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Abstract

The timely stratification of trauma injury severity can enhance the quality of trauma care
but it requires intense manual annotation from certified trauma coders. There is a need to
establish an automated tool to identify the severity of trauma injuries across various body
regions. We gather trauma registry data from a Level I Trauma Center at the University of
Wisconsin-Madison (UWHealth) between 2015 and 2019. Our study utilizes clinical documents
and structured electronic health records (EHR) variables linked with the trauma registry data
to create two machine learning models with different approaches to representing text. The
first one fuses concept unique identifiers (CUIs) extracted from free text with structured EHR
variables, while the second one integrates free text with structured EHR variables. Both models
demonstrate impressive performance in categorizing leg injuries, achieving high accuracy with
macro-F1 scores of around 0.8. Additionally, they show considerable accuracy, with macro-
F1 scores exceeding 0.6, in assessing injuries in the areas of the chest and head. Temporal
validation is conducted to ensure the models’ temporal generalizability. We show in our variable
importance analysis that the most important features in the model have strong face validity
in determining clinically relevant trauma injuries.

1 Introduction

Traumatic injuries are the leading cause of death among individuals aged younger than 45,
resulting in over 3.5 million hospital admissions in the United States annually [1]. Trauma
registries, which collect comprehensive and systematic information, are pivotal in improving
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trauma care and its related clinical outcomes, as they elucidate injury patterns and identify
areas for improvement [2]. Many quality improvement recommendations and policy changes
are derived from trauma registries gathered at the local level and reported to state and national
trauma databanks [3]. Early assessment of trauma severity, a critical component in trauma
registries, is mandatory and clinically significant for correct triage, treatment planning, and re-
source management [4]. Trauma injury scores, commonly used to gauge the severity of trauma
injuries [5], require the annotation by certified trauma coders who utilize software tools to
analyze the EHR of trauma admissions [6], which can be time-consuming and involves intense
manual labor. In addition, the scores are usually recorded post-discharge, limiting their util-
ity during the patient’s active care. Furthermore, trauma registries are manually curated at
trauma centers, leaving a gap in accessing injury scores at non-trauma centers that also triage
trauma cases [2]. Automated solutions designed for stratifying injury scores during the time
of care have the potential to bridge these gaps. They not only enable more comprehensive and
timely data capture but also enhance scalability across various centers.

Machine learning models can learn patterns from existing data and make predictions on un-
seen data. Recent years have witnessed a surge in the use of machine learning technologies to
improve clinical outcomes. Prior research has attempted to use machine learning to automat-
ically predict Abbreviated Injury Scales (AIS) [7], which is one of the most widely used scores
[8, 9]. However, these attempts have focused on a single body region and reduced the ordinal
AIS scores to binary outcomes. This limitation highlights the necessity for more sophisticated
models that can assess multiple body regions with enhanced granularity, thereby meeting the
comprehensive documentation needs of trauma registries.

The clinical text contains valuable information [10] frequently used by trauma coders, includ-
ing radiology reports, operative and procedural notes, history and physical admission notes,
etc. One commonly adopted method for modeling unstructured text is to leverage the popu-
lar bidirectional encoder representations from transformers (BERT) language model [11]. The
variants within BERT families [12, 13, 14] have demonstrated promising performance in a range
of clinical text-related tasks [15, 16, 17] including risk stratification [18, 19, 20]. In practical
applications, medical concepts can be extracted from the free text and stored in the format of
medical concepts from the dictionaries of the Unified Medical Language System (UMLS), also
known as concept unique identifiers (CUIs) [21, 22]. The mapped CUIs provide a standardized
way of representing clinical concepts from the unstructured clinical free text that is filled with
abbreviations and acronyms. Established methods have utilized these CUIs as input to con-
struct machine learning models for clinical risk stratification [23, 24, 25]. Meanwhile, leveraging
structured EHR data, including vital signs, laboratory measurements, and clinical scales, offers
the potential for predicting trauma-related outcomes [26]. The integration and comparison of
different text representations, e.g., CUIs and free text, in conjunction with structured EHR
data for modeling trauma severity, remains an unexplored area.

