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0. Abstract 
This study introduces OpenMAP-T1, a deep-learning-based method for rapid and accurate 
whole-brain parcellation in T1-weighted brain MRI, which aims to overcome the limitations of 
conventional normalization-to-atlas-based approaches and multi-atlas label-fusion (MALF) 
techniques. Brain image parcellation is a fundamental process in neuroscientific and clinical 
research, enabling a detailed analysis of specific cerebral regions. Normalization-to-atlas-based 
methods have been employed for this task, but they face limitations due to variations in brain 
morphology, especially in pathological conditions. The MALF teqhniques improved the accuracy 
of the image parcellation and robustness to variations in brain morphology, but at the cost of high 
computational demand that requires a lengthy processing time. OpenMAP-T1 integrates several 
convolutional neural network models across six phases: preprocessing; cropping; skull-stripping; 
parcellation; hemisphere segmentation; and final merging. This process involves standardizing 
MRI images, isolating the brain tissue, and parcellating it into 280 anatomical structures that 
cover the whole brain, including detailed gray and white matter structures, while simplifying the 
parcellation processes and incorporating robust training to handle various scan types and 
conditions. The OpenMAP-T1 was tested on eight available open resources, including real-world 
clinical images, demonstrating robustness across different datasets with variations in scanner 
types, magnetic field strengths, and image processing techniques, such as defacing. Compared to 
existing methods, OpenMAP-T1 significantly reduced the processing time per image from 
several hours to less than 90 seconds without compromising accuracy. It was particularly 
effective in handling images with intensity inhomogeneity and varying head positions, conditions 
commonly seen in clinical settings. The adaptability of OpenMAP-T1 to a wide range of MRI 
datasets and its robustness to various scan conditions highlight its potential as a versatile tool in 
neuroimaging. 
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1.Introduction 
Brain image parcellation constitutes a pivotal aspect of neuroscientific and clinical 

investigations, delineating a repertoire of parcels that correspond to biologically or functionally 
pertinent cerebral units. These defined parcels facilitate quantitative analyses of neuroimaging 
data for each individual region [1-19]. While numerous criteria exist for the parcellation of 
cerebral territories, the designation of regional labels predominantly relies on established 
anatomical or neurofunctional insights. Examples include macroanatomical landmarks, such as 
gyri and sulci [10-12, 16, 19, 20], cellular configurations at the microscopic scale [20], the 
spatial distribution of transporters or receptors [21, 22], and regions characterized by vascular 
territories [23], as well as by functional or anatomical connectivity [5, 24-29]. 

The electronic version of brain atlases frequently serves as a reference for demarcating 
anatomical or functional territories. Such atlases typically comprise a standard brain image 
paired with an accompanying parcellation map, annotated with labels spanning the entirety of the 
cortex, white matter areas, or entire brain regions. Within atlas-based analyses, the inherent 
semantic information encapsulated within the parcellation map is transposed onto the target brain 
image for subsequent image quantification. Diverse atlas types have been formulated and 
employed for brain image parcellation (see [10, 16, 18, 19] for details). Image transformation 
techniques enable the adjustment of these knowledge-informed parcels from the atlas to conform 
to the specificities of the target brain. Herein, the atlas undergoes mathematical transformation 
("warping" or "deformation") to be congruent with the morphological attributes of the target 
brain, thus generating a parcellation map in harmony with the target's morphology. This 
technique boasts over two decades of application. However, due to the pronounced individual 
variations in brain morphology, substantial discrepancies can sometimes be observed between 
the target and atlas brain structures. These mismatches make precise atlas-to-target 
transformations challenging [9, 30]. Notably, these transformation errors are exacerbated when 
addressing neuroimages of brains with pathological atrophy, lesions exhibiting signal alterations, 
such as ischemic or hemorrhagic lesions, or mass lesions [31]. Consequently, it has become clear 
that relying solely on a single brain atlas for accurate parcellation is not viable. To adeptly 
segment an array of brains, and encompass those that are pathologically affected, the multi-atlas 
label-fusion (MALF) techniques [32-39] have garnered significant traction since the 2010s. 

In the MALF approach, typically 10-30 atlases are curated and subsequently transformed 
to the target brain. These atlases are carefully chosen to encompass a diverse range of 
morphological features, ensuring accommodation for inter-individual variations in cerebral 
morphology. This leads to the generation of as many parcellation maps as the number of atlases 
employed as intermediate products, each reflecting subtle differences attributable to the unique 
characteristics of its corresponding atlas. Leveraging these multiple parcellation outputs, a series 
of mathematical techniques, termed 'label fusion,' are employed to integrate and obtain a final 
optimal parcellation map for the target brain [33]. This resultant map showcases superior 
accuracy compared to one obtained from a single atlas [34]. Consequently, the MALF approach 
has found significant utility, especially in the precise parcellation of brains affected by 
neurodegenerative disorders that cause atrophy [39]. 

Given the proficiency of the MALF approach in accurately segmenting a diverse range of 
pathologically affected brains, its application in quantifying clinical imaging datasets that 
comprise various diseases seems an intuitive progression. For instance, parcellating clinical brain 
MRI data can yield volumetric insights into distinct cerebral regions, facilitating diagnosis, 
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analogous image retrieval, and autonomous detection of characteristics that deviate from 
normative brain parameters. Nonetheless, the MALF techniques are characteristically 
computationally intensive, necessitating intricate mathematical transformations across multiple 
atlases, followed by label fusion. Consider MRICloud [38], a freely accessible cloud-based 
computational tool renowned for its precise brain MRI parcellation with multi-atlas label fusion. 
Despite the use of a cluster computing infrastructure environment, optimized for parallel 
processing, the use of the computationally intensive advanced large deformation diffeomorphic 
metric mapping for image transformation results in several hours of processing time for a single 
image. This computational burden poses significant challenges in big-data analysis or clinical 
scenarios. For instance, in clinical settings where multiple brain MRI scans necessitate 
immediate segmentation for diagnostic assistance or when a large repository of brain images 
requires quantification, expedited processing is imperative. Under such circumstances, the 
current MALF techniques prove overly resource-intensive and time-prohibitive. 

In recent years, there has been a growing inclination to use deep-learning models to 
expedite the parcellation of brain MRI while simultaneously enhancing accuracy [40-47]. For 
instance, ParcelCortex [45] employs convolutional neural networks (CNNs), while 
DeepParcellation [46] integrates the Attention 3D U-Net for cortical segmentation based on the 
Desikan-Killiany-Tourville atlas parcellation derived from FreeSurfer [48]. A salient advantage 
of deep-learning lies in its efficiency: once a model is trained and validated, it permits rapid 
parcellation. This proficiency renders it advantageous for processing extensive datasets, 
encompassing both research-oriented and clinical imaging. Nonetheless, models capable of 
detailed segmentation across all cerebral regions, inclusive of white matter territories, and those 
offering results comparable to the sophisticated MALF method, remain underdeveloped. 

In the present study, we introduce a deep-learning-based, rapid, whole-brain parcellation 
method. Our aim was to construct a model that not only mirrors the accuracy of the multi-atlas 
approach, but also accommodates images from diverse repositories and facilitates parcellation 
within mere minutes on a standard desktop configuration. The model has been named "Open 
resource for Multiple Anatomical structure Parcellation for T1-weighted brain MRI (OpenMAP-
T1)" and is accessible through the website (URL: https://github.com/OishiLab/OpenMAP-T1). 
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Table 1. Dataset used in our study: Alzheimer's Disease Neuroimaging Initiative 2/3 (ADNI2/ADNI3), Australian Imaging, Biomarkers and Lifestyle 
(AIBL), Calgary-Campinas-12 (CC-12), LONI Probabilistic Brain Atlas (LPBA40), Neurofeedback Skull-stripped (NFBS) Repository, Open Access 
Series of Imaging Studies 1/4 (OASIS1/OASIS4). OASIS4 consists of clinical MRIs with various diseases and conditions. OpenMAP-T1 was trained 
using only 350 cases in ADNI2. AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, cognitively normal older people. One MRI per 
subject was randomly selected to avoid potential bias. 
 

    Train Test 

Dataset ADNI2 ADNI2 ADNI3 AIBL CC359 LPBA40 NFBS OASIS1 OASIS4 

# Subjects 350 750 929 376 359 40 125 235 570 

# Voxels 
����� 

1.05~1.43 1.05~2.18 0.99~1.44 1.19~1.20 0.79~1.33 0.91~1.10 0.99 1.25 0.22~1.52 

Age mean 73.7 74.3 73.7 74.0 53.4 29.2 31.0 72.3 72.5 

 
std 7.4 7.5 8.0 7.1 7.8 6.3 6.6 12.0 9.2 

Sex F 160 353 486 198 183 20 77 156 303 

 
M 190 397 443 178 176 20 48 79 267 

Manufacturer GE 97 254 211 
 

120 40 
   

 PHILIPS 65 126 142 
 

119 
    

 SIEMENS 188 370 576 376 120 
 

125 235 570 

Field 
Strength 

1.5T 30 149 
 

102 179 40 
 

235 29 

 
3T 320 601 929 274 180 

 
125 

 
541 

Diagnosis CN 122 259 522 268 359 40 125 135 

Real-World 
MRI  

MCI 196 318 301 64 
    

  AD 32 173 106 44       100 
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2.Materials and Methods 
2.1. Participants 
We used public brain MRI datasets for the model training and evaluations: Alzheimer's Disease 
Neuroimaging Initiative 2 and 3 (ADNI2/ADNI3) [49], Australian Imaging, Biomarkers and 
Lifestyle (AIBL) [50, 51], Calgary-Campinas-359 (CC-359) [52], LONI Probabilistic Brain 
Atlas (LPBA40) [53], Neurofeedback Skull-stripped (NFBS) [54], and Open Access Series of 
Imaging Studies 1 and 4 (OASIS1/OASIS4) [55, 56]. Table 1 shows the dataset descriptions used 
in this study. Three-hundred-fifty baseline MRIs of ADNI2 were used to train the OpenMAP-T1, 
and other MRIs, including 750 ADNI2. MRIs not used to train the model were used to test the 
model. Although these datasets include multiple scans from single participants, only one MRI 
per participant was randomly selected to avoid potential bias toward specific individuals. 
 
