise
case, a regularization term network should be added in the physical module
to more accurately express the physical process.

2.1.2 CNN network structure design

The network structure is also critical to the reconstruction result, because
our network is trained block-to-block. Once overfitting occurs, the results of
subsequent iterations are disastrous. The CNNs of pre-decomposition and iter-
ative processes are basically similar, with structures as displayed in Fig. 4.
The biggest difference between them is the channel setting of input data, in
which the channel of CNN1 is set to 2, while that of CNN2 is 6. The CNN
contains eight blocks, each with three convolution layers, and the kernel sizes
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Fig. 4 CNN network structure with eight blocks, each with three convolution layers.

are 3× 3, 1× 1, and 3× 3. It is worth noting that network operations such as
downsampling, upsampling, and transpose convolution, which make the recep-
tive field large, cannot be used. Although the projection is inconsistent and
the pixels of basis material images are domain-related, the regional correla-
tion caused by the inconsistency is very small, and increasing the receptive
field will aggravate overfitting, which is fatal for later iterations to obtain more
accurate decomposition results.

2.1.3 Residual-to-residual strategy

The residual-to-residual strategy proposed based on experiments observations
which can effectively improve the accuracy of reconstruction. As shown in Fig.
5, regions with large errors can be directly located in the residual image, where
it is difficult to find in reconstructed images. Hence, the image-to-residual
strategy may bring new errors, with many uncertainties to improve the qual-
ity of reconstructed images. In other words, image-to-residual is unstable for
improving image quality.

The ReLU activation function is often used in the network, which makes
the images obtained by the network nonnegative. The residual image does
not possess this property. To use the nonlinear ReLU activation function, we
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Fig. 5 Residual-to-residual vs. image-to-residual strategy. Residual-to-residual strategy
makes it easier to locate where there are large errors.

decompose the residual image dx into the form

dx = dx+ − dx−, (5)

where dx+ and dx− are, respectively, the positive and negative parts of
the residual image. Thus, the network output becomes an image with two
nonnegative channels.

2.1.4 Residual attention mechanism

Generally speaking, in reconstructed residual images, even if the decompo-
sition is correct, there are still some errors, and this phenomenon occurs at
the edges of basis material images. This can be overcome by incorporating
an attention mechanism [47–49] to emphasize the edges, which can make the
network training more simple and efficient. Attention includes both channel
and spatial attention. In our case, we need to emphasize edges that are spa-
tial features, so spatial attention is employed. Given a tensor of intermediate
feature map η ∈ Rc×h×w, spatial attention generates a spatial attention map
A ∈ R1×h×w by utilizing the inter-spatial relationships of features. Then the
output of the attention mechanism, η̂ ∈ Rc×h×w, can be expressed as

η̂ = A� η, (6)

where � denotes element-wise multiplication and c is the channels of input
data. During multiplication, the attention values are broadcast (copied) to all
feature maps along the channel dimension.

The spatial attention focusing on ”where” is the most informative part.
Considering that there are three materials, we implement the attention
mechanism in three directions.

As shown in Fig. 6, our attention mechanism consists of three pipelines to
construct three spatial attention maps. Given a two-dimensional feature map



10 Dual-domain JLRM combined with physical process for SCT

Weighting

transform
1 × 1 Conv

Affine transform

1 × 1 Conv

Affine transform

1 × 1 Conv

Affine transform

.
.

.
.

.
.

C
Weighting

transform

Weighting

transform
2 × 𝑤 × ℎ

CNN CNN

(a) Residual-to-residual mapping     (b) Image-to-residual mapping 

CNN CNN

(a) Residual-to-residual mapping                (b) Image-to-residual mapping 

Fig. 6 Residual attention mechanism.

f ∈ Rh×w, which is obtained by applying the weighting transform on three
basis material images, let us defineA1 = a1 · sigmoid(2(0.5− ‖f1 − 0.5‖)) + b1

A2 = a2 · sigmoid(2(0.5− ‖f2 − 0.5‖)) + b2
A3 = a3 · sigmoid(2(0.5− ‖f3 − 0.5‖)) + b3

, (7)

where a1, b1 and a2, b2 represent the weight parameters and bias in the 1 × 1
convolutional layer, and sigmoid denotes the sigmoid activation function. Here,
we set the initial values as ai = 1, i = 1, 2, 3, and bi = 0, i = 1, 2, 3. To apply
the attention mechanism, each residual image element-wise multiply spatial
attention maps and obtained feature maps would have been re-weighted, which
is helpful to accelerate the convergence of the network.