In this study, we have developed two machine learning models to stratify trauma injuries across
multiple body regions into three distinct severity levels. These levels are determined based on
the magnitude of the AIS and are categorized as negative, minor/moderate, and serious or
greater. The first model (denoted as “CUIs + structured EHR model”) handles text converted
into CUIs, while the second (denoted as “free text + structured EHR model”) processes un-
structured clinical text in free text format, both combined with structured EHR data for a
multi-modal input approach. These models aim to accurately predict AIS scores across mul-
tiple body regions. The architectures of our models are shown in Figure 1. We present an
analysis of their performance, offer both local and global interpretations, and examine the
contribution of each modality to the final output.
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Figure 1: Architecture of the models. We use 1D CNN to encode CUIs and fine-tuned Clin-
icalBERT to encode free text. A multitask neural network is pretrained on binary severity
classification task and its shared layers are leveraged as the encoder for the structured EHR
data (see Appendix C). The CUI and free text embeddings, combined with structured EHR
data, are fused at an intermediate stage of each model. The concatenated embeddings are then
utilized by separated multi-layer perceptrons (MLP) to stratify injury severity across various
body regions.

2 Methods

2.1 Data collection

The cohort used for model development and validation was collected from the UW Health
system. Clinical notes and structured EHR data were extracted for trauma patients admitted
from 2015 to 2019. Only patients with at least one clinical note available were included in the
cohort. The index time was defined as the moment when the first EHR data became available.
The data collection window of an admission was defined as 8 hours after the admission. We
extracted the ED notes and radiology reports within the data collection window. CUIs were
recognized from these notes using cTakes and the engine for mapping the medical concepts
from the free text [27]. We also extracted 59 variables that are routinely collected during
clinical care from the structured EHR data within the collection window. The descriptions of
the structured EHR variables are appended in Appendix A.

2.2 Label construction

The AIS used in our dataset was annotated by certified human experts who are trained as
trauma registrar coders. The distributions of the original AIS across the nine body regions
are presented in Appendix B. Considering that certain categories contain very limited sample
sizes in the test set, the nine body regions were collapsed into four combined regions. This
categorization was informed by clinical expertise to ensure relevance and accuracy. For each
patient:

AISleg = AISleg

AISchest abd spine = max(AISchest,AISabd,AISspine)

AIShead face neck = max(AIShead,AISface,AISneck)
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AISarm ext = max(AISarm,AISext)

2.3 Multimodal data encoding

The CUIs + structured EHR model encoded the CUIs with a one-dimensional convolutional
neural network model (1D CNN) [28] and the free text + structured EHR model encoded the
free text with a fine-tuned ClinicalBERT [13]. Both models used a pretrained fully-connected
neural network to encode the structured EHR variables.

As BERT families have an input length limit, we picked notes that were more likely to offer
comprehensive patient information. The ED notes were sorted from long to short and the ra-
diology reports were sorted from early to late. We allocated the first 300 tokens for the sorted
ED notes, with the remaining tokens dedicated to the radiology reports. If one of the two note
types exceeded its token allocation and the other remained under the limit, we reallocated
the unused tokens to accommodate the longer notes. Otherwise, notes that exceeded the limit
were truncated accordingly. Following this process, we used the pretrained ClinicalBERT to
encode clinical text for each admission.

We used a one-dimensional convolutional neural network model (1D CNN) as the encoder for
CUIs. 1D CNN can handle long sequential data and has less complexity compared to other ar-
chitectures such as transformers and recurrent neural networks (RNN). All the CUIs extracted
from the clinical text within the data collection window were encoded by the 1D CNN, without
additional need for truncation as the transformer models.

