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Abstract 

Background: Natural Language Processing (NLP) and Large Language Models 

(LLMs) hold largely untapped potential in infectious disease management. This 

review explores their current use and uncovers areas needing more attention. 

Methods: This analysis followed systematic review procedures, registered with 

PROSPERO. We conducted a search across major databases including PubMed, 

Embase, Web of Science, and Scopus, up to December 2023, using keywords related 

to NLP, LLM, and infectious diseases. We also employed the QUADAS-2 tool for 

evaluating the quality and robustness of the included studies. 

Results: Our review identified 15 studies with diverse applications of NLP in 

infectious disease management. Notable examples include GPT-4's application in 

detecting urinary tract infections and BERTweet's use in Lyme Disease surveillance 

through social media analysis. These models demonstrated effective disease 

monitoring and public health tracking capabilities. However, the effectiveness varied 

across studies. For instance, while some NLP tools showed high accuracy in 

pneumonia detection and high sensitivity in identifying invasive mold diseases from 

medical reports, others fell short in areas like bloodstream infection management.  

Conclusion: This review highlights the yet-to-be-fully-realized promise of NLP and 

LLMs in infectious disease management. It calls for more exploration to fully harness 

AI's capabilities, particularly in the areas of diagnosis, surveillance, predicting disease 

courses, and tracking epidemiological trends. 
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Introduction  

Artificial Intelligence (AI) marks a significant shift in streamlining medical tasks and 

enhancing the management of large health data, with promising implications for 

public health (1–3). In managing infectious diseases, a field marked by complex 

epidemiological and clinical challenges, AI's potential role is notably significant (4–

6). 

Natural Language Processing (NLP) and generative-AI Large Language Models 

(LLM) are emerging as crucial yet underexplored tools in this domain (7–9). These 

algorithms excel at analyzing and generating text in a human-like manner, an essential 

capability for interpreting intricate clinical data (8–12). 

The current landscape in the literature shows a mixed picture. While there are studies 

demonstrating AI's potential to innovate in diagnosis and treatment planning, there is 

also a noticeable fragmentation in research efforts (2,4,5,10,13,14). This scenario 

points to both the achievements and the overlooked possibilities in AI applications, 

especially in the field of infectious diseases. 

Our research focuses on exploring the current use of NLP and LLM in the field of 

infectious diseases, aiming to uncover areas where further exploration could 

significantly enhance diagnosis and prediction capabilities. 

 

 

Methods  

Search Strategy 
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This systematic review was registered with the International Prospective Register of 

Systematic Reviews - PROSPERO (Registration code: CRD42023494253). We 

adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines (15,16).  

A systematic search was conducted across key databases: PubMed, Embase, Web of 

Science, and Scopus, up until December 2023. We complemented the search via 

reference screening for any additional papers.  

We aimed to identify original research articles that investigated the application of 

NLP and LLM in the diagnosis or prediction of infectious diseases.  

The search utilized a combination of keywords including "infectious diseases", 

"infection", "LLM", "Large Language Mode", "AI", "Artificial Intelligence", "natural 

language processing", and "NLP". Specific search strings for each database are 

detailed in the supplementary materials. 

Study Selection 

We included original research articles that focused on the application of NLP and 

LLM in diagnosing or predicting infectious diseases.  

Studies were selected if they provided data for assessing the performance metrics of 

AI models, such as area under the curve, accuracy, sensitivity, and specificity. 

We excluded review papers, case reports, conference abstracts, editorials, preprints, 

and studies not conducted in English. We also excluded studies employing classic 

machine-learning techniques unrelated to NLP. 

Data Extraction 
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Two independent reviewers extracted relevant information using a standardized form. 

Data points included the first author's name, year of publication, study design, sample 

size, specific conversational NLP techniques used, dataset details for model training 

and validation, performance metrics, and key findings. Discrepancies between 

reviewers were resolved through discussion, and a third reviewer was consulted when 

necessary. 

Risk of Bias 

To evaluate the quality and robustness of the methodologies in the included studies, 

the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) tool was 

used (17). 