2.2 Network training

The proposed method was implemented using Python under the PyTorch
framework. Each module was trained module-by-module, and the network was
optimized using the Adam optimization method with a min-batch of nine
image patches for each iteration. The objective function for each module used
an MSE loss function,

min
Θ

L(Θ) =

N∑
i=1

‖CNN(x,Θ)− y∗‖, (8)

where x, y∗ are the input/label data, and Θ denotes the network learnable
parameters. The complete training samples were randomly shuffled, and as an
empirical stopping criterion of each module, the number of training epochs was
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Table 1 System and geometric scanning parameters of AAPM DL-spectral CT challenge
dataset

X-ray source to rotation center (mm) 500
X-ray source to detector distance (mm) 1000

Scanning angle (deg) [0◦, 360◦]
Scanning angular interval (deg) 1.40625

Number of detector units 1024
Detector unit size (mm) 0.3574

Reconstructed image size (pixel) 512 × 512

set to 1000. Comparative experiments were performed on a PC (AMD EPYC-
Rome processor, 128 GB RAM). Training was executed on a single graphic
processing Nvidia RTX A6000 with 48 GB of video memory.

3 Results

Experiments were carried out to demonstrate the behavior of the proposed
method, including architecture validation, for example, residual analysis and
the performance of JLRM in noise suppression, reconstruction method, CNN
network structure design and residual-to-residual strategy.

3.1 DL-spectral CT setup of AAPM challenge

This challenge focuses on spectral CT, where the object is scanned by X-rays
with two spectra, i.e., K = 2, without noise. This challenge model an ideal form
of fast kVp-switching where the X-ray tube voltage alternates between two
settings for consecutive projections. For each kVp setting, the beam spectrum
is broad and the polychromatic nature of the X-ray beam makes quantitative
imaging in CT quite challenging when only one kVp setting is used. Scanned
objects are simulated for a breast model [50] that contains three tissue types
(M = 3): adipose, fibroglandular, and calcification. Truth images and simu-
lated data are provided for 1000 cases so that participants can decide to use
either a data-driven or optimization-based technique. The SCT imaging pro-
cess can be seen in Fig. 7, which shows the spectral information used in the
imaging process and the linear attenuation coefficient of the material. It can
be observed that the linear attenuation coefficients of the two materials are
very close. This is a tricky point, as discussed in the experimental results. To
be fair, the test dataset adopts 10 additional cases, which are provided in a
”starting kit” with ground-truth images. The fan-beam geometric parameters
of the SCT system are listed in Table 1. The DL-spectral-CT challenge seeks
the image reconstruction algorithm that provides the most accurate recon-
struction of the adipose, fibroglandular, and calcification spatial maps from
SCT projection data. Details about the challenge setup and results can be
found on the official website.b

bhttps://dl-sparse-view-ct-challenge.eastus.cloudapp.azure.com/competitions/3#learn the
details

https://dl-sparse-view-ct-challenge.eastus.cloudapp.azure.com/competitions/3#learn_the_details
https://dl-sparse-view-ct-challenge.eastus.cloudapp.azure.com/competitions/3#learn_the_details
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Spectral CT scanning 

Physical process

Reconstruction process

Basis material decomposition

Fig. 7 SCT imaging, where forward process is data collection, which is also a physical
process. Inverse process is reconstruction, i.e., basis material decomposition.

Table 2 Average RMSE for quantitative evaluation.

Pre-decomposition 1 iteration 2 iterations

adipose
training set 2.53× 10−3 9.24× 10−5 6.79× 10−6

test set 2.87× 10−3 7.09× 10−5 7.54× 10−7

fibroglandular
training set 2.68× 10−3 1.20× 10−4 5.54× 10−6

test set 3.06× 10−3 9.74× 10−5 6.67× 10−7

calcification
training set 3.30× 10−7 6.60× 10−7 3.00× 10−7

test set 6.40× 10−7 6.30× 10−7 6.60× 10−7

3.2 Performance and analysis of JLRM

We demonstrate that JLRM can be trained to accurately reconstruct basis
material images from collected projection data obtained from the DL-spectral
CT of the AAPM challenge. As described in section 2, the JLRM method
includes a pre-decomposition module and two iteration of the iteration process.
Fig. 8 shows the basis material images of these three modules. It is difficult
to visually distinguish the image quality reconstructed by each module. The
last row indicates the tissue label map of the three materials, from which we
can clearly see the proportion of each material in each pixel. Fig. 9 shows
the different images. The accuracy of the proposed method can be further
improved, and the sequence module can continuously improve the accuracy
of reconstruction based on comparison with the differential images of each
module. Even in the display window with almost mechanical accuracy, the
difference images of the final result (2 iterations) are difficult to indicate a large
error. This can verify that our method can achieve near exact reconstruction.
Table 2 shows the average RMSE for quantitative evaluation, which further
indicates that our method can obtain accurate reconstruction. The accuracy
of the results finally submitted in the AAPM challenge is 6.8× 10−7. Report
to the second place accuracy of 6.21 × 10−6, our reconstruction accuracy is
higher one order of magnitude.

