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Abstract 
 

DNA methylation-based classification of brain tumors has emerged as a powerful and 
indispensable diagnostic technique. Initial implementations have used methylation microarrays 
for data generation, but different sequencing approaches are increasingly used. Most current 
classifiers, however, rely on a fixed methylation feature space, rendering them incompatible 
with other platforms, especially different flavors of DNA sequencing. Here, we describe 
crossNN, a neural network-based machine learning framework which can accurately classify 
tumor entities using DNA methylation profiles obtained from different platforms and with 
different epigenome coverage and sequencing depth. It outperforms other deep- and shallow 
machine learning models with respect to precision as well as simplicity and computational 
requirements while still being fully explainable. Validation in a large cohort of >1,900 tumors 
profiled using different microarray and sequencing platforms, including low-pass nanopore and 
targeted bisulfite sequencing, demonstrates the robustness and scalability of the model. 
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Introduction 
 

DNA methylation plays an important role in regulation of gene expression and cell type 
differentiation1,2. Patterns of 5-methylcytosine (5mC) define physiological cell states, but have 
also been linked to many human diseases, including cancer3-5. In medicine, epigenome-wide 
patterns of 5mC can be exploited for disease classification6. In particular, DNA methylation-
based classification of tumours has emerged as a powerful conceptual and diagnostic tool both 
for establishing a clinical diagnosis and for investigating the molecular taxonomy of cancer7-9. 
Indeed, classification of central nervous system tumors has been embraced by the World 
Health Organization (WHO)10 with profound impact on routine diagnostic workup4,5. Moreover, 
integrated, histo-molecular classification of brain tumours hass been shown to refine 
histological diagnosis with reclassification in about 12% of cases8. Most implementations of 
diagnostic assays rely on generation of methylation profiles by hybridization microarray and 
supervised classification against a well-annotated reference set11,12 which has become a 
widely accepted diagnostic approach in adult and pediatric neuro-oncology8,13-15.  

However, various methods for probing the 5mC methylome have been developed and 
benchmarked, each providing information on DNA methylation in different target regions and 
at different levels of resolution16.  For example, whole genome bisulfite sequencing (WGBS) 
has long been seen as a gold standard in providing the most comprehensive DNA methylation 
map at single base resolution17. WGBS is expensive, however, and demands significant 
quantities of input DNA. Moreover, the sequenced reads often lack useful methylation 
information18. Targeted methylation sequencing (targeted methyl-seq) using restriction 
enzymes or, more recently, hybridization capture for enrichment has gained widespread 
popularity for cost-efficient targeted capture19,20. Microarray-based technologies, such as 
Infinium HumanMethylation450 (Infinium 450K) and Infinium HumanMethylation850 
(MethylationEPIC, EPIC) also have been widely employed to survey specific genomic loci 
across the genome with bespoke probes21. More recently, third generation sequencing 
techniques have allowed base modifications from natural DNA to be inferred. We and others 
have demonstrated suitability and robustness of low-coverage whole-genome nanopore 
sequencing in clinical application for accurate, rapid, and cost-efficient DNA methylation-based 
classification of brain tumours22,23. However, the commonly aimed for ultra-low sequencing 
depth and coverage leads to mostly binary methylation information (instead of beta values) of 
a random subset of the ~30 million CpG sites in the genome23. 

All these methods have been found deliver highly concordant results, but different genomic 
coverage and depth have so far required different classification assay-specific approaches24. 
Various machine learning algorithms have been used for the task of DNA methylation-based 
classification but are mainly restricted in single platform data or fixed feature spaces, e.g. the 
most commonly used random forest (RF) model for use with microarray data8. Previously, we 
proposed ad-hoc RF which can bridge the gap between low-coverage nanopore sequencing 
data and microarray reference data at the expense of training an ad-hoc new model for each 
unknown sample which, however, is time-consuming, computationally expensive and 
introduces non-comparability between these patient-specific models23. Recently, a neural 
network-based model has been proposed using sparse data to predict brain tumor classes25. 
A precise model that can predict brain tumour classes across platforms is still urgently needed.  