The ADNI [49] was launched in 2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be combined to measure the 
progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). For up-to-
date information, see www.adni-info.org. The ADNI study has evolved through several phases, 
with ADNI2 during 2011 - 2016 and ADNI3 during 2016 - 2022 being two of them. For our 
study, we have included Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) 
images from ADNI2 and ADNI3 datasets. As recommended by the ADNI team, we included 
ADNI2 MPRAGE images (ADNI2: 55.1-94.7 years, ADNI3: 50.5-97.4 years) preprocessed with 
Gradwarp, B1 non-uniformity, and N3 bias field corrections. Note that the preprocessing was not 
required for the ADNI3 MPRAGE images since, such corrections are internally applied by 
individual vendors. 
 
The AIBL [50, 51], also known as Australian ADNI, is a long-term research initiative that aims 
to understand the  biomarkers and cognitive characteristics that determine the development of 
AD. The AIBL study commenced in 2006 and the methodology has been reported previously 
[50]. In our study, the the original MPRAGE images (55.0-96.0 years) downloaded from the 
website (https://aibl.org.au/) were included.  
 
The CC359 [52] dataset is an open, multi-vendor, multi-field-strength brain MRI dataset. It is 
composed of 359 MRIs of healthy adults acquired on scanners from three vendors (Siemens, 
Philips, and General Electric (GE)) at both 1.5 T and 3 T  to evaluate the impact of scanner 
vendor and magnetic field strength on skull-stripping. In our study, we used MPRAGE images of 
Siemens and Philips and 3D spoiled gradient echo sequence (SPGR) (29.0-80.0 years) on the GE, 
downloaded from the website (https://www.ccdataset.com/download). 
 
The LPBA40 [53] is a set of brain MRIs of 40 healthy young adults scanned on a single 1.5T GE 
scanner. In our study, we used the 3D SPGR images (19.3-39.5 years) downloaded from the 
website (https://www.loni.usc.edu/research/atlas_downloads). 
 
The NFBS [54] dataset is a repository of brain MRIs of 125 individuals, including 66 who were 
diagnosed with a wide range of psychiatric disorders, scanned on a single 3T Siemens scanner. In 
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our study, we used MPRAGE images (21.0-45.0) downloaded from the website 
(http://preprocessed-connectomes-project.org/NFB_skullstripped/). 
 
The OASIS [55, 56] is a brain MRI dataset that includes multiple releases, such as OASIS-1, 
OASIS-2, OASIS-3, and OASIS-4, which provide cross-sectional and longitudinal MRI data for 
normal aging and AD. The subjects of the OASIS1 were selected from a larger database of 
individuals who had participated in MRI studies at Washington University. OASIS4 is a Clinical 
Cohort and was acquired at the Memory Diagnostic Center. All subjects in OASIS4  underwent a 
clinical assessment conducted by experienced clinicians. The 570 subjects we selected included 
16 different diagnostic labels. In our study, we used MPRAGE images (OASIS1: 33.0-96.0, 
OASIS4: 37.0-94.0) downloaded from the website (https://www.oasis-brains.org/). 
 

2.2. Anatomical Labeling for Training and Evaluation 
The parcellation map obtained from the MALF algorithm [57, 58] and implemented in 
MRICloud (www.MRICloud.org Johns Hopkins University, Baltimore, MD, USA) [38] was used 
to generate anatomical labels for model training and evaluation. The MALF algorithm parcellates 
the entire brain into 280 brain regions. We went over the 350 MRIs used as a training dataset to 
confirm that there was no substantial mislabeling; therefore, manual correction was not 
performed. Details of the labels used to train OpenMAP-T1 are shown in Figure A in the 
Supplementary Material. It should be noted that, in this paper, the term 'MALF' will henceforth 
refer exclusively to the specific algorithm implemented in MRICloud. 
 

2.3. Model Design 

 
Figure 1. Overview of the open resource for multiple anatomical structure parcellation for T1-
weighted brain MRI (OpenMAP-T1) consisting of the preprocessing, cropping phase, skull-
stripping phase, parcellation phase, and hemisphere phase. 
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The OpenMAP-T1 was designed to accept any T1-weighted images and output a corresponding 
parcellation map, in which gray matter, white matter, and cerebrospinal fluid areas are segmented 
and further parcellated into 280 anatomical regions based on the JHU-atlas [10].  
 
Figure 1 shows the overview of OpenMAP-T1. The OpenMAP-T1 follows six phases: (1) 
preprocessing; (2) application of a cropping network (CNet) consisting of the 2D U-Net [59]  to 
crop the area surrounding the head in the input MRI; (3) application of a skull-stripping network 
(SSNet) consisting of the 2D U-Net to extract the brain; (4) application of a parcellation network 
(PNet) consisting of the 2.5D U-Net [60] to parcellate the whole brain into 141 anatomical areas; 
(5) application of a hemisphere network (HNet) consisting of 2D U-Net to segment the whole 
brain into the right and left hemisphere; and (6) separation of 139 regions of the 141 from the 
parcellation map created in phase (4) into right and left sides based on the hemisphere map from 
phase (5), with the exception of the 3rd and 4th ventricles. Consequently, OpenMAP -T1 
produces a parcellation map consisting of 280 neuroanatomically defined regions. 
 

2.4.1.Preprocessing 
N4 bias field correction [61] was applied to remove intensity non-uniformity. In addition, the 
images were rescaled to a resolution of 1 × 1 × 1 mm using trilinear interpolation, and their size 
was standardized to 256 × 256 × 256 through the application of zero padding. Pixels with 
intensity values below 0 or above u+2σ (where u is the mean and σ is the standard deviation) 
were identified as outliers and excluded. These pixels were then linearly normalized to a range 
between -1 and 1. Following normalization, the excluded pixels were replaced with the minimum 
and maximum values within this normalized range. 
 

2.4.2 Cropping phase 
Non-brain soft tissue, such as skin, fat, and muscle, potentially confound whole-brain 
parcellation. In particular, variations in the intensity of the neck tissue interferes with image 
segmentation. In addition, the extent to which the field-of-view of the image covers the neck 
depends on the scan parameters, and, in some publicly available datasets (e.g., NFBS and 
OASIS1), a defacing algorithm was applied to the image for de-identification [54, 55]. To reduce 
the influence of neck tissue in image segmentation and parcellation, we set the cropping phase to 
eliminate the regions below the brain in a consistent way using the CNet. Figure B in the 
Supplementary Materials shows an overview of the cropping phase and the detail of the CNet is 
shown in Section 2.4.6. 
 
In the training of the CNet, the head region included in the parcellation map resulting from 
MALF was used (Figure A in the Supplementary Material), since the parcellation map covers the 
head above the foramen magnum, and does not include neck tissue below it. The CNet employed 
2D segmentation on individual cross-sections of a 3D brain MRI, which were then vertically 
stacked for high-speed processing. By utilizing the 2D U-Net architecture, it was possible to train 
the model using numerous images from a single MRI. For example, with a 256x256x256 matrix, 
2D U-Net can utilize 256 slices from a single MRI.  Note that the cropping phase was 
specifically designed to eliminate tissue located below the brain; hence, the axial section, which 
does not contain vertical information, was excluded from the ensemble. The output is a 
probability map for the head above the foramen magnum, and areas with a probibability of 50% 
or higher are defined as head masks. A failure in the cropping phase considerably affects the 
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processing performance of subsequent phases. To prevent small gaps or missing areas in the 
output mask, a closing process was applied using a 3 × 3 × 3 filter. The dilation and erosion 
operations were performed three times each. 
 

2.4.3.Skull-stripping phase 
To further remove signals from extracranial soft tissues that remain after the initial cropping 
phase, we applied skull-stripping to the image. Given the varying intensity ranges caused by 
different scanner types, scan sequences, and parameters, it is essential to adjust the image 
contrast between gray and white matter, as well as cerebrospinal fluid. However, signals from 
extracranial soft tissues, such as fat, bone, and muscle, vary greatly and can disrupt the stable 
signal intensity profile of intracranial structures. This variation can adversely affect the 
performance of deep-learning models. By employing skull-stripping with SSNet, we effectively 
removed irrelevant regions for the later stages of parcellation and hemisphere analysis. Figure C 
in the Supplementary Materials provides an overview of the skull-stripping phase and the detail 
of the SSNet is shown in Section 2.4.6. 
 