To better understand the behavior of each module of the proposed method,
Fig. 10 shows the loss function update curve of each material of each module.
In the pre-decomposition module, adipose and fibroglandular material cannot
reach the mechanical accuracy, but more cases of calcification material can



Dual-domain JLRM combined with physical process for SCT 13

Ground truth Pre-decomposition 1 iteration 2 iterations

A
d

ip
o
se

F
ib

ro
gl

an
d

u
la

r
C

al
ci

fi
ca

ti
on

T
is

su
e

la
b

el
m

ap

Fig. 8 Left to right: ground truth, results of pre-decomposition block, iteration process
with 1 and 2 iterations. Display windows: [0.15, 0.35] for adipose material, [0.3, 0.7] for
fibroglandular material, [0.1, 0.5] for calcification material. Last row: tissue label map with
adipose (blue), fibroglandular (green), calcification (red).

reach the mechanical accuracy. In the iteration process, the accuracy can be
well improved using the residual-to-residual strategy.

3.3 Residual analysis

Because the projection data of the AAPM challenge are noise-free, a crucial
way of a proper solver for this DL spectral-CT problem is evaluating this differ-
ence images qnk −q?k, which should be as low as possible. We analyze this aspect
in Fig. 11. For better analysis and observation, we reconstructed the resid-
ual images from the residual of projection. Fig. 12 displays the reconstructed
residual images. We note that the residual images in the image domain also
showed a decreasing trend. The results of the final iteration showed that each
pixel of the residual was all within the mechanical accuracy.
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Fig. 9 Left to right: ground truth, difference images of pre-decomposition block, iteration
process with 1 and 2 iterations. Display windows of difference images are [-0.00005, 0.00005].

Pre-decomposition
1 iteration

2 iterations
Pre-decomposition

1 iteration
2 iterations

Pre-decomposition
1 iteration

2 iterations

Fig. 10 Update curves of three material loss functions. Left to right: adipose, fibroglandu-
lar, and calcification material.

Some pixels with small residuals, marked by red boxes in Fig. 12, cannot
be updated effectively in the first iteration, and are shown to be more obvious
in the residual image after one iteration, which facilitates further performance
improvement. Some regions with large errors can continuously shrink during
the iteration process, although updates still have larger errors, as marked by
blue boxes.
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Fig. 11 Errors of projection domain for each module.
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Fig. 12 Errors of image domain for each module. Colored boxes mark trend of updates
during iterative process; corresponding zoomed-in views are displayed in left corner.

3.4 Performance of JLRM in noise suppression

To ensure universality, we study the noise data. The statistics of x-ray measure-
ments are often described using a Poisson distribution to model the incident
intensity,

Inoisy,k ∼ Poisson(I0,k × e−qk), k = 1, · · · ,K, (9)

where Inoisy,k and qk denote received intensity of detectors and noise-free pro-

jection data, respectively. The noisy projection data qnoisy,k = − ln(
Inoisy,k

I0,k
).

Table 3 lists the accuracy of the proposed method under different noise
levels. As shown in previous experimental results, the phenomenon of adipose
and fibroglandular materials is also consistent, mainly because the attenuation
coefficients of the two materials are very similar. Hence, the two materials
are easily decomposed incorrectly, and their performance evaluation indices
are basically consistent. The attenuation coefficient of calcification material
is large, and its size is very small; hence, calcification material can still have
mechanical accuracy with high noise levels (I0 = 1×105) and can do so quickly
when the noise level is relatively low (I0 = 1× 106).
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Table 3 Average RMSE of dataset with different noise levels for quantitative evaluation.