We built a pretrained AIS classifier to encode structured EHR data. As using structured EHR
alone to predict the three class severity cannot achieve macro-F1 scores over 0.5, we developed
a multitask classifier to predict the binary severity of trauma across various regions with the
structured EHR data. The architecture of the binary multitask model is shown in Appendix C.
The binary classifier achieved decent discriminative performance and the AUROC were plotted
in Appendix D. Then the last shared encoding layer was used as the encoder for structured
EHR data in the multiclass task.

2.4 Model development

As is shown in Figure 1, the text modality (free text or CUIs) and the structured EHR data
were encoded by their encoders and then fused at an intermediate level. After the fusion, the
concatenated encoding vectors were fed into four prediction heads. Gradients were passed to
the encoders to allow fine-tuning during the training process. To tune the hyperparameters,
encounters collected from 2015 to 2017 were for training, and encounters in 2018 were used for
tuning. Bayesian optimization [29] was leveraged for efficiently finding optimal hyperparam-
eters. The final models were trained using the tuned hyperparameters on the data collected
from 2015 to 2018. A hold-out, temporal test set from 2019 was used to report our results.

2.5 Model interpretation

To interpret the output of the models, we computed the attribution scores by leveraging the
IG methods. For the free text + structured EHR model, the attribution of each token and
structured EHR variable was calculated. Due to the additive property of the IG methods,
attribution scores for tokens split from a single word can be aggregated to represent the at-
tribution score of the entire word. For visualizing the risk predictors in individual cases, we
assigned varying background colors to words/CUIs and structured EHR variables based on
their attribution scores. To achieve a global interpretation of the models, we computed the
mean attribution values across all words/CUIs/structured EHR variables.
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3 Results

3.1 Cohort characteristics and outcomes

A total of 9,686 trauma admissions during a five-year study period between 2015 and 2019
were examined. The admissions between 2015 and 2018 (n=7,693) were used for training and
tuning, while the admissions in 2019 (n=1,983) served as the test set for temporal validation.
We used Abbreviated Injury Scales (AIS) coded by certified human trauma registrar coders.
[7]. AIS is a ubiquitous score for trauma injury and ranges from zero to six across nine body
regions, with higher scores associated with more critical trauma injuries. The AIS score ground
truth labels were categorized into three groups negative (AIS= 0), minor/moderate (0 < AIS
< 3), and serious or greater (AIS > 2). Additionally, the body regions were further collapsed
into four combined regions according to anatomical properties and with expert annotation by
a trauma surgeon (AS): 1. leg; 2. chest, abdomen, and spine (denoted as chest abd spine); 3.
head, face, and neck (denoted as head face neck); 4. arm and extremities (denoted as arm ext).
The categorized AIS after collapsing are served as the ground truth labels for the supervised
training of the models. The cohort characteristics and label distributions are detailed in Table
1.

Development Test

Encounters, n 7,693 1,983
Age, median (IQR) 59 (38,75) 63 (44,77)
Female, n (%) 3,225 (41.9) 855 (43.1)
Race

White/Caucasian 7,096 (92.2) 1,802 (90.9)
Black/African American (%) 331 (4.3) 100 (5.0)
Asian/Mideast Indian (%) 102 (1.3) 34 (1.7)
American Indian/Alaska Native (%) 54 (0.7) 18 (0.9)
Pacific Islander/Hawaiian Native (%) 18 (0.2) 1 (< 0.1)
Declined/Unknown 92 (1.1) 28 (1.4)

Death, n (%) 336 (4.4) 82 (4.1)
Total hours of stay, median (IQR) 93.9 (53.4,170.1) 94.7 (51.7,174.3)
Number of CUIs, median (IQR) 188 (113,245) 192 (122,250)
Number of clinical notes, median (IQR) 14 (10,18) 13 (9,17)
Leg

Negative, n (%) 4,724 (61.4) 1,236 (62.3)
Minor or moderate, n (%) 1,466 (19.1) 339 (17.1)
Greater than serious, n (%) 1,503 (19.5) 408 (20.6)

Chest abd spine
Negative, n (%) 4,345 (56.5) 1,153 (58.1)
Minor or moderate, n (%) 1350 (17.5) 329 (16.6)
Greater than serious, n (%) 1,998 (26.0) 501 (25.3)