 

 

Results  

Natural Language Processing (NLP) and Generative AI Models 

Natural Language Processing (NLP), a vital part of AI, enables machines to 

understand and interpret human language text (7). Within this domain, generative AI 

models, especially Large Language Models (LLMs), are gaining prominence (10,18). 

These models are designed to generate text that closely resembles human writing, 

providing valuable insights and applications. 

Among the notable LLMs are Bidirectional Encoder Representations from 

Transformers (BERT) and Generative Pre-trained Transformers (GPT). BERT is 

particularly effective at grasping the context within language, allowing for more 

accurate interpretations of text (19). On the other hand, GPT stands out for its ability 
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to produce text that is remarkably similar to human-generated content, a feature that 

has broad applications in various fields including healthcare (20). 

Together, NLP and these advanced generative models are reshaping how we interact 

with and utilize language data in the AI sphere, opening new avenues for research and 

application (Figures 1 and 2). 

Search Results and Study Selection 

Our search yielded a total of 432 articles. Specifically, the search resulted in 177 

articles from PubMed, 52 from Embase, 68 from Web of Science, and 135 from 

Scopus.  

After the removal of 143 duplicates, the screening process found 13 studies that met 

our inclusion and exclusion criteria (19,21–32). We identified two additional studies 

via reference screening (33,34).  

These studies varied in their disease focus, underscoring the diverse applications of 

NLP and LLM in the field of infectious diseases.  

The process of study selection and the screening methodology are detailed in the 

PRISMA flow chart (Figure 3). 

Risk of Bias 

Six studies demonstrated a low risk of bias across all domains (21,31–35). Overall, 

ten studies were evaluated as having low risk (21–23,26,28,31–35), four showed high 

risk (19,24,27,29), and one lacked sufficient data for a conclusive risk assessment 

(30).  

Generally, the studies indicated a predominantly low risk of bias, suggesting reliable 

and valid results (Figures 4-5). Concerning applicability, most of the studies 
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demonstrated a low risk. However, specific concerns were raised in a few studies, 

particularly regarding their study populations. Several studies used specialized 

populations, such as patients with hematologic neoplasms or data derived from 

specific databases, which may limit generalizability (25–29,35).  

Overview of Included Studies 

The included studies were published between 2005 and 2023 and present a 

comprehensive view of the evolving use of NLP and LLM in diagnosing and 

managing infectious diseases. The studies focused on various diseases, including 

fungal infections in immunocompromised patients, respiratory infections in newborns, 

HIV, Lyme disease, and COVID-19. These studies utilized different data sources such 

as radiology and histopathology reports, clinical data from medical files, and social 

media posts (e.g., tweets). Notably, two studies tested ChatGPT-4, two studies 

utilized BERT, while others employed a variety of NLP models. This showcases the 

evolving landscape of AI applications in infectious diseases.  

Notably, Maillard et al. and Perret and Schmid et al. utilized GPT-4 to analyze 

bloodstream infections and catheter-associated urinary tract infections, respectively 

(31,35). They demonstrated the potential of AI in clinical decision-making despite 

certain limitations.  

Baggio et al. and Ananda-Rajah et al. employed machine learning-based NLP to 

enhance the surveillance of invasive mold diseases (22,27,30).  

Additionally, studies like Feller et al. and Boligarla et al. explored innovative 

applications of  NLP in risk assessment and disease surveillance using diverse data 

sources, including clinical notes and social media (25,26).  
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These studies collectively underscore the significant advancements and potential of 

NLP in infectious disease research, while also highlighting areas for improvement and 

further exploration (Table 1). 

Narrative Synthesis of AI and NLP in Infectious Diseases  

Diagnosis and patient management  

In comparing the effectiveness of NLP and LLM in infectious disease management, 

the results show varied outcomes. GPT-4, as used in Maillard et al.'s and Perret and 

Schmid et al.'s studies (31,35), demonstrated high accuracy in catheter-associated 

urinary tract infections (CAUTI) detection. However, the model showed moderated 

effectiveness in bloodstream infection management.  

NLP algorithms in the studies by Branch-Elliman et al. and Sanger et al. showed high 

sensitivity and specificity for CAUTI detection (33,34). This indicates their strong 

potential for precise medical surveillance and diagnosis. 