Here, we propose crossNN, a unified neural network-based framework trained on fixed 
reference data that handles variable and sparse feature sets for prediction. The model enables 
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instantaneous predictions from methylation profiles generated by multiple platforms including 
WGBS, targeted methyl-seq, low-coverage nanopore WGS and various microarray platforms 
(Illumina 450K, EPIC, EPICv2). At the same time, the lightweight scalable architecture allows 
for rapid re-training and cross-validation for the rapidly emerging landscape of cancer 
reference atlases.  
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Results  
 

Model development and workflow 

The crossNN model architecture (Figure 1) relies on a perceptron, implemented as single layer 
neuronal network using pytorch (Online Methods). The network architecture consists of only 
input layer and output layer with the two layers being fully connected without bias, which means 
the model will capture the linear relation between the input CpG sites and methylation classes. 
For training, we used the Heidelberg brain tumour classifier v11b4 reference set comprising 
methylation profiles of 2801 samples from 82 tumour types and subtypes (methylation classes, 
MC) and 9 non-tumor control classes, generated using Illumina 450K microarrays8. The feature 
space of the training set is fixed given the array probe set and mainly covers CpG sites in CpG 
islands and promoter regions.  

During pre-processing and for cross-platform normalization, CpG sites in the training set were 
binarized using an empirically determined beta value threshold of 0.623. Thereafter, 
uninformative probes were removed (see Online Methods), resulting in a total of 366,263 
binary features. 

To enable tumor classification using different platforms for methylome profiling with varying or 
sparse epigenome coverage, the model was trained with randomly and repeatedly masked 
input data. The masked CpG sites during training were encoded as zero, unmethylated sites 
as -1 and methylated probes as 1. The model was then trained using the randomly resampled 
and [-1,1]-encoded binary training set. For prediction from methylation profiles from different 
platforms, methylated allele frequencies at CpG sites were equally binarized and missing 
features encoded as zero. 

Critical hyperparameters that were optimized included masking rate p and number of epochs 
e (which is proportional to how many times each sample is resampled). Using a grid search 
approach, a masking rate of 97.5% and e = 1000 epochs were selected for training the final 
model (Supplementary Figure 1). 
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Figure 1: (a) Overview of model the model architecture. (b) Heatmap of confusion matrix in 5-fold cross-
validation. WGBS, whole genome bisulfite sequencing. MCF, methylation class family. Abbreviations of 
methylation classes are in line with the original publication of the training set by Capper et al. 

 

Evaluation of model performance 

First, model performance was validated by 5-fold cross-validation (CV) in the training dataset.  
Overall accuracy was 96.11 ± 0.86 % across all CV at methylation class (MC) level 
(Supplementary Figure 2). Tumor classes within the same methylation class family (MCF) are 
closely and misclassifications inside MCF will usually not have clinical impact. Indeed, most 
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misclassifications were observed within MCF (Figure 1b). Therefore, at MCF level, prediction 
accuracy reached 99.07 ± 0.21%. In comparison, ad hoc random forest models for each 
subsampled feature set reached lower accuracy both at MC level and MCF level (94.93 ± 0.88% 
and 97.89 ± 0.60%, respectively). 

To further test our model’s performance with samples with different coverages of the CpG sites, 
the microarray samples on the test folds were sub-sampled with different sampling rates from 
0.5% to 100% and for each sample rate we repeated this process randomly 10 times. Our 
model showed robust performance with high average accuracy in 5-fold cross-validation with 
different sampling rates from 0.5% to 75% (Supplementary Figure 2). 

Independent cross-validation in different platforms 

Next, we validated the final model in independent cohorts generated on different microarray 
and sequencing platforms. We assembled a validation cohort totalling 1,923 patient samples 
generated on Illumina 450K (N=610), EPIC (N=649) and EPICv2 (N=10) microarrays as well 
as nanopore low-pass WGS (N=415), Illumina targeted methyl-seq (N=124) and Illumina 
WGBS (N=125) sequencing (Supplementary Table 1). The validation set covered 65 different 
brain tumor types, reflecting 72 out of the 81 methylation classes in the training set. 

Depending on the assay, the distribution of the number of CpG features used for prediction 
varied by two orders of magnitude (Fig. 2a). Nevertheless, we achieved a high overall accuracy 
of 0.95 and AUC of 0.94 (ranging from 0.93 to 0.99 per platform, Fig. 2c). Because the 
distribution of scores of predictions made by the model varied across platforms (Fig. 2b), we 
identified platform-specific diagnostic cut-offs for correct classification using per-platform 5-fold 
CV. The optimal cut-off in each fold was determined using the Youden index in the ROC curves 
(Supplementary Figure 3). The range of optimal cut-offs was similar for microarray vs. 
sequencing platforms (Fig. 2b, indicated in blue). For simplicity, we therefore conservatively 
selected a cut-off > 0.4 for all microarray platforms and > 0.2 for all sequencing platforms. This 
resulted in precision > 0.97 for all platforms.  