Head face neck
Negative, n (%) 5,053 (65.7) 1,351 (68.1)
Minor or moderate, n (%) 1,231 (16.0) 311 (15.7)
Greater than serious, n (%) 1,409 (18.3) 321 (16.2)

Arm ext
Negative, n (%) 2,052 (26.7) 637 (32.1)
Minor or moderate, n (%) 5,460 (71.0) 1,303 (65.7)
Greater than serious, n (%) 181 (2.4) 43 (2.2)

Table 1: Cohort characteristics and label distributions

3.2 Model performance

The confusion matrices and the macro-F1 scores scores achieved by the CUIs + structured
EHR model and the free text + structured EHR model are displayed in Table 2 and Table 3.
The macro-F1 scores scores along with their 95% confidence intervals are represented in Figure
2. The confidence intervals of macro-F1 scores of the models and the corresponding empirical
Bayes factors (denoted as K) [30] between the two models were computed via bootstrapping
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with 1, 000 resamplings. A large Bayes Factor (K > 10) indicates that one model has signif-
icantly superior behavior on the test set compared to the other [31]. The CUIs + structured
EHR model model had comparable if not higher macro-F1 scores scores over the free text +
structured EHR model on all four body regions. The macro-F1 scores did not significantly
differ between the two models except on arm ext with a Bayes Factor larger than 10, where
the CUI + structured EHR model achieved nearly 0.6 and the free text + structured EHR
model only achieved slightly over 0.5. Both models exhibited their highest performance on leg
injury stratification, achieving macro-F1 scores scores of around 0.8. They also demonstrated
macro-F1 scores exceeding 0.6 on chest abd spine and head face neck.

Predictions

G
ro
u
n
d
T
ru
th

head face neck
macroF1:0.706

Negative (1262)
Minor/

moderate (438)
More than

moderate (283)
Negative (1351) 1142 196 13

Minor/moderate (311) 108 171 32
More than moderate (321) 12 71 238

chest abd spine
macroF1:0.659

Negative (969)
Minor/

moderate (480)
More than

moderate (534)
Negative (1133) 892 220 41

Minor/moderate (329) 59 160 110
More than moderate (501) 18 100 383

arm ext
macroF1:0.591

Negative (678)
Minor/

moderate (1214)
More than

moderate (106)
Negative (637) 416 212 9

Minor/moderate (1303) 246 986 71
More than moderate (58) 16 16 26

leg
macroF1:0.821

Negative (1312)
Minor/

moderate (298)
More than

moderate (373)
Negative (1236) 1206 15 15

Minor/moderate (339) 61 230 48
More than moderate (408) 45 53 310

Table 2: Confusion matrix of the CUIs + structured EHR model. The model excels in strati-
fying leg injuries with macro-F1 scores near 0.8. It also performs well in assessing injuries in
the chest abd spine and head face neck regions, with macro-F1 scores over 0.65.