To develop SSNet, we trained the model using an intracranial mask obtained from MALF 
(Figure A in the Supplementary Material). SSNet performs 2D segmentation on any cross-
sectional view of a 3D brain MRI, stacking these sections vertically in a manner similar to that of 
CNet. We input three cross-sectional views—sagittal, coronal, and axial—into a 2D-U-Net. The 
output is a label for the intracranial space, defined as areas with a probability of 50% or higher. 
 

2.4.4.Parcellation phase 
In our current computing environment, training a full-size deep-learning network for multi-class 
parcellation with 3D images, such as an entire brain, presented challenges. To optimize 
parcellation performance without running GPU memory, we used two strategies: utilizing 2D 
slices, and merging the left and right brain regions. An overview of the parcellation phase can be 
seen in Figure D of the Supplementary Materials. 
 
The PNet, designed for 2D segmentation of 3D brain MRI cross-sections, stacks these sections 
vertically. It is important to note that the PNet functions as a 2.5D U-Net, incorporating a target 
slice and the slices directly above and below it, and combining these slices along the channel 
direction. In typical 2D U-Net applications for 3D images, vertical spatial information is lost. 
However, the 2.5D U-Net approach allows for the use of pseudo spatial information while 
reducing parameter count compared to a 3D U-Net. Consequently, for each cross-section, three 
image slices (256 x 256) are stacked in the depth direction, resulting in an input dimension of 
256 x 256 x 3 for the PNet. The choice to stack three slices was based on the findings from 
preliminary experiments.Furthermore, of the 280 brain regions, those present in both 
hemispheres were merged as a single region (Figure A in the Supplementary Material). 
Excluding the 3rd and 4th ventricles, 278 regions exist in both the left and right hemispheres, as 
per the JHU-atlas. During the parcellation phase, this merging reduces the target regions for PNet 
to 141, making the segmentation task effectively 142 classes, including the background. 
 
Combining the left and right regions offers three benefits. First, it enables U-Net to train on 
larger regions, which is crucial as some of the 280 regions are smaller than 100 voxels and 
challenging to extract accurately. Merging hemispheres roughly doubles the volume of these 
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regions, making them more tractable. Second, it reduces computational costs. In 2D or 2.5D U-
Net, the dimension of the output parcellation map is height × width × channels (number of 
segmentation classes). By merging hemispheres, we halve the number of output channels. Third, 
it facilitates the use of sagittal sections. Normally, distinguishing left from right in sagittal 
sections is tough, and can potentially degrade parcellation performance. This issue is resolved by 
treating the hemispheres as identical. 
 
Unlike CNet and SSNet, PNet uses three models for each cross-section (coronal, sagittal, axial), 
and the final prediction is based on the highest average prediction probability across these 
models. This approach was chosen to ensure consistent predictions in regions where parcellation 
is challenging, such as at the brain's edges. Training a single model with three cross-sections 
risks misidentifications, like mistaking a coronal for an axial section. 
 

2.4.5.Hemisphere phase 
The segmentation task of HNet is a three-class classification: background; right hemisphere; and 
left hemisphere. This classification aims to determine the left and right borders of 139 of the 141 
region labels generated in the parcellation phase. The hemisphere phase model was trained using 
hemisphere labels obtained from MALF. An overview of this phase is depicted in Figure E of the 
Supplementary Materials and the detail of the HNet is shown in Section 2.4.6. 
 
HNet employs 2D segmentation on any cross-section, stacking these sections vertically. It 
specifically uses axial and coronal sections to output the hemisphere labels. A post-processing 
step involving dilation was implemented to separate each region generated during the 
parcellation phase to the right and left sides. The process is as follows: (1) Dilate only the left 
hemisphere label. (2) Modify the overlapping parts of the dilated left hemisphere label with the 
right hemisphere label to be classified as right side. (3) Dilate only the right hemisphere label. (4) 
Modify the overlapping parts of the dilated right hemisphere label with the left hemisphere label 
to be classified as left side. This method allows the hemisphere labels to expand while minimally 
impacting the borders. 

 
Finally, the parcellation map, which includes 280 region labels, was created by dividing the 141-
region parcellation map into left and right hemispheres, using the hemisphere labels obtained 
from the hemisphere phase. It is important to note that in the 141-region parcellation map, the 
two regions without a left-right distinction (3rd and 4th ventricles) were given priority over the 
hemisphere labels (i.e., the hemisphere label was ignored). Furthermore, if there was an overlap 
between the background from the parcellation phase and the hemisphere region from the 
hemisphere phase, the background was given precedence. 
 

2.4.6.Structures of CNet, SSet, PNet, and HNet and their training 
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Figure 2. Architecture of the U-Net (CNet, SSNet, PNet, and HNet). U-Net consists of nine 
blocks, and each block includes two convolutions, batch normalization, and a ReLU function. 
The CNet, SSNet, and HNet have one input channel , and only PNet has three channels, 
including the target slice and its upper and lower slices. Since the CNet and SSNet perform 
binary cross entropy, the output class is only one. Also, since the PNet and HNet use multi-class 
classification, the output is the number of regions plus one (background). Note that only PNet 
has three models (for coronal, sagittal, and axial sections). 
 
The CNet, SSNet, PNet, and HNet each comprise 24 convolution layers based on 2D CNN 
(Figure 2). The main distinction between them lies in the number of input and output channels. 
As detailed in Figure 2, CNet, SSNet, and HNet had one input channel, while PNet had three 
channels. 
 
Data augmentation included a random rotation ranging from -20 to +20 degrees and a random 
shift from -20 to +20 pixels, applied with an 80% probability. For the sagittal cross-sections, a 
broader random rotation range of -30 to +30 degrees was used, based on the greater variation 
seen on existing MRI databases. To ensure robust performance for low signal-to-noise ratio 
(SNR) images, random Gaussian noise (mean 0, standard deviation 0.25) was added with a 50% 
probability. These data augmentation techniques were applied consistently across all phases. 
MRI magnetic field inhomogeneity led to very low-frequency intensity variations throughout the 
image. Consequently, a random bias field [62] was introduced with a 50% probability during the 
cropping and skull-stripping phases. While N4 bias field correction was used in preprocessing to 
address inhomogeneity as much as possible, this data augmentation was implemented to enhance 
the model's robustness. To adapt the CNet for use with images that did not include the neck area 
below the foramen magna, commonly found in axial scans and defaced images, we augmented 
the training data by incorporating images with the neck area cropped out, at a probability of 20%.
Similar to CNet, the training dataset for SSNet was augmented by including skull-stripped 
images as inputs with a 20% probability. This approach enables the model to more accurately 
identify the location of the brain by reducing the impact of non-brain regions. 
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The CNet, SSNet, PNet, and HNet were mainly trained using two RTX 3090 graphics processing 
units (GPU) with 24GB memory for about 24 hours. Also, Automatic Mixed Precision (AMP) 
was utilized to accelerate training. The number of epochs was set to 10,000, and the learning rate 
was set to decrease sequentially from 0.01 to 0.0001 by the Cosine Annealing Learning Rate 
Scheduler. The batch size was 64 on CNet, SSNet, and HNet, and 32 on PNet. For the loss 
functions, the CNet and SSNet used binary cross-entropy, while the PNet used a combination of 
cross-entropy and Dice loss. The HNet exclusively used cross-entropy. 
 

2.5. Evaluation of parcellation performance 
We assessed the effectiveness of OpenMAP-T1 in terms of technical and biological criteria. The 
technical assessment encompassed three areas: parcellation performance; generalizability; and 
processing time. For the biological evaluation, OpenMAP-T1 was tested under the assumption of 
its application in AD research. Furthermore, we compared the parcellation accuracy of 
OpenMAP-T1 with that of FreeSurfer (version 7.4.1), a widely used tool in brain MRI 
parcellation. 
 

2.5.1.Technical evaluation 
Parcellation performance 
To evaluate the parcellation performance of OpenMAP-T1, four metrics were utilized: (1) 
illustrate the spatial overlap between two parcellation maps generated by MALF and OpenMAP-
T1 by calculating the average recall and precision, considering the results of MALF as the 
ground truth, and also compute the Dice score; (2) establish correlation analyses of the predicted 
volumes between MALF and OpenMAP-T1, indicating the consistency of the relationship 
between these predicted volumes, with both Pearson and Spearman correlation coefficients 
calculated; (3) use a Bland-Altman plot [63] to investigate agreement between regional volumes 
predicted by MALF and OpenMAP-T1, allowing identification of systematic bias between the 
measurements and outliers; and (4) analyze the relationship between the volume predicted by 
MALF and the corresponding Dice score, showing how the predicted volume correlates with 
parcellation performance. These metrics were determined for each individual region. 
 
Generalizability 
For parcellation methods to be effectively applicable in large-scale clinical research, they must 
possess a high degree of generalizability. To assess the generalizability of OpenMAP-T1, we 
examined whether significant variations in the Dice score were present based on factors such as 
database, scanner manufacturer, magnetic field strength, age, sex, and diagnosis. We employed 
analysis of variance (ANOVA) for this comparative analysis. A p-value less than 0.05 in two-
sided tests was deemed to reflect statistical significance. 
 