Comparison to other algorithms 

Next, we compared model and cut-off performance to our previously published ad-hoc random 
forest (ad hoc RF) approach23 and a recently published deep-neural network (Sturgeon DNN)25. 
All approaches have been developed to make predictions from sparse nanopore data, yet can 
be applied to any source of methylation data and use an identical training set. 

Our shallow neural network model was non-inferior to ad-hoc RF and the Sturgeon DNN with 
respect to overall accuracy and outperformed both approaches in terms of ROC characteristics 
of the prediction scores, especially precision (Table 1). 
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Figure 2: Classification result in 450K, EPIC/EPICv2, nanopore, targeted methyl-seq, WGBS cohorts. 
(a) Distribution of the number of CpG features used for prediction. (b) Scatter plot of cohorts with 
samples ranked by confidence score. Dashed lines were showing the cut-off values. (c) Receiver 
operator characteristics of the score to predict correct classification per platform. AUC, area under the 
curve. 
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Table 1: Comparison of the crossNN model to ad-hoc random forests (23) and the “Sturgeon” 
deep neural network approach (25). For each model, raw accuracy before application of cut-offs, 
precision with platform-specific cut-offs and area under the curve of the ROC curve for the (calibrated) 
score to predict correct classification are given. For crossNN, the following cut-offs as derived above 
are used: microarray > 0.4; crossNN nanopore/targeted methyl-seq/WGBS > 0.2. Published validated 
cut-offs were used for ad-hoc RF and the sturgeon DNN (ad hoc RF > 0.15; sturgeon DNN > 0.8). AUC, 
area under the curve. ROC, receiver-operator characteristics. DNN, deep neural network. NN, neural 
network. RF, random forest. WGBS, whole genome bisulfite sequencing. 

Interpretability of the model 

Finally, our model’s architecture facilitates interpretability by capturing the linear relationships 
between CpG probes and tumor classes or sub-classes. The weights of the edges connecting 
the input CpG features and the output layer thus can be interpreted as indicators of feature 
importance for each tumor (sub)type. These weights offer insights into the significance or 
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relevance of individual CpG probes in the classification of specific tumor types: Each CpG 
feature will be assigned a positive or negative weight for each tumor type. Positive weights 
indicate that if a given CpG site is methylated, the sample is more likely to match the 
corresponding tumor type, and vice versa.  

 

Figure 4: Interpretatibility of the model. (a,b) Heatmaps demonstrate methylation levels (beta value) of 
the top 100 CpG sites associated with a given tumor type, ranked by feature weight in the final prediction 
model. Features with positive (a) and negative (b) weights were ranked independently. (c) Importance 
of class-specific features with respect to genomic context. PWWP3A gene which was identified as 
marker gene for the methylation class high grade neuroepithelial tumors with MN1 alterations (HGNET, 
MN1) using ranking of feature weights aggregated on gene level. Differential hypomethylation is 
observed in the gene body, but not a proximal CpG island (lower track). 

 

The absolute value of the weight reflects the importance of a given CpG site in predicting the 
associated tumor type. For each tumor type, CpG sites with top positive/negative weights are 
differentially methylated between tumor (sub)types, which can be helpful to reveal biological 
mechanisms underlying tumor type identity such as cell of origin and discover potential 
biomarkers (Figure 4a,b).  
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For example, CpG sites within the PWWP3A gene locus were ranked most important for 
prediction of the methylation class high-grade neuroepithelial tumor with MN1 alteration 
(HGNET-MN1) a novel tumor type which has recently been endorsed by the WHO 2021 
classification as astroblastoma, MN1-altered10. In accordance with the negative weight of  most 
features, the PWWP3A gene body was hypomethylated (Fig. 4C, lower track).  Indeed, mRNA 
expression of PWWP3A has previously been identified as marker gene for HGNET-MN126. 
Many CpG sites in the gene body of PWWP3A show remarkable negative weights in our model 
to HGNET-MN1 subtype comparing to other tumor types while the CpG island upstream the 
transcription start site is not informative for discriminating HGNET-MN1 (Fig. 4c). Thus, feature 
importance revealed by the model sheds light on functional importance of individual (marker) 
genes and hints at positional importance of epigenetic modifications within a gene’s structure. 
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Discussion 
 

In this study, we present a novel and simple machine learning framework which can accurately 
classify tumor entity using DNA methylation profiles obtained from different platforms and with 
different epigenome coverage and sequencing depth. It outperforms other deep- and shallow 
machine learning models with respect to precision as well as simplicity, computational 
requirements (for both training and prediction) while still being fully explainable. Validation in 
low-pass nanopore WGS, WGBS, targeted methyl-seq and microarray brain tumor cohorts 
demonstrates the robustness and scalability of the model.  