Predictions

G
ro
u
n
d
T
ru
th

head face neck
macroF1:0.690

Negative (1467)
Minor/

moderate (265)
More than

moderate (251)
Negative (1351) 1255 80 16

Minor/moderate (311) 168 123 20
More than moderate (321) 44 62 215

chest abd spine
macroF1:0.618

Negative (1067)
Minor/

moderate (686)
More than

moderate (230)
Negative (1133) 945 204 4

Minor/moderate (329) 77 228 24
More than moderate (501) 45 254 202

arm ext
macroF1:0.544

Negative (794)
Minor/

moderate (1172)
More than

moderate (32)
Negative (637) 455 182 0

Minor/moderate (1303) 319 960 24
More than moderate (58) 20 30 8

leg
macroF1:0.790

Negative (1296)
Minor/

moderate (364)
More than

moderate (323)
Negative (1236) 1168 43 25

Minor/moderate (339) 74 243 22
More than moderate (408) 54 78 276

Table 3: Confusion matrix of the free text + structured EHR model. Similar to the CUIs +
structured EHR model, the free text + structured EHR model also achieves excellent perfor-
mance in leg injury stratification with macro-F1 scores around 0.8. Additionally, it performs
well on chest abd spine and head face neck with macro-F1 scores exceeding 0.6.
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Figure 2: macro-F1 scores and 95% confidence intervals of the two developed models across
various body regions. The CUIs + structured EHR model generally achieves macro-F1 scores
that are comparable to, or higher than, those of the free text + structured EHR model across
all four body regions. Based on Bayes Factors, the difference in performance between the two
models is not significant, with the exception of the arm ext region where the CUIs + structured
EHR model outperforms the free text + structured EHR model.

To further investigate which severity category was more difficult to correctly identify, we eval-
uated the models’ ability to distinguish each pair of outcomes: Serious vs. Negative, Moderate
vs. Negative, Serious vs. Moderate. “Serious” refers to the category of “serious or greater”,
while “Moderate” denotes the category of “minor/moderate”. The models’ outputs for each
pair of severity categories were compared against the corresponding ground truth labels. The
AUROC and the 95% confidence intervals are presented in Figure 3. Both models achieved
AUROC over 0.9 when discriminating Serious v.s. Negative samples. However, discriminat-
ing the Moderate class with the other two categories proved to be more challenging for both
models.
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Figure 3: Discrimination performance on pairs of severity levels. Both models demonstrate high
accuracy, with AUROC scores exceeding 0.9, in differentiating between Serious and Negative
cases. Identifying the Moderate category from the other two is more challenging for both
models.

3.3 Contribution of structured EHR data

To determine the additive value of structured EHR data in identifying trauma severity, we
conducted an ablation study to assess the impact of structured EHR variables on model per-
formance. Table 4 displays the macro F1 scores of our two developed models alongside versions
of these models that were built without the structured EHR variables. Based on Bayes Factors,
removing structured EHR data did not result in a significant performance decline for either
model in three out of the four body regions. The performance only significantly dropped on
the arm ext region, which overall was the most challenging region in identifying injury severity
according to Figure 2.

CUIs+structured EHR CUIs Free text+structured EHR Free text

Leg
0.817

(0.800,0.832)
0.819

(0.801,0.836)
0.804

(0.788,0.821)
0.798

(0.780,0.815)

Chest abd spine
0.653

(0.632,0.671)
0.656

(0.638,0.675)
0.630

(0.611,0.655)
0.636

(0.612,0.659)

Head face neck
0.707

(0.688,0.725)
0.714

(0.694,0.734)
0.700

(0.681,0.717)
0.686

(0.662,0.707)

Arm ext
0.591

(0.565,0.614)
0.552

(0.518,0.585)
0.537

(0.518,0.555)
0.499

(0.482,0.518)

Table 4: macro-F1 scores and 95% confidence intervals when using different modalities as
input. In three of the four body regions, the exclusion of structured EHR data did not lead
to a significant performance drop in either model. However, there was a significant decrease
in performance in the arm ext region, which was the most challenging area for determining
severity in trauma cases according to Figure 2.

We summed the attribution of various modalities via the Integrated Gradient (IG) methods
[32] and presented the ratio of attributions of the structured EHR data to the CUIs/free text
in Table 5. A higher ratio indicated a more substantial contribution of the structured EHR
data to the models’ outputs. The structured EHR data played a more critical role in the CUIs
+ structured EHR model compared to the free text + structured EHR model. The structured
EHR data had the most crucial impact on arm ext for both models, which was consistent with
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the results in Table 4 that the arm ext was the only region that significantly benefited from
the inclusion of the structured EHR variables.

Leg Chest abd spine Head face neck Arm ext

CUIs+structured EHR 0.215 0.417 0.371 0.929
Free text+structured EHR 0.051 0.069 0.055 0.101

Table 5: Ratio of sum attribution between structured EHR variables and other modalities.
The structured EHR data had a more critical role in the CUIs + structured EHR model than
in the free text + structured EHR model. Its impact was most pronounced in the arm ext
region for both models.

