Supplementary Information

Incidence and prevalence of polymyxin resistant bacterial strains in the clinical and environmental samples in India: a systematic review and meta-analysis

Sambit K. Dwibedy^{1,3}, Indira Padhy¹, Aditya K. Panda^{1,2}, Saswat S. Mohapatra^{1,2}*

¹Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur- 760007, Odisha, India

²Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur- 760007, India

³Department of Zoology, SBRG Women's College, Berhampur- 760001, Odisha, India

 $For Correspondence-\underline{saswatsmohapatra@gmail.com}$

Supplementary Table 1. Reports on polymyxin resistance (Pol^R) in India.

Sl. No.	Author	Sample Size	Pol ^R Isolates	State / UT	Resistance Detection Method	<i>mcr</i> Screening
1	#Banerjee et al., 2024 ¹	100	9	Uttar Pradesh	BMD	NO
2	Soni et al., 2023 ²	736	33	Madhya Pradesh	BMD	mcr 1-3
3	Kaza et al., 2023 ³	108	18	Chandigarh	BMD	YES
4	Vasesi et al., 2023 ⁴	103	7	Chandigarh	BMD	NO
5	Sharma et al., 2023 ⁵	356	45	Uttar Pradesh	KB DDT, BMD, ADM	NO
6	Ranjan et al., 2023 ⁶	100	9	Andhra Pradesh	Gradient diffusion, BMD, E-test	NO
7	Shanthini et al., 2023 ⁷	30	27	Tamil Nadu	BMD	mcr 1-5
8	Rout et al., 2023 8	6013	778	Odisha	VITEK-2, BMD, CBDE	mcr 1-5
9	Sharma et al., 2022 ⁹	45	31	Uttar Pradesh	KB DDT, BMD	NO
10	Elizabeth et al., 2022 10	291	12	Assam	BMD, RPNP	YES
11	Bir et al., 2022 11	110	25	Delhi	BMD, VITEK-2, RPNP, E- test	mcr 1-5
12	Panigrahi et al., 2022 12	357	70	Odisha	VITEK-2, BMD	NO
13	Sharma et al, 2022 ¹³	125	25	Uttar Pradesh	BMD, CBDE	mcr 1-5
14	Reddy et al., 2022 14	1852	31	Telangana	VITEK-2, BMD	mcr-1
15	Das et al., 2022 15	158	27	Odisha, UP, Rajasthan	BMD, VITEK-2	mcr 1-5
16	Nirwan et al., 2021 ¹⁶	6765	18	Haryana	BMD, VITEK-2	mcr-1
17	Azam et al., 2021 17	335	11	Delhi	BMD, KB DDT	mcr 1-8
18	Kar et al., 2021 18	200	27	Odisha	BMD, ADM, E test, RPNP	mcr-1 & 2
19	Prasad et al., 2021 19	188	97	Delhi	KB DDT	NO
20	Sohail et al., 2021 ²⁰	106	19	Karnataka	BMD, KB DDT	NO
21	Gunalan et al., 2021 ²¹	75	11	Pondicherry	BMD	NO
22	Priyanka et al., 2021 ²²	171	102	Rajasthan	BMD	NO
23	Bandyopadhyay et al., 2021 ²³	72	2	West Bengal	KB DDT, BMD	YES
24	Sharma et al., 2021 ²⁴	365	9	Uttar Pradesh	BMD, KB DDT	mcr 1-5
25	Aarthi et al., 2020 ²⁵	440	11	Tamil Nadu	BMD	YES
26	Raghupati et al., 2020 ²⁶	30	10	Tamil Nadu	BMD, KB DDT	mcr 1-4
27	Bardhan et al., 2020 27	84	57	West Bengal	BMD, KB DDT	mcr-1

28	Khurana et al., 2020 ²⁸	910	196	Delhi	VITEK-2, BMD	NO
29	Soundari et al., 2020 ²⁹	65	43	Tamil Nadu	BMD, KB DDT	mcr-1
30	Mitra et al., 2020 ³⁰	60	24	Odisha	BMD	mcr-1 & mcr-2
31	Das et al., 2020 31	138	31	West Bengal	VITEK-2, BMD, E-test, Agar Diffusion	mcr-1
32	Waattal et al., 2019 32	225	73	Delhi	Vitek-2, Micronaut-S, BMD E-test	NO
33	Gogry et al., 2019 ³³	253	47	Delhi	BMD	mcr-1 & mcr-3
34	Mathur et al., 2019 34	846	34	Delhi	VITEK-2, BMD, KB-DDT	YES
35	Sundaramoorthy et al., 2019 A ³⁵	9	4	Tamil Nadu	BMD	NO
36	Sundaramoorthy et al., 2019 B ³⁶	6	2	Tamil Nadu	BMD	mcr 1-9
37	Amladi et al.,2019 ³⁷	150	14	Tamil Nadu	BMD	mcr-1
38	Garg et al.,2019 38	146	27	Uttar Pradesh	BMD	NO
39	Raghupati et al.,2019 ³⁹	87	27	Tamil Nadu	BMD, KB-DDT	NO
40	Kumar et al., 2018 40	932	17	Kerala	VITEK-2, BMD	mcr-1 & 2
41	Manohar et al., 2017 41	89	29	Tamil Nadu	KB DDT, BMD	mcr-1 & 2
42	Kumar., 2016 ⁴²	31	30	Odisha & Haryana	BMD	NO
43	Kumar et al., 2016 C ⁴³	1590	123	Odisha	BMD, KB DDT	NO