2.5.2.Comparison with FreeSurfer 
It is important to acknowledge that a direct comparison between the parcellation maps of 
OpenMAP-T1, which uses the JHU-atlas [10], and FreeSurfer, based on the Desikan-Killiany-
Tourville (DKT) atlas [18], is not feasible because their anatomical definitions are different. 
Consequently, we conducted a focused comparison of OpenMAP-T1 and FreeSurfer, specifically 
examining the hippocampus, amygdala, and entorhinal cortex, as these regions are notably 
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associated with Alzheimer's Disease (AD). Two metrics were used for this comparison: (1) the 
average recall, precision, and Dice score for the parcellation maps of the hippocampus, amygdala, 
and entorhinal cortex produced by OpenMAP-T1 and FreeSurfer, considering the result of 
FreeSurfer as the ground truth; (2) a correlation analysis of the predicted volumes for the 
hippocampus, amygdala, and entorhinal cortex, comparing the results from OpenMAP-T1 and 
FreeSurfer. 
 

2.5.3.Biological evaluation 
We assessed the diagnostic ability to distinguish between AD and CN participants using 
predicted volumes derived from MALF, OpenMAP-T1, and FreeSurfer. This evaluation involved 
628 subjects with AD or CN labels from the ADNI3 dataset, using a three-fold cross-validation 
approach. A logistic regression model with Least Absolute Shrinkage and Selection Operator 
(LASSO) was utilized for the classification. To mitigate multicollinearity, the predicted volumes 
of 280 anatomical structures by MALF and OpenMAP-T1 were averaged across their left and 
right counterparts. Similarly, the volumes calculated by FreeSurfer for bilateral regions were also 
averaged. In addition, we adjusted for brain size effects by normalizing each structure's volume 
to the total brain volume of each participant. These normalized volumes were then transformed 
into z-scores, based on the mean and standard deviation, and used as input variables for the 
model. The classification performance was compared using the Area Under the Curve (AUC) 
from receiver operating characteristic (ROC) curve analysis, with significant differences 
determined using DeLong's algorithm [64]. A p-value less than 0.05 in two-sided tests was 
considered statistically significant. Furthermore, we identified the top 20 structures based on the 
coefficients of the LASSO model after training to understand the important regions of this model. 
 

3. Results 
3.1. Technical evaluation 
Parcellation Performance 
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Figure 3. Representative results from MALF and OpenMAP-T1 are demonstrated. The median 
Dice score calculated between the two sets of results is provided. Note that defacing techniques 
have been implemented on NFBS and OASIS1 datasets to safeguard the privacy of the 
participants. 
 
Figure 3 presents a comparative analysis of parcellation results between MALF and OpenMAP-
T1. Despite significant variations in head appearance across different datasets, OpenMAP-T1 
demonstrated satisfactory performance for all eight datasets. Notably, the median Dice score 
exceeded 0.8 for every dataset, with the exception of LPBA40, which did not utilize MPRAGE 
imaging. 

 
Figure 4. Boxplot of the recall, precision, and Dice scores across each dataset. 
 
Figure 4 illustrates the average recall, precision, and Dice scores obtained from comparing 280 
anatomical regions in the parcellation maps between MALF and OpenMAP-T1, considering the 
results of MALF as the ground truth. These scores, exceeding 0.75 in all datasets, signify a 
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considerable level of agreement between the two methods. However, it should be noted that 
some datasets displayed extreme outliers. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.24301494doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301494


 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.24301494doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301494


Figure 5. Image with the lowest Dice scores from all datasets (From left to right: input image, 
output of MALF, enlarged image of MALF failure point, output of OpenMAP-T1). The yellow 
squares on the images in the second column correspond to the enlarged images in the third row 
and highlight areas where the MALF's parcellation failed. 
 
Figure 5 shows the image with the lowest Dice score and its underlying causes. The causes were 
predominantly attributed to mislabeling by MALF, except for one image from OASIS4. In the 
image from ADNI2, ROIs for gray and white matter in the cerebellum erroneously included neck 
areas. In the image from ADNI3, a portion of the occipital lobe was absent from the parcellation 
map. The image from AIBL was affected by extremely high-intensity noise, leading to significant 
mislabeling in the MALF results. In the image from CC359, the labels extended beyond the 
parietal lobe boundaries. In images from LPBA40 and OASIS1, parts of the cerebellum were 
missing in the parcellation map, a pattern also observed in other OASIS1 images. The image 
from NFBS had an issue with a missing section of the frontal lobe in its parcellation map. The 
exception was an image from OASIS4 with a large arachnoidal cyst that neither method 
successfully labeled.  
 

 
Figure 6. (A) Correlation between the predicted volumes obtained using MALF and OpenMAP-
T1. (B) Bland-Altman plot to demonstrate agreement between regional volumes predicted by 
MALF and OpenMAP-T1. The volume measurements were transformed using a base-2 
logarithmic scale. (C) Relationship between the structural volume obtained from MALF and the 
Dice score between MALF and OpenMAP-T1. 
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Figure 6A presents a comparison of the region volumes predicted by MALF and OpenMAP-T1 
for the ADNI3 and OASIS4 databases. The correlation coefficients for these comparisons were 
above 0.99 using both Pearson and Spearman methods, indicating an almost perfect correlation. 
The Bland-Altman plot revealed that the majority of regions had errors within the 2σ range, 
demonstrating excellent agreement between MALF and OpenMAP-T1. However, a few regions 
in both the ADNI3 and OASIS4 databases exhibited disagreements exceeding 2σ. Figure 6C 
shows a weak correlation between the volumes of the regions and their Dice scores (R = 0.660 in 
ADNI3, R = 0.707 in OASIS4), despite most regions having a Dice score higher than 0.7. This 
implies that smaller regions tend to have greater discrepancies between the measurements from 
MALF and OpenMAP-T1. Additional results for other databases can be found in the 
Supplementary Material (Figure F, G and H). 
 
We noted that certain anatomical labels were absent from the predicted parcellation map 
produced by OpenMAP-T1, specifically in the right rostral anterior cingulate white matter and 
the bilateral fimbria. A similar trend of omitting these small structures was observed with MALF. 
MALF results were as follows: 1.26 mm³ with 924 of 929 instances for the right rostral anterior 
cingulate white matter; 6.37 mm³ with 493 of 929 instances for the left fimbria; and 12.86 mm³ 
with 136 of 929 instances for the right fimbria. 
 
Generalizability 

 
Figue 7. Boxplot of biological (age, sex, diagnosis) and technological effects (manufacturer, field 
strength) with Dice score. OASIS4 includes 16 diagnostic labels: 1: AD variant; 2: AD + non 
neurodegenerative; 3: AD / vascular; 4: alzheimer disease dementia; 5: Cognitively Normal 
(CN); 6: Dementia with Lewy Bodies (DLB); 7: early onset AD; 8: Frontotemporal Dementia 
(FTD); 9: Mild Cognitive Impairment (MCI); 10: mood / polypharmacy / sleep; 11: non-
neurodegenerative neurologic disease; 12: other-miscellaneous; 13: other non-AD 
neurodegenerative disorder; 14: Primary Progressive Aphasia (PPA); 15: uncertain - AD 
possible; 16: Vascular Cognitive Impairment (VCI). 
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Figure 7 shows the Dice scores across biological (age, sex, and diagnosis) and technological 
(scanner manufacturer and field strength) categories, for the ADNI3 and OASIS4 datasets. The 
results from other databases are provided in the Supplementary Material (Table A). The red 
boxplots illustrate the influence of biological factors, while the blue boxplots represent the 
impact of technological factors. The Dice scores exceeded 0.8 in all conditions. Age had a 
significant effect in ADNI2, where the Dice score tended to decrease in individuals in their 90s. 
A similar trend was observed in OASIS4, although the effect was not statistically significant. No 
significant differences were noted based on sex in either database. Regarding the diagnosis, a 
significant effect was observed in OASIS4, where a diagnosis of VCI was associated with lower 
Dice scores compared to other diagnoses; however, in ADNI3, the diagnosis did not significantly 
impact Dice scores. Among the scanner manufacturers, GE systems showed lower Dice scores 
compared to those from Philips and Siemens. In terms of field strength, scanners operating at 1.5 
T had lower Dice scores compared to those operating at 3T. 
 
Runtime 
OpenMAP-T1 performed complete parcellation at 90 sec/case using a single GPU (RTX3090) 
and 10 min/case using a CPU (i9-10980XE). This result shows that OpenMAP-T1 is 40 times 
faster than MRICloud, which is one hour/case. 
 

3.2. Comparison with FreeSurfer 

 
Figure 8. Boxplot of the Recall, Precision, and Dice scores in hippocampus, amygdala, and 
entorhinal regions. 
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Figure 9. The correlations between the predicted volumes of the hippocampus, amygdala, and 
entorhinal cortex as obtained by OpenMAP-T1 and FreeSurfer. The upper row displays the 
results from the left side, while the lower row presents the results from the right side in ADNI3. 
The red lines represent the regression lines, while the transparent red areas show the range 
encompassing three standard deviations from these fitted regression lines. The red circles in the 
graph correspond to the representative images showcased in Figure 10. 
 