Noise level 1× 105 5× 105 1× 106

adipose
training set 7.84× 10−2 2.87× 10−2 6.58× 10−3

test set 9.97× 10−2 4.45× 10−2 7.54× 10−3

fibroglandular
training set 7.23× 10−2 3.24× 10−2 6.69× 10−3

test set 9.17× 10−2 4.68× 10−2 8.20× 10−3

calcification
training set 7.07× 10−5 3.54× 10−6 2.72× 10−6

test set 8.92× 10−5 5.47× 10−6 1.03× 10−6

Noise-free I0 = 1× 105 I0 = 5× 105 I0 = 1× 106

50
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80
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v

Fig. 13 Residual images with different noise levels. Colored boxes mark details of images
under different noise levels; corresponding zoomed-in views are displayed in upper corners.

To further understand the effect of noise on the decomposition results of
adipose and fibroglandular materials, we analyze a set of results obtained from
noise-free pre-decomposition. As in the residual analysis of section 3.3, the
obtained projection domain residuals are reconstructed to obtain the results
shown in Fig. 13, where the projection residuals are obtained by performing
the physical process with the pre-decomposition results minus the noisy pro-
jections, i.e., qnk − qnoisy,k. Fig. 13 shows that it is too difficult to reflect some
decomposition errors in the image when the noise is relatively large, such as
those marked in the red box (zoomed-in view is shown in upper-right corner).
However, in some locations where the error is smaller, the noise is small but
also difficult to decompose, while the noise-free case can be obviously found,
such as in the blue box (zoomed-in view shown in upper-left corner).

3.5 Receptive field: small or large?

As argued in CNN network structure design of section 2 increasing the recep-
tive field will aggravate the overfitting phenomenon, which is fatal for the later
iteration to obtain more accurate decomposition results. Fig. 14 shows the loss
function curve update of the pre-decomposition module. During the training



Dual-domain JLRM combined with physical process for SCT 17

Adipose Fibroglandular Calcification
P

ro
p

o
se

d
C

N
N

U
N

et

Fig. 14 Update curves of three material loss functions for pre-decomposition module with
networks with different receptive fields.

process of the proposed CNN, the changes of the training and test sets are
essentially the same with the iterative update. For UNet, using pooling and
upsampling layers causes the network to have a large receptive field. How-
ever, the experimental results show that adipose and fibroglandular materials
display an obvious overfitting phenomenon after a period of training.

Fig. 15 shows the performance of overfitting in the reconstructed image
of adipose material, where fibroglandular material has the same phenomenon.
The training set has higher accuracy for UNet, and the error in the difference
image is quite small, while the test set has a significantly larger error.

3.6 Residual-to-residual vs. image-to-residual

We research the mapping strategy. Fig. 16 displays the partial results of two
iterations of the image-to-residual and residual-to-residual mapping strategies
for adipose and fibroglandular materials. The image-to-residual mapping strat-
egy may bring new reconstruction errors, so that the accuracy of the final
reconstruction cannot be really improved, and there exists the risk of insta-
bility. Due to the places with large errors are difficult to distinguish them
in the reconstruction images. The residual-to-residual strategy can effectively
improve the accuracy compared with the image-to-residual strategy. The high-
precision reconstruction results can be attributed to the following: 1) It can
calculate the residual in combination with the physical module; 2) The atten-
tion mechanism is used to reduce the complexity of network decomposition;
3) The residual-to-residual strategy avoids large numbers eating decimals.
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Fig. 15 Results of reconstruction of training and test sets using a larger receptive field.
Display windows: [0,1] for material images, and [-0.05,0.05] for difference images.

4 Discussion

To solve the problem of high-precision base material decomposition in spectral
CT, this paper proposes an algorithm fused on a physical model, traditional
mathematical iterative algorithm, and deep learning. Each part has clear
functions and is built based on given problems and actual situations. The
physical module, which is embedded and expressed as a network structure,
can accurately describe the physical process of SCT imaging. The mathemat-
ical iterative algorithm realizes information transfer between domains. These
three modules complement each other. We introduce some network skills or
strategies in some modules, which are observations related to SCT problems,
and can improve the reconstruction results. Examples are a residual attention
mechanism and the study of the receptive field.

To further illustrate the effectiveness of our method, we study it when the
data are noisy.

The JLRM algorithm is based on deep learning, which mixes mathematics
and physics. It can obtain satisfactory decomposition results due to a large
number of training datasets. In practice, it is difficult to obtain a large volume
of SCT projection data, and it requires matching label data (basis material
images). The current energy spectrum is based on the data generated under
a single specific energy spectrum. However, the spectral curves of the actual
scanning system under the same energy are not necessarily consistent.
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Fig. 16 Results of residual-to-residual and image-to-residual mapping strategies. Display
windows: [0,1] for material images and [-0.05,0.05] for different images.
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