NLP in Disease Monitoring from Medical Reports 

NLP demonstrated high effectiveness in pneumonia and invasive mold disease 

detection. For instance, the MedLEE model achieved up to 99% specificity in 

pneumonia detection (28). In Baggio et al, an NLP classifier showed 91% sensitivity 

in identifying invasive mold diseases from CT reports (30). These results underline 

NLP's promising role in disease surveillance.  

Public Health Surveillance 

Several studies revealed NLP's effectiveness in health monitoring.  

For example, BERTweet model was used for Lyme Disease detection through social 

media tweets (25). BERTweet, analyzing 1.3 million tweets, reached 90% accuracy. 
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The eCOV model was used for COVID-19 electronic health records (EHR) messages 

(32). eCOV's classification scored a 94% macro F1. 

Prediction and Risk Assessment 

NLP models have shown advancements in infectious disease risk assessment.  

For example, an HIV risk assessment model achieved an F1 score of 0.74, 

demonstrating NLP's capability in extracting vital clinical data (29).  

Another model, CHESS, used in detecting infectious disease symptoms in primary 

care records, achieved high precision and recall (21).  

These results highlights NLP's efficiency in predictive analytics from varied clinical 

data sources. 

Key Summary of LLM and NLP in Infectious Disease Research: 

1. Public Health Surveillance: Tools like BERTweet are effective in tracking 

disease epidemiology through social media analysis. 

2. Diagnostic Accuracy: NLP shows high accuracy in disease detection from 

medical reports. This could be helpful for incidence monitoring and for aiding 

diagnoses (Table 2). 

3. Clinical Applications: NLP and LLM have versatile use cases: disease 

monitoring, risk assessment, pandemic prevention, and prediction, and aiding 

clinical decisions (Table 3).  

 

 

Discussion 
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The integration of NLP and LLM in the management of infectious diseases holds 

the promise for a paradigm shift in medical diagnostics and public health 

surveillance (20,36–39). Our systematic review reveals a landscape where the 

potential of these technologies is only beginning to be tapped. 

Firstly, the implementation of NLP and LLM in infectious diseases showcases a 

leap forward in medical technology's ability to process and interpret complex 

clinical data (1,2,36,37). The precision in disease detection, as illustrated by 

studies on CAUTI and pneumonia, underscores the capability of AI to augment 

human expertise in diagnostic processes (23,24,33–35). However, the variation in 

effectiveness across different infectious diseases highlights the nuanced nature of 

AI applications in healthcare. For instance, a study by Wilhelm et al. on various 

Conversational AI models across different medical specialties like ophthalmology, 

orthopedics, and dermatology, found significant differences in the quality and 

safety of the medical advice provided (40). Furthermore, research by Maillard and 

colleagues revealed that GPT-4 occasionally produces incorrect and, at times, 

detrimental medical guidance and treatment strategies (31). It is not a one-size-

fits-all solution but requires tailored approaches depending on the disease context. 

Secondly, the use of AI in public health surveillance, as evidenced by the 

BERTweet model for Lyme Disease and the eCOV model for COVID-19, is a 

breakthrough (19,24,32). These tools demonstrate how AI can transform 

unstructured data from diverse sources into actionable insights, a critical 

advancement for early outbreak detection and response. 

Thirdly, the evolution of AI in risk assessment and predictive analytics marks a 

significant stride. Models like the HIV risk assessment tool and CHESS show that 
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AI can efficiently sift through vast clinical data, extracting crucial information that 

can inform patient care and disease management (21,26). 

However, this promising landscape is not without its challenges. The variability in 

study methodologies and the limited focus of some studies on specific patient 

populations or diseases indicate that generalizability remains a concern. The 

dependency on the quality and completeness of clinical data for AI models 

underscores the need for robust data infrastructure in healthcare settings. For 

example, a lack of contextual awareness and inherent biases may sometimes 

hinder AI safe deployment in clinical settings, as reported by Schwartz et al (5).  

Furthermore, the nascent stage of LLM application in infectious diseases, as seen 

in the limited number of studies, suggests that we are only scratching the surface 

of what these technologies can achieve (10,20,36).  