Figure 8 shows the recall, precision, and Dice scores for the hippocampus, amygdala, and 
entorhinal cortex in the parcellation maps of OpenMAP-T1 and FreeSurfer, considering the 
results of FreeSurfer as the ground truth. Figure 9 compares the predicted volumes in the 
hippocampus, amygdala, and entorhinal cortex between OpenMAP-T1 and FreeSurfer. In the 
hippocampus, the recall, precision, and Dice scores were all high. This result indicated that the 
definition of the hippocampus boundary was nearly identical in OpenMAP-T1 and FreeSurfer, 
and both methods were equally accurate in identifying the hippocampus. As shown in Figure 9, 
the hippocampal volume measurements obtained by both methods correlated well. In the 
amygdala, although the recall was equivalent to that of the hippocampus, the precision and Dice 
scores were lower. This suggests the existence of systematic bias due to methodological 
differences in defining the amygdala region; the amygdala region defined by FreeSurfer was 
smaller than that defined by OpenMAP-T1, which includes the cortical amygdala not included in 
the FreeSurfer definition. As demonstrated in Figure 9, although the volume measurements of 
both methods correlated well, FreeSurfer consistently underestimated the amygdala volume 
compared to OpenMAP-T1. Conversely, FreeSurfer defined the entorhinal cortex area as larger 
than OpenMAP-T1 and often includeed the adjacent dura matter within the entorhinal cortex 
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region (see Figure 10). Therefore, while precision was relatively preserved, the recall and Dice 
scores were lower, and the correlation of volume measurements between the two methods was 
weaker for the entorhinal cortex compared to the hippocampus and amygdala. 
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Figure 10. The parcellation maps from OpenMAP-T1 and FreeSurfer overlaid on the MPRAGE 
images that correspond to the red circles in Figure 9 are demonstrated. The leftmost column 
shows the study IDs from the ADNI3 dataset. Axial slices along with magnified images of the 
hippocampus, amygdala, and entorhinal cortex are presented. The red borderlines indicate the 
regions on the right side, while the yellow borderlines mark the regions on the left side. These 
images adhere to the radiological convention, where the left side of the brain is shown on the 
right side of the image. 
 
Figure 10 displays representative images linked to the outliers in Figure 9. The primary reasons 
for the low Dice scores were generally due to mislabeling by FreeSurfer, differences in 
anatomical definitions between OpenMAP-T1 and FreeSurfer, or a combination of both. For 
instance, in image 057_S_6746, FreeSurfer incorrectly labeled the left hippocampus. In image 
114_S_6347, FreeSurfer erroneously included a part of the lateral ventricle in the left 
hippocampus ROI. The boundary of the amygdala was delineated smaller by FreeSurfer than 
defined by OpenMAP-T1 in images 035_S_6739 and 019_S_6573, which is attributable to the 
differing anatomical definitions between the two. Furthermore, FreeSurfer typically incorporated 
the perirhinal cortex and the dura mater adjacent to the entorhinal cortex into the entorhinal ROI. 
In contrast, the definition of the entorhinal cortex in OpenMAP-T1 does not include these areas, 
as evident in images 128_S_2830 and 006_S_6610. 
 

3.3. Biological Evaluation 

 
Figure 11. The Receiver Operatorating Characteristic (ROC) curve for distinguishing between 
AD and CN based on predicted volumes using the LASSO model. The blue line represents the 
ROC curve for MALF, the red line for OpenMAP-T1, and the green line for FreeSurfer. The 
shaded areas around each line indicate the standard deviation. 
 
AUC values for the ROC curves were 0.920 for MALF, 0.930 for OpenMAP-T1, and 0.908 for 
FreeSurfer. There were no significant differences between these AUC values. The p-values 
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derived from the DeLong test were 0.618 when comparing MALF and OpenMAP-T1, and 0.271 
when comparing OpenMAP-T1 and FreeSurfer. 
 

 
Figure 12. The 20 anatomical regions that exhibited the highest correlation coefficients as 
determined by the trained LASSO model. 
 
Among the top 20 anatomical regions with the highest correlation coefficients derived from the 
trained LASSO model, nine structures were common between MALF and OpenMAP-T1 (Figure 
11). Of these, six structures – namely the hippocampus, amygdala, inferior horn and body of the 
lateral ventricle, Sylvian fissure, and the  hippocampal part of the cingulum bundle – are known 
to be associated with AD pathologies [65-68], indicating the appropriateness of the LASSO 
model. 
 

4. Discussion 
We have developed and released a deep-learning model, called OpenMAP-T1, on Git-Hub, for 
the segmentation and parcellation of brain 3D T1-weighted MRI images, based on their 
anatomical structures. The performance of the model was evaluated using metrics such as recall, 
precision, Dice, and correlation based on comparisons between the OpenMAP-T1 and the 
established MALF algorithm. The results demonstrated that the parcellation outcomes were 
generally equivalent to the MALF method. Notably, the processing time was significantly 
reduced to less than 90 seconds per image, compared to the several hours required by the 
existing MALF method. 
 
We introduced a multi-processing phase to create a parcellation model, which is robust against 
diverse imaging environments. In MRI parcellation using deep-learning, performance is often 
affected by differences in the imaging environment, particularly the defacing algorithm, between 
training and evaluation datasets [69]. To reduce the impact of irrelevant areas on whole-brain 
parcellation, we incorporated cropping and skull-stripping phases. Furthermore, the whole brain 
was parcellated into 141 regions combining left and right labels, inspired by the approach used in 
FastSurfer [44]. While FastSurfer combines the left and right labels using only the sagittal cross-
section, OpenMAP-T1 can combine the left and right labels in all the cross-sections. 
Consequently, we could reduce the number of class (i.e., region labels) and increase the size of 
each region, which resulted in fast and accurate parcellation.  
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There is the potential to further enhance the processing speed of OpenMAP-T1. For instance, 
reducing the image matrix size could decrease the input size for the PNet. This reduction can be 
achieved by repositioning the center of gravity of the brain post skull-stripping, and then 
trimming areas outside the brain. We anticipate periodic updates to OpenMAP-T1, focusing on 
optimizing processing strategies and incorporating new features into the algorithms. 
 
In recent years, the MPRAGE sequence with 3T scanners has been often used for anatomical 
MRI scans for brain research [70]. However, available open brain MRI databases contain legacy 
images scanned with MRI scanners from various vendors, models, and magnetic field strengths. 
These databases also include images scanned with the MPRAGE and other sequences, such as 
the SPGR sequence. The accuracy of brain parcellation was affected by variations in scanner 
types, magnetic field strengths, and scan protocols [71, 72]. Thus, automated brain MRI 
parcellation methods should be robust to these variations. Furthermore, it has been demonstrated 
that facial appearance can be reconstructed from a whole-head MRI [73]. In terms of a privacy 
protection perspective, some MRI databases [44] apply a defacing algorithm to prevent facial 
reconstruction. The ability of automated brain parcellation methods to handle such defaced MRIs 
is crucial in the era of open science and data sharing. Our results showed that the parcellation 
maps generated by MALF and OpenMAP-T1 are substantially similar (average Dice score > 0.8, 
except for LBPA40 database that collected SPGR images) regardless of the scanner vendor, 
magnetic field strength, scan protocol, or the presence of defacing. However, we found that Dice 
scores were significantly lower in SPGR images than those in MPRAGE images, from 1.5T to 
3T scanners, as well as the Dice scores in GE scanners, which were significantly lower compared 
to those in Philips or Siemens. 
 
We identified three major reasons that MALF and OpenMAP-T1 showed disagreement (Dice 
score < 0.8). MALF tended to mislabel images with noticeable intensity inhomogeneity even 
after correction with the N4 algorithm. For instance, images scanned with 3D-SPGR sequences 
or 1.5T scanners resulted in blurring contrasts between the white matter and gray matter 
compared to MPRAGE or 3T scanners, or images that had undergone defacing resulted in low 
Dice scores as well. These low Dice scores were not caused by mislabeling by OpenMAP-T1, 
but rather, by MALF. MALF uses whole-head MPRAGE images scanned with 3T scanners as 
training data and employs image transformation using intensity information as a cost function 
[38]. Therefore, MALF is vulnerable to intensity inhomogeneity, and its parcellation accuracy 
might be affected by differences in scanner magnetic field strength, scan protocols, and defacing. 
In contrast, OpenMAP-T1, which uses deep-learning with data augmentation, was more robust 
than MALF against variations in image intensity inhomogeneity and scanning parameters. 
 
Images with notable intensity inhomogeneity, even after intensity correction, were often scanned 
in a head-extended position. Such position is often seen in older participants with neurological 
conditions [74, 75], leading to a decrease in image intensity in areas distant from the physical 
center of the MRI scanner, such as the frontal pole or the posteroinferior occipital lobe and 
cerebellum. The robustness of OpenMAP-T1 for the abnormal head position seems advantageous 
for the analysis of disease images. Moreover, artifacts that introduce high-signal pixels 
potentially hinder successful intensity correction. The results with OpenMAP-T1 indicated its 
robustness against such artifacts. 
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Defacing may become a standard procedure when sharing brain MRI images [76-78]. However, 
many brain parcellation methods have not been tested on images that have undergone defacing. 
Implementing a refacing process, which adds artificial facial information after defacing, is being 
considered to avoid changes in parcellation accuracy due to defacing [73]. Meanwhile, 
OpenMAP-T1 has demonstrated its capability to parcellate images from the NFBS and OASIS1 
databases, which have used different defacing methods, indicating its adaptability for future 
mainstream databases of defaced images. 
 
From the perspective of precision medicine, a significant topic has been whether insights gained 
from basic research and clinical trials can be adapted to actual clinical data. Research often 
involves strict inclusion and exclusion criteria, targeting specific individuals, inevitably leading 
to selection bias [79-81]. Therefore, using real-world data is essential when considering the 
applicability to clinical data. For developing automated brain MRI parcellation methods, 
assessing their accuracy using brain images obtained through clinical practice is crucial. To 
evaluate the applicability of OpenMAP-T1 in real clinical settings, we used real-world data from 
OASIS4. The average Dice score exceeded 0.8 in OASIS4, suggesting potential adaptability to 
images obtained through clinical practice. 
 