KB DDT-Kirby-Bauer Disc Diffusion Test, BMD-Broth Micro-dilution, E-test-Epsilometer Test, ADM- Agar Dilution Method, CBDE- Colistin Broth Disc Elution, RPNP- Rapid Polymyxin Nordmann Poirel Test. # The paper was published in 2023 as an online early version, hence included in the study.

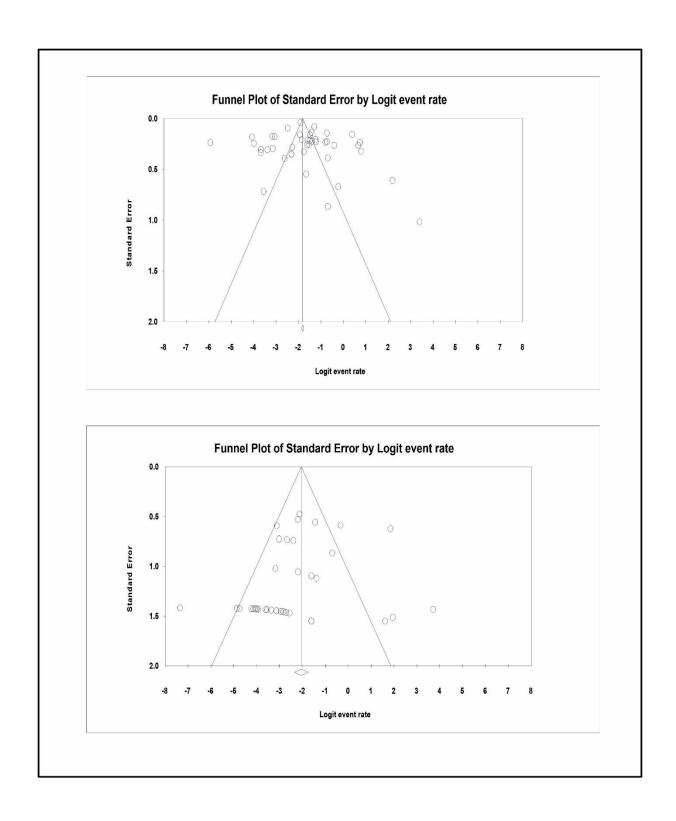
Supplementary Table 2. Reports on the contribution of *mcr* gene in the development of polymyxin resistance in India.

Sl. No.	Author	State/ UT	No. of Pol ^R Isolates	No. of <i>mcr</i> positive isolates
1	#Seethalakshmi et al., 2024 44	Tamil Nadu	1	1
2	Naha et al., 2023 45	West Bengal	-	10
3	Premnath et al., 2023 46	Tamil Nadu	-	23
4	Talat et al., 2023 47	West Bengal	1	1
5	Pathak et al., 2023 ⁴⁸	Uttar Pradesh	6	0
6	Aldeia et al., 2023 ⁴⁹	Not mentioned	1	0
7	Sreejith et al., 2023 ⁵⁰	Kerala	1	1
8	Shanthini et al., 2023 ⁷	Tamil Nadu	27	0
9	Rout et al., 2023 ⁸	Odisha	778	0
10	Talat et al., 2022 ⁵¹	West Bengal	1	1
11	Elizabeth et al., 2022 ¹⁰	Assam	12	5
12	Bir et al., 2022 11	Delhi	25	1
13	Naha et al., 2022 ⁵²	West Bengal	9	0
14	Sharma et al., 2022 ¹³	Uttar Pradesh	25	0
15	Reddy et al., 2022 ¹⁴	Telangana	31	2
		Odisha, Uttar		
16	Das et al., 2022 ¹⁵	Pradesh,	27	0
		Rajasthan		
17	Azam et al., 2021 17	Delhi	11	0
18	Nirwan et al., 2021 ¹⁶	Haryana	18	0
19	Singh et al., 2021 ⁵³	Uttar Pradesh	22	19
20	Elizabeth et al., 2021 ⁵⁴	Assam	6	2
21	Kar et al., 2021 ¹⁸	Odisha	27	0
22	Karade et al., 2021 55	Maharashtra	1	0
23	Bandyopadhyay et al., 2021 ²³	West Bengal	2	0
24	Sharma et al., 2021 ²⁴	Uttar Pradesh	9	0
25	Aarthi et al., 2021 ²⁵	Tamil Nadu	11	0
26	Pathak et al., 2020 ⁵⁶	Uttar Pradesh	40	4
27	Raghupati et al., 2020 ²⁶	Tamil Nadu	10	1
28	Roy et al., 2020 ⁵⁷	West Bengal	3	3