Limitations 

Our study faces several limitations. The emerging nature of LLM in healthcare 

research means that there are relatively few studies specifically focusing on this 

technology, limiting our ability to draw comprehensive conclusions. The immense 

potential of LLM necessitates more extensive research to fully understand its 

capabilities and limitations. Additionally, the predominance of retrospective 

studies in our review indicates a need for more prospective studies to validate the 

findings (41). Lastly, the diverse methodologies and focus areas of the included 

studies prevented us from performing a meta-analysis, highlighting the need for 

more standardized research approaches in this field. 

Conclusion 

This review highlights the yet-to-be-fully-realized promise of NLP and LLMs in 
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infectious disease management. It calls for more exploration to fully harness AI's 

capabilities, particularly in the areas of diagnosis, surveillance, predicting disease 

courses, and tracking epidemiological trends. 
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Tables and figures  

Table 1: Summary of the included studies.  

No. Title Author 

(Ref) 

Year Study Type Input data and 

Sample Size 

Model Disease Focus 

1 Can Chatbot Artificial 

Intelligence Replace Infectious 

Diseases Physicians in 

Bloodstream Infections? 

Maillard et 

al(31) 

2023 Prospective 

Cohort Study 

44 standardized 

reports with a 

management plan 

and features to 

support it 

Chat GPT 4 Bloodstream 

infections 

2 Application of OpenAI GPT-4 

for the retrospective detection 

of catheter-associated urinary 

Perret and 

Schmid 

(35) 

2023 Retrospective 

Analysis 

50 fictitious 

patients' data 

Chat GPT 4 Catheter-

Associated 

Urinary Tract 
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tract infections in a fictitious 

and curated patient data set 

Infections 

3 Closing the Gap in 

Surveillance and Audit of 

Invasive Mold Diseases for 

Antifungal Stewardship Using 

Machine Learning 

Baggio et 

al (30) 

2019 Retrospective 

Observational 

Study 

3014 CT reports Machine 

learning NLP 

Invasive Mold 

Diseases 

4 Detecting evidence of invasive 

fungal infections in cytology 

and histopathology reports 

enriched with concept-level 

annotations 

Rozova et 

al (29) 

2023 Retrospective 

Analysis 

283 cytology and 

histopathology 

reports 

NLP Invasive 

Fungal 

Infections 

5 Extracting information on 

pneumonia in infants using 

natural language processing of 

radiology reports 

Mendonça 

et al (28) 

2005 Retrospective 

Analysis 

1277 neonates, 

7928 CXR reports 

NLP 

(MedLEE) 

Healthcare-

associated 

pneumonia in 

neonates 

6 Facilitating Surveillance of 

Pulmonary Invasive Mold 

Diseases in Patients with 

Haematological Malignancies 

by Screening Computed 

Tomography Reports Using 

Natural Language Processing 

Ananda-

Rajah et al 

(27) 

2014 Retrospective 

Case-Control 

Study 

147 patients, 449 

CT reports  

NLP Pulmonary 

Invasive Mold 

Diseases 

7 Using Clinical Notes and 

Natural Language Processing 

for Automated HIV Risk 

Assessment 

Feller et al 

(26) 

2018 Case-Control 

Study 

724: 181 HIV-

positive, 543 HIV-

negative controls  

NLP HIV Risk 

Assessment 

8 Leveraging machine learning Boligarla 2023 Retrospective ~1.3 million ML models Lyme Disease 
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approaches for predicting 

potential Lyme disease cases 

and incidence rates in the 

United States using Twitter 

et al (19) Analysis tweets (BERTweet, 

XGboost, etc.) 