When testing research data such as ADNI, the Dice score was unaffected by sex or diagnostic 
category, including cognitively normal (CN), MCI, and AD. However, in the real-world data of 
OASIS4, while the Dice score was not influenced by age or sex, it was affected by clinical 
diagnosis. Average Dice scores of groups with "other non-AD neurodegenerative disorders" and 
"vascular cognitive impairment" tended to be lower than other diagnostic groups, although they 
still demonstrated average Dice scores above 0.8. Many images with Dice scores below 0.8 were 
due to mislabeling by MALF in the presence of lesions, but, in patients with large arachnoid 
cysts at the posterior area, both MALF and OpenMAP-T1 mislabeled the lesion. This result 
suggests that OpenMAP-T1 may mislabel images containing large lesions, likely due to a lack of 
such images in its training data, indicating potential areas for future improvement. 
 
FreeSurfer is one of the most commonly used softwares for brain MRI parcellation [82, 83]. 
FreeSurfer is suitable for comprehensive analysis of the cerebral cortex with its ability to 
measure the thickness of the cerebral cortex. However, OpenMAP-T1 can parcellate both gray 
and white matter areas, thus offering the advantage of simultaneous analysis of the cortex and 
white matter. Since the definitions of the brain regions employed by both softwares differ, and 
their intended uses are different, it is difficult to compare the parcellation performance of the two. 
Therefore, their performance was compared in a task that separates brain MRIs of AD and CN 
individuals. In AD research, the amygdala, entorhinal cortex, and hippocampus volumes are 
often used as neurodegeneration markers. When comparing these volumes measured by 
FreeSurfer and OpenMAP-T1, a good correlation was found in these regions. Furthermore, the 
brain regions that played a significant role in separating AD and CN, obtained from the LASSO 
model, were similar, and there was no difference between FreeSurfer and OpenMAP-T1 in 
separation performance for AD and CN as analyzed by ROC analysis. Therefore, the choice 
between FreeSurfer and OpenMAP-T1 should not be based on which has more accurate 
parcellation, but should be selected according to the research objectives and the anatomical 
structures of interest. 
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5. Limitations 
OpenMAP-T1 has several limitations. As with any parcellation method, in small ROIs, precision, 
recall, and Dice scores can be significantly reduced by minor boundary differences, making it 
challenging to evaluate the accuracy of parcellation itself. Furthermore, whether parcellation can 
be accurately performed on images containing various lesions, such as large cerebral infarcts, 
brain hemorrhages, or brain tumors, is a topic for future investigation. Using real clinical images 
as training data for clinical applications might be necessary. Also, while the analyzed images in 
this study were high-resolution 3D images, many clinical images use 2D imaging methods with a 
thickness of 5mm or more. Whether OpenMAP-T1 can be applied to such thick-slice 2D images 
is also a subject for future study. 
 

6. Conclusion 
We developed OpenMAP-T1, a model based on deep-learning for segmentation and parcellation 
of brain T1-weighted MRI images according to anatomical structures, and evaluated its accuracy 
across eight test datasets. OpenMAP-T1 could accurately perform parcellation regardless of 
technological variations such as the scanner vendor, magnetic field strength, defacing, imaging 
parameters, defacing, and biological variations, including differences in sex, age, and disease. It 
could also parcellate images with postural changes in the head or images with intensity 
inhomogeneity. In a task using machine-learning to differentiate between AD and CN based on 
parcellation maps, the discriminative ability of OpenMAP-T1 was found to be equivalent to that 
obtained using MALF or FreeSurfer. However, OpenMAP-T1 was able to process images much 
faster compared to the traditional MALF method and FreeSurfer. These results suggest that 
OpenMAP-T1 is a promising method for high-speed image parcellation that can accommodate 
various types of lesions. OpenMAP-T1 is available on our GitHub (URL: 
https://github.com/OishiLab/OpenMAP). 
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SUPPLEMENTARY MATERIALS 

 
Supplementary Figure A. The procedure used to create training labels. The training labels for 
OpenMAP-T1 were generated by combining parcellation maps created by MALF (MRICloud).

 
Supplementary Figure B. Overview of the cropping phase. 
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Supplementary Figure C. Overview of the skull-stripping phase. 
 

 
Supplementary Figure D. Overview of the parcellation phase. 
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Supplementary Figure E. Overview of the hemisphere phase. 
 

 
Supplementary Figure F. Correlation between the predicted volumes obtained using MALF and 
OpenMAP-T1 in ADNI2, AIBL, CC359, LPBA40, NFBS, and OASIS1. Note that only the 
LPBA40 has different scales for the x and y axes. 
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Supplementary Figure G. Bland-Altman plot demonstrates agreement between regional volumes 
predicted by MALF and OpenMAP-T1 in ADNI2, AIBL, CC359, LPBA40, NFBS, and OASIS1. 
The volume measurements were transformed using a base-2 logarithmic scale. Note that only the 
LPBA40, NFBS, and OASIS1 have different scales for the x and y axes. 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.18.24301494doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.18.24301494


Supplementary Figure H. Relationship between the predicted volumes by MALF and Dice score 
in ADNI2, AIBL, CC359, LPBA40, NFBS, and OASIS1. Note that only the LPBA40 has 
different scales for the y axes. 
 
Table A1. Dice score and P value (ANOVA) for each effect in all datasets. 

    

ADNI2 ADNI3 AIBL 

    

Subjects Dice Subjects Dice Subjects Dice 

Age 

<40 - - - - - - 

40s - - - - - - 

50s 21 84.84±1.05 40 85.65±0.90 2 85.85±0.20 

60s 204 84.31±1.85 271 85.93±1.43 112 85.29±1.61 

70s 356 84.32±1.46 407 85.81±1.62 169 85.64±1.22 

80s 157 83.79±2.27 188 85.43±2.02 89 84.92±8.57 

90< 12 83.13±1.65 23 84.68±2.09 4 85.19±1.81 

p-value p=0.001 p<0.001 p=0.797 

Sex 

Female 353 84.24±1.43 486 85.81±1.25 198 85.50±1.45 

Male 397 84.18±2.04 443 85.66±2.02 178 85.21±6.12 

p-value p=0.640 p=0.169 p=0.543 

 
e 
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Diagnosis 

CN 259 84.11±1.92 522 85.80±1.65 268 85.63±1.24 

MCI 318 84.26±1.70 301 85.68±1.67 64 85.40±1.33 

AD 173 84.24±1.71 106 85.56±1.69 44 83.70±12.19 

p-value p=0.553 p=0.322 p=0.023 

Field Strength 

1.5T 149 83.0±1.81 - - 102 85.10±1.48 

3.0T 601 84.50±1.64 - - 274 85.46±4.99 

p-value p<0.001 - p=0.471 

Manufacturer 

GE 254 83.56±1.80 211 84.98±1.96 - - 

PHILIPS 126 84.78±1.25 142 85.91±1.67 - - 

SIEMENS 370 84.45±1.79 576 85.97±1.45 - - 

p-value p<0.001 p<0.001 - 

        

    

CC359 OASIS1 OASIS4 

    

Subjects Dice Subjects Dice Subjects Dice 

Age 

<40 18 83.86±1.65 2 65.53±7.58 3 82.06±1.36 

40s 80 83.41±1.89 13 81.23±3.16 5 82.89±0.99 

50s 185 84.32±2.24 22 79.64±4.99 29 83.50±1.23 

60s 72 83.85±1.65 40 81.73±2.64 169 83.18±2.15 

70s 3 80.78±6.42 83 81.13±5.48 237 83.29±2.08 

80s 1 85.79 62 79.26±9.21 111 83.12±1.70 

90< - - 13 80.50±8.45 16 81.88±2.05 

p-value p=0.002 p=0.016 p=0.153 

Sex 

Female 183 84.21±1.80 156 80.75±7.09 303 83.24±1.83 

Male 176 83.73±2.39 79 79.81±5.42 267 83.12±2.17 

p-value p=0.031 p=0.300 p=0.495 

Diagnosis 

CN - - 135 80.32±6.95 

�1 

MCI - - - - 

AD - - 100 80.59±6.07 

p-value - p=0.759 

Field Strength 

1.5T 179 83.96±2.34 - - 29 81.92±1.76 

3.0T 180 83.99±1.89 - - 541 83.25±1.98 

p-value p=0.878 - p<0.001 

Manufacturer GE 120 84.99±1.46 - - - - 
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PHILIPS 119 83.08±1.73 - - - - 

SIEMENS 120 83.85±2.56 - - - - 

p-value p<0.001 - - 

 
 
Table A2. Dice score and p value (ANOVA) for diagnosis in OASIS4. 
    OASIS4 

    Subjects Dice 

※1 

diagnosis 

AD variant 10 83.85±1.08 
AD + non neurodegenerative 8 84.40±0.89 
AD / vascular 38 82.89±2.01 
AD dementia 189 83.26±1.88 
CN 39 83.38±1.71 
Dementia with Lewy Bodies (DLB) 11 83.34±1.83 
early onset AD 23 83.23±2.35 
Frontotemporal Dementia (FTD) 15 82.27±2.53 
Mild Cognitive Impairment (MCI) 41 83.24±1.73 
mood / polypharmacy / sleep 29 83.26±1.69 
non-neurodegenerative neurologic disease 19 82.45±1.96 
other - miscellaneous 15 83.00±1.84 
other non-AD neurodegenerative disorder 7 81.17±4.08 
Primary Progressive Aphasia (PPA) 7 84.00±1.04 
uncertain - AD possible 105 83.46±2.07 
vascular cognitive impairment (VCI) 14 81.36±2.47 
p-value p=0.003 

 
 
Supplementary Table B. Regions of interest defined in OMAP-T1. 