3.4 Visualization of cohort-level clinical utility

Figure 4 displays the top 10 CUIs or words with the highest mean attribution scores in the
identification of serious or greater injuries determined by the IG methods. Anatomical terms,
such as “Bone structure of rib” in CUIs + structured EHR model and “ribs” in the free text
+ structured EHR model, contributed to the determination of serious cases. Additionally,
medical condition concepts such as “Right pneumothorax” in CUIs + structured EHR model
and “pneumothorax” in the free text + structured EHR model, were also among the top 10
attributions. The free text + structured EHR model also leveraged descriptive terms such as
“displaced” or “rotated” to identify serious cases.
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Figure 4: Global level utility. The top 10 attributions are shown for each modal across the four
body regions. Attributions over 0.200 are truncated for clean visualizations. Anatomical terms
and medical conditions are prominent among the top attributions. The free text + structured
EHR model utilizes descriptive terms as well.

3.5 Visualization of individual-level clinical utility

To illustrate the clinical utility at the individual level provided by our models, Figure 5 and
Figure 6 provide visual examples illustrating how a combination of CUIs or free text, and
structured EHR data contributed to identifying a serious or greater chest injury. In these
visualizations, CUIs and words were highlighted with warmer background colors to indicate
an increased likelihood of serious injuries in the combined chest region, while cooler colors
suggested a decreased probability. The top 10 contributing structured EHR variables were also
shown in the visualization. The height of each bar in the plot corresponded to the percentile
ranking of the structured EHR data and the color temperature reflected its contribution to
the likelihood of a serious injury, akin to the color coding used for CUIs and text. The output
prediction, baseline score used by the IG method, total attribution of modalities, and the
approximation error of the IG algorithm were also presented at the top of the visualizations.
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Figure 5: A visualization example of the individual-level clinical utility for the CUIs + struc-
tured EHR model. A warmer background color indicated an increased chance of having serious
injuries in the combined chest region, while cooler colors reflected a decreased probability. This
was the same encounter as Figure 6
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 [ ' pt here with RELATIVE . pt fell down stairs a few days ago , was seen in LOCATION . had imaging done at LOCATION ,
sent home with tylenol and lido patches . LOCATION called RELATIVE with over - read images and said she had a fracture on
left side , 9th rib . pt is not on any blood thinners . pt reports that today her left sided flank side hurts . pt reports "
i cant even move , i cant use the restroom by myself " . reports extreme pain pt appears pale , uncomfortable in triage .
pt unable to sleep from the pain . when asked if she has difficulty breathing , pt states that when she has intense pain or
tries to get up she cant breathe very well . if sitting and not moving , states it is " a little " hard to breathe . ct scan
of head , chest , abdomen done . ' ]
 
 ED_note_2
 [ ' pt assisted from vehicle via wc due to inability to ambulate due to pain . chief complaint obtained from RELATIVE
due to language barrier , " we think she broke her back " RELATIVE able to clarify pt is having rib pain ' ]
 
 Radiology_report_1
 comparison : chest radiograph DATETIME , as the teaching physician , i personally examined the radiologic study ,
reviewed , the findings with dr . NAME and arrived at this interpretation . , electronically signed by : NAME on DATETIME :
impression : , lungs are mildly hypoinflated , with bibasilar linear atelectasis . possible tiny , left pleural effusion . no
pneumothorax . cardiac silhouette and mediastinal , contours are unchanged . probable mildly displaced left posterior ninth rib ,
fracture . no other displaced fracture .
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Figure 6: A visualization example of the individual-level clinical utility for the free text +
structured EHR model. Akin to Figure 5, a warmer background color indicated the presence
of certain words increased the likelihood of having serious injuries in the combined chest region.
Conversely, cooler colors indicated that the occurrence of these words was associated with a
lower likelihood of serious injuries. This is the same encounter as Figure 5

4 Discussion

We developed a multiclass model for the automatic stratification of trauma injury severity us-
ing real-world clinical data. To the best of our knowledge, this is the first work that identifies
trauma injury severity across multiple body regions beyond binary classification. In practice,
our model shows great potential to be implemented in clinical settings capable of collecting
clinical text, whether as free text or CUIs, along with structured EHR data.