9 Natural Language Processing 

and Machine Learning for 

Detection of Respiratory 

Illness by Chest CT Imaging 

and Tracking of COVID-19 

Pandemic in the United States 

Cury et al 

(24) 

2023 Retrospective 

Analysis 

450,114 CT 

reports 

NLP COVID-19 

10 NLP-based identification of 

pneumonia cases from free-text 

radiological reports 

Elkin et al 

(23) 

2008 Retrospective 

Analysis 

400 radiology 

reports  

NLP Pneumonia 

11 Toward Electronic 

Surveillance of Invasive Mold 

Diseases in Hematology-

Oncology Patients: An Expert 

System Combining Natural 

Language Processing of Chest 

Computed Tomography 

Reports, Microbiology, and 

Antifungal Drug Data 

Ananda-

Rajah et al 

(22) 

2017 Retrospective 

Case-Control 

Study 

123 clinical 

records  

NLP, Machine 

learning 

Invasive Mold 

Diseases 

12 Use of Natural Language 

Processing of Patient-Initiated 

Electronic Health Record 

Messages to Identify Patients 

With COVID-19 Infection 

Mermin-

Bunnell et 

al (32) 

2023 Retrospective 

Cohort Study 

10,172 Patient-

Initiated 

Electronic Health 

Records 

NLP 

(distilBERT) 

COVID-19 

13 Validation of a Natural Hardjojo et 2018 Retrospective 1680 clinical Rule-based Infectious 
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Language Processing 

Algorithm for Detecting 

Infectious Disease Symptoms 

in Primary Care Electronic 

Medical Records in Singapore 

al (21) Study records NLP diseases 

14 Natural Language Processing 

for Real-Time Catheter-

Associated Urinary Tract 

Infection Surveillance: Results 

of a Pilot Implementation Trial 

Branch-

Elliman et 

al (34) 

2015 Prospective 

Cohort Study 

43,609 patient-

days 

NLP-

augmented 

algorithm 

CAUTI 

15 Electronic Surveillance For 

Catheter-Associated Urinary 

Tract Infection Using Natural 

Language Processing 

Sanger et 

al (33) 

2012 Prospective 

Cohort Study 

Training: 1421, 

Validation: 1567 

catheterized 

patients' clinical 

data  

NLP CAUTI 

� CAUTI - Catheter-Associated Urinary Tract Infections 

� NLP - Natural Language Processing 

� CT - Computed Tomography 

� IFIs - Invasive Fungal Infections 

� IMD - Invasive Mold Diseases 

� EHR - Electronic Health Record 

� ML - Machine Learning 

� HIV - Human Immunodeficiency Virus 

� PPV - Positive Predictive Value 

� NPV - Negative Predictive Value 

� AUC - Area Under Curve 

� ROC - Receiver Operating Characteristic 

� EMR - Electronic Medical Record 
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� distilBERT - Distilled Bidirectional Encoder Representations from Transformers 

� CXR – Chest X Ray  

� CT – Computer Tomography  

 

 

 

 

 

 

 

Table 2: Performance Metrics and Key Findings.  

Author (Ref) Model Clinical Task Performance Metrics Main Findings 

Maillard et al(31) ChatGPT-4 Bloodstream 

Infection 

Diagnosis  and 

Management 

Diagnostic accuracy: 

59%, Empiric therapy: 

64% 

ChatGPT-4 had detailed responses 

but suboptimal and even hazardous 

management plans in complex 

cases. 

Perret and 

Schmid (35) 

ChatGPT-4 CAUTI Detection Sensitivity: 91%, 

Specificity: 92% 

High accuracy in CAUTI detection 

from patient data. 

Baggio et al (30) NLP (ML-

based) 

IMD 

Identification 

from CT Reports 

Sensitivity: 91%, 

Specificity: 79%, AUC: 

0.92 

Effective identification of IMD 

cases, aiding antifungal 

stewardship. 

Rozova et al (29) NLP IFI Diagnosis 

from Cytology 

and 

Histopathology 

Micro-F1: 0.84 (dev), 

0.83 (test) 

Efficient IFI identification using 

concept annotations. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 17, 2024. ; https://doi.org/10.1101/2024.01.14.24301289doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.14.24301289
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reports 

Mendonça et al 

(28) 

MedLEE Neonatal 

Pneumonia 

Detection 

Sensitivity: 71%, 

Specificity: 99%, PPV: 

7.5% 

Feasible for identifying pneumonia, 

but low PPV due to broad 

definition. 