Mainly developed for sparse methylomes generated by ultra low-pass nanopore WGS, this 
pretrained model enables predictions within seconds, outperforming our previous ad hoc 
random forest implementation which required time-consuming and computationally intense re-
training for individual samples23,27. Immediate predictions greatly improve time-critical 
applications such as intraoperative diagnostics. In comparison to a recently published deep 
neural network model25 trained on the same dataset, it performs non-inferior with respect to 
overall accuracy and is superior with respect to precision when applying diagnostic cut-offs on 
prediction scores which is critical to ensure high specificity in clinical application. At the same 
time, the light-weight architecture allows rapid training on novel reference sets. 

Despite using a neural network architecture, the model maintains a simple linear structure, 
which limits overfitting and drastically increases the interpretability of the model. Feature 
importance guides biological and clinical interpretation of the model and facilitates marker gene 
detection in each tumor type.  

Importantly, the model is compatible with the EPICv2 microarray platform whose probe set is 
not downward-compatible and precludes use of most versions of the original Heidelberg brain 
tumour classifier. We provide an intuitive web-based graphical user interface that allows users 
to upload methylation data and predict tumor entity instantaneously (https://crossnn.dkfz.de). 
Additionally, models and source code are available for local deployment and integration with 
institutional workflows (https://gitlab.com/euskirchen-lab/crossnn).  

Limitations 

We employed binarization of methylated allele frequencies as a means for cross-platform 
normalization and feature encoding. However, using an empirically chosen global cut-off for 
binarization might be sub-optimal for some methylation classes and introduce bias. For tumor 
types with global hypo- or hypermethylation (such as pituitary tumors or IDH-mutant glioma, 
respectively) or low tumor purity due to complex tumor microenvironment, such as 
mesenchymal subtype IDH-wildtype glioblastoma28, it might introduce a class-specific bias 
which remains to be investigated systematically. 

Despite a large validation cohort (>1,900 patients) in this study, rare brain tumour types were 
under-represented or omitted. Thus, ongoing validation in very large multicentric cohorts 
covering the full spectrum of brain tumours using different techniques are warranted to fully 
characterize class-specific model performance and identity potential bias.  

In conclusion, our study offers a machine learning framework for cross-platform DNA 
methylation-based classification of cancer, enabling development of rapid, resilient, 
interpretable, and accurate diagnostic tests. These methods hold promise to become valuable 
diagnostic tools for all types of cancer well beyond neuro-oncology.   
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Online Methods  

Public datasets 

The reference set of the Heidelberg brain tumour classifier v11b4 (GSE90496) containing 
2,801 samples and 82 types of brain tumors and 9 control classes was used for model training8. 
For validation, preprocessed public datasets from the following studies were integrated from 
the sources indicated: medulloblastoma WGBS29 downloaded from the IGCG Data portal 
(https://dcc.icgc.org/releases/release_28/Projects/PBCA-DE), GSE121721 for glioblastoma 
WGBS30, GSE209865 for nanopore low-pass WGS 23, GSE109379 for 450K microarray8. 

Methylation microarrays 

DNA methylation and copy number analyses were performed using the Infinium 
Methylation450k and EPIC Bead-Chip array platforms (Illumina, USA). All analyses were 
performed according to the manufacturer’s instructions. In brief, DNA was extracted from FFPE 
tumor samples using the Maxwell RSC FFPE Plus DNA Purification Kit (Promega, USA). After 
bisulfite conversion using the Zymo EZ Methylation Kit (Zymo Research Irvine, USA), the 
Infinium HD FFPE DNA Restore Kit was used for DNA restoration. The beadchips were 
scanned on the iScan system (Illumina, USA). The unprocessed output data (.idat files) from 
the iScan reader were checked for general quality measures as indicated by the manufacturer. 

