Supplemental Information

		DLPFC		NAc		
Criteria	Before	After	N CpGs removed	Before	After	N CpGs removed
Probes with low call rate						
(detection p > 0.01 in >5% of	866,238	864,497	1,741	866,238	864,342	1,896
samples)						
Probes with a single						
nucleotide polymorphism	864 497	834 677	29 820	864 342	834 524	29 818
with minor allele frequency	004,437	004,077	23,020	004,042	054,524	23,010
> 0.01 in the extension site						
Cross-reactive probes ^{1,2}	834,677	793,776	40,901	834,524	793,627	40,897
Probes mapped to sex						
chromosomes based on	793,776	776,159	17,617	793,627	776,008	17,619
hg19						
Bead count <3 in >5% of	776 159	770 232	5 927	776 088	771 667	4 4 2 1
samples	770,133	770,252	5,527	770,000	//1,00/	7,721
'ch' probes	770,232	767,719	2,513	771,667	769,154	2,513
Final probe count at QC		767 710			760 15/	
stage		/0/,/15			705,154	
Probes mapped to sex						
chromosomes based on	767,719	767,700	19	769,154	769,135	19
hg38						
Final probe count for results		767 700			769 135	
interpretation		/0/,/00			109,135	

Table S2. Information on Roadmap Epigenomics Consortium epigenomes used for histone modification site enrichment testing. Metadata sourced from the Wang lab at Washington University in St. Louis (<u>https://egg2.wustl.edu/roadmap/web_portal/meta.html</u>).

EID	Name	Туре
E007	H1 Derived Neuronal Progenitor Cultured Cells	ESCDerived
E009	H9 Derived Neuronal Progenitor Cultured Cells	ESCDerived
E010	H9 Derived Neuron Cultured Cells	ESCDerived
E054	Ganglion Eminence derived primary cultured neurospheres	PrimaryCulture
E067	Brain Angular Gyrus	PrimaryTissue
E068	Brain Anterior Caudate	PrimaryTissue
E069	Brain Cingulate Gyrus	PrimaryTissue
E071	Brain Hippocampus Middle	PrimaryTissue
E072	Brain Inferior Temporal Lobe	PrimaryTissue
E073	Brain_Dorsolateral_Prefrontal_Cortex	PrimaryTissue

E074	Brain Substantia Nigra	PrimaryTissue
E125	NH-A Astrocytes Primary Cells	PrimaryCulture

Donor	Acb	MFG-i	Age window	Sex	Ethnicity	PMI
	replicates	replicates	(yrs)			(hours)
10021	7	13	36-40	М	Black or African American	10
12876	2	3	56-60	М	White	26
14380	2	4	31-35	М	White	17
15496	2	5	46-50	F	Hispanic	30
15697	2	5	51-55	М	White	18
9861	2	15	20-25	Μ	Black or African American	23

Table S3. Information on Allen Human Brain Atlas microarray donors.

*All supplemental tables in Excel format can be found on figshare at doi: 10.6084/m9.figshare.24871662.

Table S4. Primary EWAS results (separate Excel file named 2304_EWAS_results.xlsx). For the final set of probes for results interpretation, we provide all summary statistics from the primary within brain region EWASs and the meta-analysis.

Table S5. Ethanol sensitivity analysis results (separate Excel file named Ethanol_DLPFC_NAc_Sensitivity_Results.xlsx). For the 105 significant CpGs from the primary brain region EWASs and the meta-analysis, we provide summary statistics for testing those CpGs against ethanol toxicology status within AUD cases.

Table S6. KEGG and GO pathway enrichment test results (separate Excel file namedKEGG_GO_Results.xlsx).

Table S7. Results of location-based enrichment tests (separate Excel file named Enrichment_Fisher_Tests.xlsx).

Table S8. Results from comparisons to previously published EWAS (separate Excel file namedLookup_Comparison_Results.xlsx).

Table S9. Results of testing for enrichment in top 1% of results from this study, Zillich e	t al.
and Clark et al.	