No. ROI ROI (FULL) 

0 Background Background 

1 SFG_L Superior Frontal Gyrus (Posterior Segment) Left 

2 SFG_R Superior Frontal Gyrus (Posterior Segment) Right 

3 SFG_PFC_L Superior Frontal Gyrus (Prefrontal Cortex) Left 

4 SFG_PFC_R Superior Frontal Gyrus (Prefrontal Cortex) Right 

5 SFG_pole_L Superior Frontal Gyrus (Frontal Pole) Left 

6 SFG_pole_R Superior Frontal Gyrus (Frontal Pole) Right 
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7 MFG_L Middle Frontal Gyrus (Posterior Segment) Left 

8 MFG_R Middle Frontal Gyrus (Posterior Segment) Right 

9 MFG_DPFC_L Middle Frontal Gyrus (Dorsal Prefrontal Cortex) Left 

10 MFG_DPFC_R Middle Frontal Gyrus (Dorsal Prefrontal Cortex) Right 

11 IFG_opercularis_L Inferior Frontal Gyrus Pars Opercularis Left 

12 IFG_opercularis_R Inferior Frontal Gyrus Pars Opercularis Right 

13 IFG_orbitalis_L Inferior Frontal Gyrus Pars Orbitalis Left 

14 IFG_orbitalis_R Inferior Frontal Gyrus Pars Orbitalis Right 

15 IFG_triangularis_L Inferior Frontal Gyrus Pars Triangularis Left 

16 IFG_triangularis_R Inferior Frontal Gyrus Pars Triangularis Right 

17 LFOG_L Lateral Fronto Orbital Gyrus Left 

18 LFOG_R Lateral Fronto Orbital Gyrus Right 

19 MFOG_L Middle Fronto Orbital Gyrus Left 

20 MFOG_R Middle Fronto Orbital Gyrus Right 

21 RG_L Gyrus Rectus Left 

22 RG_R Gyrus Rectus Right 

23 PoCG_L Postcentral Gyrus Left 

24 PoCG_R Postcentral Gyrus Right 

25 PrCG_L Precentral Gyrus Left 

26 PrCG_R Precentral Gyrus Right 

27 SPG_L Superior Parietal Gyrus Left 

28 SPG_R Superior Parietal Gyrus Right 

29 SMG_L Supramarginal Gyrus Left 

30 SMG_R Supramarginal Gyrus Right 

31 AG_L Angular Gyrus Left 

32 AG_R Angular Gyrus Right 

33 PrCu_L Pre Cuneus Left 

34 PrCu_R Pre Cuneus Right 

35 STG_L Superior Temporal Gyrus Left 

36 STG_R Superior Temporal Gyrus Right 

37 STG_pole_L Pole of Superior Temporal Gyrus Left 

38 STG_pole_R Pole of Superior Temporal Gyrus Right 

39 MTG_L Middle Temporal Gyrus Left 

40 MTG_R Middle Temporal Gyrus Right 
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41 MTG_pole_L Pole of Middle Temporal Gyrus Left 

42 MTG_pole_R Pole of Middle Temporal Gyrus Right 

43 ITG_L Inferior Temporal Gyrus Left 

44 ITG_R Inferior Temporal Gyrus Right 

45 PHG_L Parahippocampal Gyrus Left 

46 PHG_R Parahippocampal Gyrus Right 

47 ENT_L Entorhinal Area Left 

48 ENT_R Entorhinal Area Right 

49 FuG_L Fusiform Gyrus Left 

50 FuG_R Fusiform Gyrus Right 

51 SOG_L Superior Occipital Gyrus Left 

52 SOG_R Superior Occipital Gyrus Right 

53 MOG_L Middle Occipital Gyrus Left 

54 MOG_R Middle Occipital Gyrus Right 

55 IOG_L Inferior Occipital Gyrus Left 

56 IOG_R Inferior Occipital Gyrus Right 

57 Cu_L Cuneus Left 

58 Cu_R Cuneus Right 

59 LG_L Lingual Gyrus Left 

60 LG_R Lingual Gyrus Right 

61 rostral_ACC_L Rostral Anterior Cingulate Gyrus Left 

62 rostral_ACC_R Rostral Anterior Cingulate Gyrus Right 

63 subcallosal_ACC_L Subcallosal Anterior Cingulate Gyrus Left 

64 subcallosal_ACC_R Subcallosal Anterior Cingulate Gyrus Right 

65 subgenual_ACC_L Subgenual Anterior Cingulate Gyrus Left 

66 subgenual_ACC_R Subgenual Anterior Cingulate Gyrus Right 

67 dorsal_ACC_L Dorsal Anterior Cingulate Gyrus Left 

68 dorsal_ACC_R Dorsal Anterior Cingulate Gyrus Right 

69 PCC_L Posterior Cingulate Gyrus Left 

70 PCC_R Posterior Cingulate Gyrus Right 

71 Insula_L Insula Left 

72 Insula_R Insula Right 

73 Amyg_L Amygdala Left 

74 Amyg_R Amygdala Right 
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75 Hippo_L Hippocampus Left 

76 Hippo_R Hippocampus Right 

77 Caud_L Caudate Nucleus Left 

78 Caud_R Caudate Nucleus Right 

79 Put_L Putamen Left 

80 Put_R Putamen Right 

81 GP_L Globus Pallidus Left 

82 GP_R Globus Pallidus Right 

83 Thalamus_L Thalamus Left 

84 Thalamus_R Thalamus Right 

85 HypoThalamus_L Hypothalamus Left 

86 HypoThalamus_R Hypothalamus Right 

87 AnteriorBasalForebrain_L Anterior Basal Forebrain Left 

88 AnteriorBasalForebrain_R Anterior Basal Forebrain Right 

89 NucAccumbens_L Nucleus Accumbens Left 

90 NucAccumbens_R Nucleus Accumbens Right 

91 RedNc_L Red Nucleus Left 

92 RedNc_R Red Nucleus Right 

93 Snigra_L Substantia Nigra Left 

94 Snigra_R Substantia Nigra Right 

95 CerebellumGM_R Cerebellum Right 

96 CerebellumGM_L Cerebellum Left 

97 CP_L Cerebral Peduncle Left 

98 CP_R Cerebral Peduncle Right 

99 Midbrain_L Midbrain Left 

100 Midbrain_R Midbrain Right 

101 CST_L Corticospinal Tract Left 

102 CST_R Corticospinal Tract Right 

103 SCP_L Superior Cerebellar Peduncle Left 

104 SCP_R Superior Cerebellar Peduncle Right 

105 MCP_L Middle Cerebellar Peduncle Left 

106 MCP_R Middle Cerebellar Peduncle Right 

107 PCT_L Pontine Crossing Tract (A Part Of MCP) Left 

108 PCT_R Pontine Crossing Tract (A Part Of MCP) Right 
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109 ICP_L Inferior Cerebellar Peduncle Left 

110 ICP_R Inferior Cerebellar Peduncle Right 

111 ML_L Medial Lemniscus Left 

112 ML_R Medial Lemniscus Right 

113 Pons_L Pons Left 

114 Pons_R Pons Right 

115 Medulla_L Medulla Left 

116 Medulla_R Medulla Right 

117 ACR_L Anterior Corona Radiata Left 

118 ACR_R Anterior Corona Radiata Right 

119 SCR_L Superior Corona Radiata Left 

120 SCR_R Superior Corona Radiata Right 

121 PCR_L Posterior Corona Radiata Left 

122 PCR_R Posterior Corona Radiata Right 

123 GCC_L Genu of Corpus Callosum Left 

124 GCC_R Genu of Corpus Callosum Right 

125 BCC_L Body of Corpus Callosum Left 

126 BCC_R Body of Corpus Callosum Right 

127 SCC_L Splenium of Corpus Callosum Left 

128 SCC_R Splenium of Corpus Callosum Right 

129 PVWl_L Periventricular White Matter Posterior Lateral Left 

130 PVWl_R Periventricular White Matter Posterior Lateral Right 

131 ALIC_L Anterior Limb of Internal Capsule Left 

132 ALIC_R Anterior Limb of Internal Capsule Right 

133 PLIC_L Posterior Limb of Internal Capsule Left 

134 PLIC_R Posterior Limb of Internal Capsule Right 

135 RLIC_L Retrolenticular Part of Internal Capsule Left 

136 RLIC_R Retrolenticular Part of Internal Capsule Right 

137 EC_L External Capsule Left 

138 EC_R External Capsule Right 

139 CGC_L Cingulum (Cingulate Gyrus) Left 

140 CGC_R Cingulum (Cingulate Gyrus) Right 

141 CGH_L Cingulum (Hippocampus) Left 

142 CGH_R Cingulum (Hippocampus) Right 
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143 Fx/ST_L 
Fornix Cres (Cres) / Stria Terminalis (cannot be 
resolved with current resolution) Left 