Ananda-Rajah et 

al (27) 

NLP (ML-

based) 

IMD Detection in 

Hematological 

Malignancies 

Sensitivity: 91%, 

Specificity: 79%, AUC: 

0.92 

Effective in IMD surveillance for 

hematological malignancies. 

Feller et al (26) NLP HIV Risk 

Assessment 

F1 score: 0.74 Improved HIV risk prediction 

incorporating clinical keywords. 

Boligarla et al 

(19) 

BERTweet and 

other ML 

models 

Lyme Disease 

Case Prediction 

Accuracy and F1-score: 

90% 

Effective in identifying Lyme-

related tweets, strong correlation 

with disease counts. 

Cury et al (24) NLP COVID-19 

Respiratory 

Illness Detection 

Correlation coefficients: 

Viral Pneumonia 

(r2=0.13), Imaging 

Findings (r2=0.66), 

COVID NLP (r2=0.82) 

High correlation with official 

COVID-19 case counts, early 

detection capability. 

Elkin et al (23) NLP Pneumonia 

Detection from 

Radiological 

Reports 

Sensitivity: 100%, 

Specificity: 90.3-97.99%, 

PPV: 70-97.44% 

High accuracy for pneumonia 

identification. 

Ananda-Rajah et 

al (22) 

NLP, ML IMD Surveillance 

in Hematology-

Oncology Patients 

Specificity: 74.6%, 

Sensitivity: 98.4%, ROC: 

92.8% 

Combined NLP and data sources 

for improved IMD prediction. 

Mermin-Bunnell 

et al (32) 

distilBERT COVID-19 Case 

Classification 

from EHR 

Messages 

Macro F1: 94%, 

Sensitivity: 85-100% 

High accuracy in classifying 

COVID-19 related EHR messages. 
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Hardjojo et al 

(21) 

CHESS Infectious Disease 

Symptom 

Detection in 

EMRs 

Precision: 96.0%, Recall: 

93.1% 

High precision and recall in 

identifying infectious disease 

symptoms in EMRs. 

Branch-Elliman 

et al (34) 

NLP-augmented Indwelling 

Urinary Catheter 

Days and CAUTI 

Identification 

PPV: 54.2%, Sensitivity: 

65% 

Identified more catheter days, 

variation in performance between 

unit types. 

Sanger et al (33) NLP CAUTI Detection 

from Clinical 

Data 

Sensitivity: 97.1%, 

Specificity: 94.5%, PPV: 

66.7%, NPV: 99.6% 

High sensitivity and specificity, 

ideal as a screening tool. 

� AI - Artificial Intelligence 

� NLP - Natural Language Processing 

� CAUTI - Catheter-Associated Urinary Tract Infections 

� IMD - Invasive Mold Diseases 

� IFIs - Invasive Fungal Infections 

� AUC - Area Under Curve 

� PPV - Positive Predictive Value 

� NPV - Negative Predictive Value 

� EHR - Electronic Health Record 

� HIV - Human Immunodeficiency Virus 

� ROC - Receiver Operating Characteristic 

� CT - Computed Tomography 

� IUCD - Indwelling Urinary Catheter Days 
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Table 3: Limitations and Implications.  

Author (Ref) Limitations Implications 

Maillard et al(31) A limited sample size. No systematic 

investigation of the influence of different 

prompts. 

Need for AI performance enhancement in complex 

medical cases. ChatGPT-4's limited capability in 

complex decisions.  

Perret and Schmid 

(35) 

Idealized patient data, high CAUTI 

prevalence, data processing limits. 

AI's potential in infection surveillance, need for 

real-world data exploration. 

Baggio et al (30) Single-center, retrospective nature, possible 

IMD underestimation. 

NLP as a scalable tool in antifungal stewardship, 

leveraging radiology data. 

Rozova et al (29) Limited to specific report types, challenges 

in automated recognition. 

Utility of NLP in IFI detection through concept-

level annotations in reports. 

Mendonça et al 

(28) 

Broad pneumonia definition leading to low 

predictive value. 

Viability of NLP and clinical rules for automated 

pneumonia surveillance. 

Ananda-Rajah et Specific patient population focus, NLP's role in IMD surveillance in hematology, 
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al (27) generalizability challenges. leveraging CT reports. 