Drier analysis	DLPFC (BA 46/9)		NAc		Meta-analysis	
PHOL analysis	N CpGs ¹	P-value ²	N CpGs	P-value	N CpGs	P-value
Zillich - ACC	636,087	0.5550	637,381	0.4557	634,959	0.3027
Zillich - BA9	636,087	0.2601	637,381	0.4777	634,959	0.2795
Zillich - CN	671,801	0.6790	673,126	0.2842	670,631	0.3948
Zillich - PUT	671,637	0.1661	672,952	0.0398	670,468	0.2803
Zillich - VS	671,801	0.3898	673,126	0.0184	670,631	0.5163

Clark – BA10 hmCG	653 <i>,</i> 348	0.1530	653 <i>,</i> 665	0.2199	652 <i>,</i> 424	0.3391
Clark – BA10 mCG	462,681	0.9966	462,903	0.5414	462,041	0.4746

¹N CpGs represents the intersection of tested CpGs for each comparison of results, from which the top 1% of results were obtained.

²The permuted p-value, based on 10,000 permutations, for Cramer's V coefficient comparing the two sets of results.

Table S10. Results from LDSC analysis on varying genomic windows around significant CpGs(separate Excel file named LDSC_results.xlsx)

Table S11. Mean and star	ndard devia	tion of meta-a	nalysis I ² statistics across significance groups.
Significance group	N probes	Mean (sd) I ²	

olomballee Broad	It probes	incan (sa) i
DLPFC	26	89.6 (5.4)
DLPFC & meta-analysis	5	67.1 (15.1)
Meta-analysis	21	4.4 (11.1)
NAc	48	88.1 (5.8)
NAc & meta-analysis	5	57.4 (28.8)

Table S12. Results from linear mixed-effects model with AUD, brain region, and brain region × AUD interaction as well as differentially methylated region (DMR) results for these same terms (separate Excel file named Cross_region_probe_dmr_results.xlsx).

Table S13. Results from comparing Allen Human Brain Atlas expression profiles of MFG-i and Acb brain regions using 1,000 bootstrap iterations of paired sample t-tests, for genes annotated to significant DMRs from the linear mixed-effects modeling analysis (separate Excel file named Cross_region_AHBA_results.xlsx).

Figure S1. Enrichment of histone modification sites. For CpGs from the DLPFC EWAS (A), the NAc EWAS (B), and the meta-analysis (C), the proportions of non-significant vs. significant CpGs were compared based on ChIP-seq histone modification marks from the Roadmap Epigenomics

Consortium. Stars represent significance of Fisher's exact test for count data, based on a twosided test with FDR-corrected p-values; p < 0.001 is ***, p < 0.01 is **, and p < 0.05 is *.

Figure S2. Comparison of effects and I² heterogeneity statistics across significance groups. Top row of plots contains a comparison of M-value EWAS ß estimates from DLPFC and NAc specific analyses, colored by the analysis in which the probe reached the FDR significance threshold. Probes that were significant in analyses of DLPFC or NAc regions are in (A), and probes that were significant in the meta-analysis are in (B). Note there are 13 probes represented in both plots, as they were significant in the meta-analysis and one of the brain region analyses. The bottom plot (C) compares meta-analysis I² statistics across the same set of significance groupings.

Figure S3. Comparison of MFG-i and Acb expression profiles for genes annotated to nominally significant DMRs from the linear mixed effects modeling. Using the Allen Human Brain Atlas data from MFG-i (prefrontal cortex) and Acb (nucleus accumbens), we conducted a paired-sample t-test to compare expression profiles in these two brain regions for genes that were annotated to differentially methylated regions (DMRs) reaching FDR significance in our linear mixed effects modeling for the brain region term (A) and the interaction term (B).

References for Supplemental Information

Α

- 1. Pidsley, R. *et al.* Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. *Genome Biology* **17**, 208 (2016).
- 2. McCartney, D. L. *et al.* Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. *Genomics Data* **9**, 22–24 (2016).