WGBS sequencing and processing 

Libraries were prepared using a NEBNext Methyl-seq Kit (NEB), and were then sequenced on 
an Illumina NovaSeq 6000 platform (instrument A01077) at the BIH Core Unit Genomics over 
two S4 flow cells in a paired-end setting of 2 x 150 bp. Processing of WGBS data from 22 
human diffuse glioma samples was performed using the One Touch Pipeline (OTP)31 which 
uses bwa v0.6.132 for alignment and methylCtools v1.0.029 for methylation calling. Plus- and 
minus-strand methylated allele frequencies at CpG sites were merged using custom scripts. 
The mean mapping rate was 99.96% (range 99.93-99.9899%) with 95.7% properly paired 
(range 91.2-98.1%) and a 10.2% duplication rate (7.6-13.8%). Alignment resulted in a mean 
coverage of 70.5x4x per sample (range 57-89x),  

Targeted methylation sequencing and processing 

Frozen tumor tissues collected during surgery aiming for partial or total tumor resection was 
used as source material for DNA extraction, which was performed using mechanic 
homogenization with ceramic beads and subsequent column-based extraction with DNeasy 
Blood & Tissue Kit (Qiagen). Prior to library preparation, DNA was quantified using Qubit 
dsDNA BR Assay Kit (Invitrogen). Sequencing libraries were prepared either with TruSeq-
Methyl Capture EPIC Library Prep Kit (Illumina) or a combination of SureSelectXT Methyl-Seq 
Library Preparation Kit with SureSelectXT Human Methyl-Seq target enrichment panel 
(Agilent). Sequencing libraries prepared with TruSeq-Methyl Capture EPIC Library Prep Kit 
were sequenced on the NextSeq 500 device using  NextSeq 500/550 Mid Output Kit v2.5 (150 
cycles) (Illumina) in a paired-end setting of 2 x 80bp. Libraries prepared with SureSelectXT 
Methyl-Seq panel were also sequenced on the NextSeq 500 device using either NextSeq 
500/550 Mid Output Kit v2.5 (300 cycles)  or NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) 
in a paired-end setting of 2 x 151bp and 2 x 80bp, respectively. Sequencing reads were quality 
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checked with FastQC v0.11.933. Adapters and low-quality 3‘ ends trimming was done with 
TrimGalore34. The alignment to human reference hg19 and methylation calling were carried 
out completely with Bismark v0.23.135.  

Feature selection 

First, probes that were always methylated or un-methylated across all the samples were 
considered as uninformative and were removed from the dataset. 

In the feature processing step, to fill the gap of different sequencing depths, all the methylated 
probes were encoded as 1 and correspondingly the unmethylated probes encoded as -1. To 
fit the framework to different platforms that may not cover all the 450K CpG sites, the 
undetected features were encoded to 0. 

𝑪𝒑𝑮 𝒔𝒊𝒕𝒆 =  ൝
𝟏, 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒆𝒅 ∶ 𝒃𝒆𝒕𝒂 𝒗𝒂𝒍𝒖𝒆 > 𝟎. 𝟔

−𝟏, 𝒖𝒏𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒆𝒅: 𝒃𝒆𝒕𝒂 𝒗𝒂𝒍𝒖𝒆 ≤ 𝟎. 𝟔
𝟎, 𝒖𝒏𝒄𝒐𝒗𝒆𝒓𝒆𝒅

 

 

Model training 

The neural network model was trained using 2,801 reference methylomes8 generated using 
Infinium 450K microarrays (Illumina). After binarization of the beta values with threshold  0.623, 
features with zero variance were filtered, leading to 366,263 CpG sites retained.  

To enable the model to take full use of all the information in the features, we sampled the 
features with a fixed sample rate. During model training, in every iteration, samples in the 
training set will be randomly masked with the mask rate p, where the masked features will be 
encoded as 0. To discover the optimal sample rate, we searched and compared different 
sample rates via 5-fold cross-validation. Finally, sample rate p = 0.25% was selected.  

A normalization function and a SoftMax layer was employed to transform the outputs of the 
neural network into the probabilities of the subtypes of brain tumors. The Adam Optimization 
Algorithm was used for training. The model was developed and implemented using PyTorch 
1.13.036. 

Other analysis  

The visualization of  genomic information was generated by R package Gviz37. Python package 
seaborn and PyComplexHeatmap were used for plotting heatmaps38. CpG sites and genes 
were annotated using Python package CpGtools39. 

Data and code availability 

Targeted methyl-seq raw data have been deposited at the European Genome-phenome 
archive (EGA) under accession no. EGAS50000000051. Microarray raw data are provided 
upon reasonable request. The data and code to recreate all results in this study will be made 
available upon publication at https://gitlab.com/euskirchen-lab/crossnn. The nanoDx analysis 
pipeline implementing the crossNN model for end-to-end analysis of nanopore sequencing 
data is available at https://gitlab.com/pesk/nanoDx. A user-friendly graphical user interface 
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(https://crossnn.dkfz.de) allows to make predictions from methylomes uploaded as bedMethyl 

files from various platforms and process methylation microarray IDAT files in realtime.  
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