We used IG methods to capture the attribution of input features to model predictions. Shapley
value based methods such as SHAP (SHapely Additive exPlanations)[33] are commonly used
for model explanation. However, these methods are typically less suited for unstructured data.
In addition, these methods rely on sampling from an exponentially large feature space and per-
muting all possible feature values whereas the IG methods compute the model’s gradient fewer
than 100 times, making them more efficient for clinical applications with differentiable models.
Furthermore, the IG methods adhere to the “Implementation invariance” axiom, meaning that
the attribution of two models should be identical if their outputs are equal for all inputs. Some
popular interpretation methods such as DeepLift [34] and LRP [35] fail to fulfill this require-
ment. By leveraging IG methods, our models can provide both local interpretation and global
interpretation. The global interpretation sheds light on which features (whether word tokens
in free text, medical concepts in CUIs, or measurements from structured EHR data) contribute
most to the final output. For individual trauma cases, medical staff can gain insights into the
rationale behind our models’ decisions through heatmap visualizations, enhancing understand-
ing and trust in the predictions at the point of care.
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Though applying BERT-family models to the clinical text has demonstrated advantages in
addressing real-world challenges, the limit of input token length and the large number of pa-
rameters in the attention mechanism may hinder their application in clinical practice. CUIs
from the Unified Medical Language Systems (UMLS) [36] can be extracted from clinical text
using tools such as cTakes [27] and MetaMap [37]. The CUI representation focuses more
precisely on medical concepts, filtering out non-medical-related elements like stopwords and
converting various expressions of medical terms in free text into concepts within standardized
vocabularies. Furthermore, compared to modeling free text with BERT-family models, the
CUIs can be encoded by models that have fewer parameters and are not constrained by the
length of the input. In our study, the CUIs + structured EHR model that leverages 1D CNN to
encode the CUIs contains 3,122,709 parameters. In contrast, the free text + structured EHR
model that utilizes transformers for encoding free text encompasses a total of 108,372,469 pa-
rameters. Meanwhile, the CUIs + structured EHR model achieves comparable, if not superior,
performance to the free text + structured EHR model in terms of macro-F1 scores, which
indicates that omitting the context information of medical concepts from the clinical text does
not impede the ability of machine learning models to discern trauma injury severity. Though
extracting CUIs from clinical text requires additional processing steps, these steps are reusable
across applications and our health system currently has a real-time CUI-based pipeline in place
for other health systems to benchmark [22]. Our research highlights the potential of leverag-
ing CUI-based methods to develop accurate, generalizable, and parameter-efficient models for
clinical applications.

Based on Figure 4, both models prioritize anatomical regions such as rib, femur, and subdural
spaces to identify the location of trauma injuries. It is consistent with clinical practice be-
cause anatomical regions are usually the initial indicators for categorizing body injuries. Both
models can also recognize severe medical conditions such as hemothorax as indicators of injury
severity. However, one notable difference in the CUIs + structured EHR model is that the
concept “Fracture” is not among the top attributions for the combined chest and leg regions,
unlike in the free text + structured EHR model where the words “fracture” and “fractures”
are primary attributions at these two regions. This discrepancy can be explained by the fact
that mentions of “fracture” can pertain to various regions, rendering the term less specific in
determining the severity of injuries in a particular area. On the other hand, BERT-family
models can contextualize each token, making the word ’fracture’ a more reliable indicator of
injury severity when combined with surrounding semantic information. In addition, the free
text + structured EHR model can also capture adjective descriptions such as “displaced” and
“rotated” which are usually overlooked by CUIs. Though the difference in model behaviors
exists, the numerical performance is comparable across the body regions except in the com-
bined extremities. As our development set has a very limited number of samples for serious or
greater injuries on the region of arm and extremities, the heavily parametrized ClinicalBERT
may fail to capture sufficient information to be generalized, whereas the less complicated 1D
CNN may offer better generalizability when the label distribution is highly skewed.