144 Fx/ST_R 
Fornix Cres (Cres) / Stria Terminalis (cannot be 
resolved with current resolution) Right 

145 Fx_L Fornix (Column and Body of Formix) Left 

146 Fx_R Fornix (Column and Body of Formix) Right 

147 IFO_L Inferior Fronto-Occipital Fasciculus Left 

148 IFO_R Inferior Fronto-Occipital Fasciculus Right 

149 PTR_L 
Posterior Thalamic Radiation (Include Optic 
Radiation) Left 

150 PTR_R 
Posterior Thalamic Radiation (Include Optic 
Radiation) Right 

151 SS_L 
Sagittal Stratum (Include Inferior Longitudinal 
Fasciculus and Inferior Fronto Occipital Fasciculus) 
Left 

152 SS_R 
Sagittal Stratum (including Inferior Longitudinal 
Fasciculus and Inferior Fronto Occipital Fasciculus) 
Right 

153 SFO_L 
Superior Fronto-Occipital Fasciculus (could be a part 
of anterior internal capsule) Left 

154 SFO_R 
Superior Fronto-Occipital Fasciculus (could be a part 
of anterior internal capsule) Right 

155 SLF_L Superior Longitudinal Fasciculus Left 

156 SLF_R Superior Longitudinal Fasciculus Right 

157 Cl_L Claustrum Complex Left 

158 Cl_R Claustrum Complex Right 

159 PosteriorBasalForebrain_L Posterior Basal Forebrain Left 

160 PosteriorBasalForebrain_R Posterior Basal Forebrain Right 

161 Mammillary_R Mammillary Body Right 

162 Mammillary_L Mammillary Body Left 

163 LV_Frontal_L Lateral Ventricle_Frontal Left 

164 LV_body_L Lateral Ventricle_Body Left 

165 LV_atrium_L Lateral Ventricle_Atrium Left 

166 LV_Occipital_L Lateral Ventricle_Occipital Left 

167 LV_Inferior_L Lateral Ventricle_Inferior Left 

168 LV_Frontal_R Lateral Ventricle_Frontal Right 

169 LV_body_R Lateral Ventricle_Body Right 
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170 LV_atrium_R Lateral Ventricle_Atrium Right 

171 LV_Occipital_R Lateral Ventricle_Occipital Right 

172 LV_Inferior_R Lateral Ventricle_Inferior Right 

173 III_ventricle Third Ventricle 

174 PVWa_L Periventricular White Matter Frontal Left 

175 PVWa_R Periventricular White Matter Frontal Right 

176 PVWp_L Periventricular White Matter Posterior Left 

177 PVWp_R Periventricular White Matter Posterior Right 

178 SFWM_L Superior Frontal WM (Posterior Segment) Left 

179 SFWM_R Superior Frontal WM (Posterior Segment) Right 

180 SFWM_PFC_L Superior Frontal WM (Prefrontal Cortex) Left 

181 SFWM_PFC_R Superior Frontal WM (Prefrontal Cortex) Right 

182 SFWM_pole_L Superior Frontal WM (Frontal Pole) Left 

183 SFWM_pole_R Superior Frontal WM (Frontal Pole) Right 

184 MFWM_L Middle Frontal WM (Posterior Segment Left 

185 MFWM_R Middle Frontal WM (Posterior Segment Right 

186 MFWM_DPFC_L Middle Frontal WM (Dorsal Prefrontal Cortex) Left 

187 MFWM_DPFC_R Middle Frontal WM (Dorsal Prefrontal Cortex) Right 

188 IFWM_opercularis_L Inferior Frontal WM Pars Opercularis Left 

189 IFWM_opercularis_R Inferior Frontal WM Pars Opercularis Right 

190 IFWM_orbitalis_L Inferior Frontal WM Pars Orbitalis Left 

191 IFWM_orbitalis_R Inferior Frontal WM Pars Orbitalis Right 

192 IFWM_triangularis_L Inferior Frontal WM Pars Triangularis Left 

193 IFWM_triangularis_R Inferior Frontal WM Pars Triangularis Right 

194 LFOWM_L Lateral Fronto Orbital WM Left 

195 LFOWM_R Lateral Fronto Orbital WM Right 

196 MFOWM_L Middle Fronto Orbital WM Left 

197 MFOWM_R Middle Fronto Orbital WM Right 

198 RGWM_L Gyrus Rectus Left 

199 RGWM_R Gyrus Rectus Right 

200 PoCWM_L Postcentral WM Left 

201 PoCWM_R Postcentral WM Right 

202 PrCWM_L Precentral WM Left 

203 PrCWM_R Precentral WM Right 
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204 SPWM_L Superior Parietal WM Left 

205 SPWM_R Superior Parietal WM Right 

206 SMWM_L Supramarginal WM Left 

207 SMWM_R Supramarginal WM Right 

208 AGWM_L Angular Gyrus WM Left 

209 AGWM_R Angular Gyrus WM Right 

210 PrCuWM_L Pre-Cuneus WM Left 

211 PrCuWM_R Pre-Cuneus WM Right 

212 STWM_L Superior Temporal WM Left 

213 STWM_R Superior Temporal WM Right 

214 STWM_pole_L Pole of Superior Temporal WM Left 

215 STWM_pole_R Pole of Superior Temporal WM Right 

216 MTWM_L Middle Temporal WM Left 

217 MTWM_R Middle Temporal WM Right 

218 MTWM_pole_L Pole of Middle Temporal WM Left 

219 MTWM_pole_R Pole of Middle Temporal WM Right 

220 ITWM_L Inferior Temporal WM Left 

221 ITWM_R Inferior Temporal WM Right 

222 FuWM_L Fusiform WM Left 

223 FuWM_R Fusiform WM Right 

224 SOWM_L Superior Occipital WM Left 

225 SOWM_R Superior Occipital WM Right 

226 MOWM_L Middle Occipital WM Left 

227 MOWM_R Middle Occipital WM Right 

228 IOWM_L Inferior Occipital WM Left 

229 IOWM_R Inferior Occipital WM Right 

230 CuWM_L Cuneus WM Left 

231 CuWM_R Cuneus WM Right 

232 LGWM_L Lingual WM Left 

233 LGWM_R Lingual WM Right 

234 rostralWM_ACC_L Rostral Anterior Cingulate WM Left 

235 rostralWM_ACC_R Rostral Anterior Cingulate WM Right 

236 subcallosalWM_ACC_L Subcallosal Anterior Cingulate WM Left 

237 subcallosalWM_ACC_R Subcallosal Anterior Cingulate WM Right 
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238 subgenualWM_ACC_L Subgenual Anterior Cingulate WM Left 

239 subgenualWM_ACC_R Subgenual Anterior Cingulate WM Right 

240 dorsalWM_ACC_L Dorsal Anterior Cingulate WM Left 

241 dorsalWM_ACC_R Dorsal Anterior Cingulate WM Right 

242 PCCWM_L Pccwm Posterior Cingulate WM Left 

243 PCCWM_R Pccwm Posterior Cingulate WM Right 

244 CerebellumWM_R Cerebellum WM Right 

245 CerebellumWM_L Cerebellum WM Left 

246 MCP_cb_L Middle Cerebellar Peduncle Cerebellar Part Left 

247 MCP_cb_R Middle Cerebellar Peduncle Cerebellar Part Right 

248 ICP_cb_L Inferior Cerebellar Peduncle Cerebellar Part Left 

249 ICP_cb_R Inferior Cerebellar Peduncle Cerebellar Part Right 

250 FrontSul_L Frontal Lobe Sulcus Left 

251 FrontSul_R Frontal Lobe Sulcus Right 

252 CentralSul_L Central Sulcus Left 

253 CentralSul_R Central Sulcus Right 

254 SylFrontSul_L Sylvian Fissure Frontal Lobe Part Left 

255 SylFrontSul_R Sylvian Fissure Frontal Lobe Part Right 

256 SylTempSul_L Sylvian Fissure Temporal Lobe Part Left 

257 SylTempSul_R Sylvian Fissure Temporal Lobe Part Right 

258 SylParieSul_L Sylvian Fissure Parietal Lobe Part Left 

259 SylParieSul_R Sylvian Fissure Parietal Lobe Part Right 

260 ParietSul_L Parietal Lobe Sulcus Left 

261 ParietSul_R Parietal Lobe Sulcus Right 

262 CinguSul_L Cingular Cortex Sulcus Left 

263 CinguSul_R Cingular Cortex Sulcus Right 

264 OcciptSul_L Occipital Lobe Sulcus Left 

265 OcciptSul_R Occipital Lobe Sulcus Right 

266 TempSul_L Temporal Lobe Sulcus Left 

267 TempSul_R Temporal Lobe Sulcus Right 

268 Caudate_tail_L Caudate Tail Left 

269 Fimbria_L Fimbria Left 

270 Caudate_tail_R Caudate Tail Right 

271 Fimbria_R Fimbria Right 
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272 Chroid_LVetc_L Choroid Plexus within the Lateral Ventricle Left 

273 Chroid_LVetc_R Choroid Plexus within the Lateral Ventricle Right 

274 IV_ventricle Fourth_Ventricle 

275 ECCL_L External Capsule / Claustrum Left 

276 ECCL_R External Capsule / Claustrum Right 

277 ECSAnterior_L Extracranial Space Anterior Left 

278 ECSAnterior_R Extracranial Space Anterior Right 

279 ECSPosterior_L Extracranial Space Posterior Left 

280 ECSPosterior_R Extracranial Space Posterior Right 
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