Feller et al (26) Dependence on clinical data quality and 

completeness. 

Improvement of HIV risk prediction using NLP, 

need for advanced data extraction techniques. 

Boligarla et al 

(19) 

Reliance on self-reported tweets, 

classification challenges. 

BERTweet's reliability in Lyme disease detection 

via social media data. 

Cury et al (24) Reliance on CT report data, lack of 

laboratory confirmation. 

NLP's early detection capability in respiratory 

illnesses during pandemics. 

Elkin et al (23) Limited study scope, recognition challenges 

in differential diagnosis. 

Efficacy of NLP in pneumonia detection from 

radiological reports. 

Ananda-Rajah et 

al (22) 

Limited to hematological malignancy 

patients, generalizability concerns. 

Promising use of multiple data sources for IMD 

surveillance in hospitals. 

Mermin-Bunnell 

et al (32) 

Self-reported data reliance, classification 

difficulties. 

NLP's high accuracy in classifying COVID-19 

cases, potential as a triage tool. 

Hardjojo et al (21) Potential misclassification, training dataset 

terminology reliance. 

CHESS's effectiveness in symptom identification 

for infectious diseases. 

Branch-Elliman et 

al (34) 

Single healthcare system focus, varying 

algorithm performance. 

NLP's potential in IUCDs detection, need for further 

evaluation in CAUTI surveillance. 

Sanger et al (33) Single-center study, small validation 

sample. 

High NLP sensitivity in CAUTI detection, need for 

broader validation. 

� AI: Artificial Intelligence 

� NLP: Natural Language Processing 

� CAUTI: Catheter-Associated Urinary Tract Infections 

� IMD: Invasive Mold Diseases 

� IFIs: Invasive Fungal Infections 

� AUC: Area Under Curve 

� PPV: Positive Predictive Value 

� NPV: Negative Predictive Value 

� EHR: Electronic Health Record 
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� CT: Computed Tomography 

� HIV: Human Immunodeficiency Virus 

� IUCDs: Indwelling Urinary Catheter Days 

� NHSN: National Healthcare Safety Network 

Figure 1: A Framework of AI in Language Processing.  
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Figure 2: Decoding Clinical Narratives: An NLP Model's Path from Text to 

Diagnosis. 

 

Figure 3: PRISMA flowchart.  
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(n = 0) 

Reports assessed for eligibility 
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Figure 4: Distribution of Risk of Bias Concerns Across Individual Domains. 

 

Figure 5: Cumulative Assessment of Overall Risk of Bias Concerns Across All 

Included Studies. 
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Supplementary materials  

Appendix – Screening Boolean strings for the different databases.  

Pubmed  

("large language models" OR "LLM" OR "ChatGPT" OR "GPT-3" OR "GPT-4" OR 

"natural language processing" OR "NLP") AND ("infectious diseases" OR "bacterial 

infections" OR "viral infections" OR "fungal infections" OR "parasitic infections") 

Scopus  

(TITLE-ABS-KEY("large language models" OR "LLM" OR "ChatGPT" OR "GPT-3" 

OR "GPT-4" OR "natural language processing" OR "NLP") AND TITLE-ABS-

KEY("infectious diseases" OR "bacterial infections" OR "viral infections" OR "fungal 

infections" OR "parasitic infections")) 

Web of science  

(TS=("large language models" OR "LLM" OR "ChatGPT" OR "GPT-3" OR "GPT-4" 

OR "natural language processing" OR "NLP")) AND TS=("infectious diseases" OR 

"bacterial infections" OR "viral infections" OR "fungal infections" OR "parasitic 

infections") 

Embase  

('large language models':ab,ti OR 'LLM':ab,ti OR 'ChatGPT':ab,ti OR 'GPT-3':ab,ti 

OR 'GPT-4':ab,ti OR 'natural language processing':ab,ti OR 'NLP':ab,ti) AND 

('infectious diseases':ab,ti OR 'bacterial infections':ab,ti OR 'viral infections':ab,ti OR 

'fungal infections':ab,ti OR 'parasitic infections':ab,ti) 
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