The findings from Table 4 and 5 reveal that information from the structured EHR data has
a crucial impact and can benefit the models for the region of arm and extremities, which is
characterized by a skewed label distribution and both models underperform on compared to
other body regions. In Figure 4, strong predictors are not discernible from either the free text
or the CUIs on arm ext. Such observations indicate that incorporating the structured EHR
data can provide additive values in predictive powers when the signals from the clinical text
are weak, though such improvements are less pronounced when the text data alone is strongly
indicative.

While the AIS is a commonly used metric for classifying the severity of trauma injuries, its
primary design is for the evaluation of individual injuries. This focus may limit its ability
to capture the cumulative effect of multiple injuries [38]. Our model, which employs AIS as
the ground truth for injury severity, may be applied to more comprehensive scores such as
the Injury Severity Score [39] that incorporates AIS into an overall trauma severity. Another
potential limitation of our study is the absence of external validation for our models. While
external validation is generally recommended for locally developed machine learning models, it
cannot guarantee the usefulness of the model due to the fact it may not reflect the character-
istics of the intended population [40]. As our primary goal is to take the initial step towards
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assessing the feasibility and significance of integrating various modalities for automatic trauma
injury stratification, achieving universal generalizability is not our foremost concern in this
study. To ensure the robustness of our models to the dynamic nature of healthcare, we have
conducted thorough temporal validation using a recently collected local dataset.

In conclusion, we built multimodal machine learning models using two text representations,
CUIs and free text, in conjunction with structured EHR data separately. The CUIs + struc-
tured EHR model achieves comparable or superior performance over the free text + structured
EHR model in macro-F1 scores across all four body regions. Both models can provide clin-
ically relevant interpretations. Our work also highlights that incorporating structured EHR
data into the models helps to mitigate underperformance when the text modality is not strongly
indicative.
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Appendix

A Names and featurization of structured EHR variables
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Name Featurization

hr Max & Min
rr Max & Min
sbp Max & Min
dbp Max & Min
o2sat Max & Min
temp c Max & Min
avpu Max & Min
bmi First

fio2 final Max & Min
braden activity First
braden friction First
braden mobility First
braden moisture First
braden nutrition First
braden sensory First
braden scale First

urine output sum First
albumin First
alk phos First
bands pct First
bili total First

bun First
calcium First
chloride First
co2 First

creatinine First
eosinophils pct First

gluc ser First
hemoglobin First

inr First
lactate First
lipase First

lymphocytes pct First
magnesium First

mcv First
monocytes pct First
neutrophils pct First

pco2 art First
pco2 ven First
ph art First
ph ven First

phosphate First
platelet count First

po2 art First
potassium First

ptt First
rdw First

ast sgot First
sodium First

total protein First
wbc First

anion gap First
timeofday First

age First

Table A1: The first column shows the names of vital signs and lab measurements that are
extracted from the structured EHR data. The second column shows the featurization of the
structured EHR data variables. “Max & Min” means the max and min values are extracted
within the first 8 hours of the encounter and “First” means the first measurements within the
first 8 hours of the encounter are used as features.
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B Original AIS distribution
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Figure B1: Original AIS across all the nine AIS regions.
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C Construction of the structured EHR encoder

Figure C1: The architecture of the binary multitask model that is utilized for embedding
structured EHR data. The shared architecture includes two fully connected layers and the
model also contains separated layers for different body regions. The output of the last shared
layer can be used as the structured EHR embeddings that provide information on trauma
severity.
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D Discriminative performance of the binary structured
EHR model
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Figure D1: AUROC and AUPR when the pretrained structured EHR model makes binary
output across the nine AIS body regions.
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