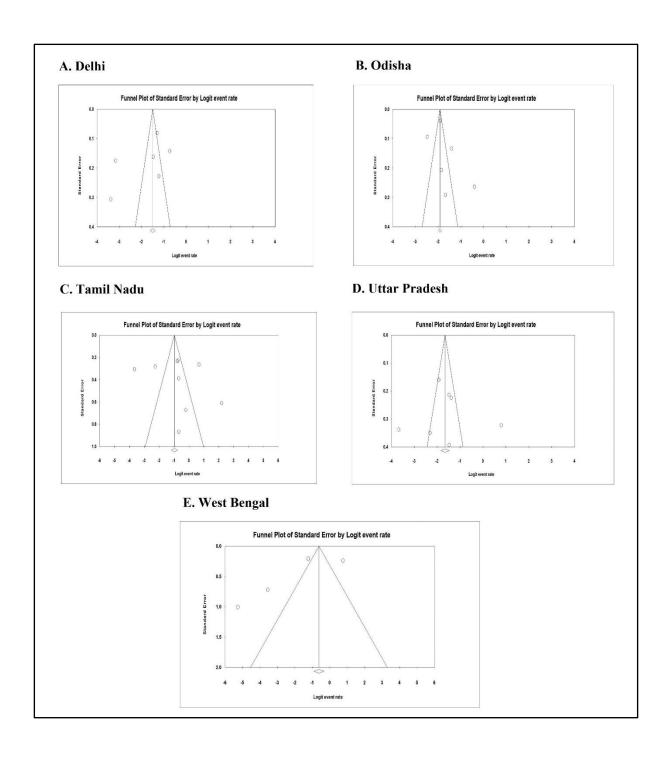
29	Dey et al., 2020 ⁵⁸	Odisha	1	0
30	Bardhan et al., 2020 ²⁷	West Bengal	57	0
31	Sahoo et al., 2020 ⁵⁹	Odisha	1	0
32	Khamari et al.,2020 ⁶⁰	Andhra Pradesh	2	0
33	Soundari et al., 2020 ²⁹	Tamil Nadu	43	2
34	Mitra et al., 2020 ³⁰	Odisha	24	2
35	Naha et al., 2020 ⁶¹	West Bengal	1	0
36	Das et al., 2020 ³¹	West Bengal	31	0
37	Pathak et al., 2020 62	Uttar Pradesh	1	1
38	Bean et al., 2019 ⁶³	West Bengal	1	0
39	Gogry et al., 2019 33	Delhi	47	5
40	Shankar et al., 2019 ⁶⁴	Tamil Nadu	65	0
41	Mathur et al., 2019 34	Delhi	34	0
42	Paul et al., 2019 65	Kerala	1	0
43	Sundaramoorthy et al., 2019b ³⁶	Tamil Nadu	2	0
44	Subramaniam & Muthukrishnan,	Tamil Nadu	2	2
7-7	2019 66	Tallili I vada	2	2
45	Amladi et al.,2019 ³⁷	Tamil Nadu	14	0
46	Rahman & Ahmad., 2019 67	Uttar Pradesh	20	20
47	Ghafur et al., 2019 ⁶⁸	Tamil Nadu	71	3
48	Kumar et al., 2018 40	Kerala	17	0
49	Shankar et al., 2018 ⁶⁹	Tamil Nadu	1	0
50	Singh et al.,2018 ⁷⁰	Uttar Pradesh	21	4
51	Aggarwal et al.,2018 71	Delhi	7	0
52	Mathur et al., 2018 72	Tamil Nadu	8	0
53	Manohar et al., 2017 41	Tamil Nadu	29	0
54	Pragasam et al., 2017 ⁷³	Tamil Nadu	8	0
55	Marathe et al., 2017 ⁷⁴	Maharashtra	1	1
56	Veerarghavan et al., 2016 ⁷⁵	Tamil Nadu	1	0
57	Bernasconi et al., 2016 ⁷⁶	-	5	1
58	Kumar et al., 2016 A ⁷⁷	Haryana	1	1

[#] The paper was published in 2023 as an online early version, hence included in the study.

Supplementary Table 3- PRISMA 2020 Checklist.


Section and Topic	Item#	Checklist item	Location where item is reported
TITLE			-
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTIO	N		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	3-5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	5
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	5-6
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify thedate when each source was last searched or consulted.	5
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	5
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each recordand each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	5-6
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	6
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	6
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	6-7
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	6
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	6
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention	N/A

		characteristics and comparing against the planned groups for each synthesis (item #5)).	
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	6
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	6
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	6-7
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, metaregression).	6-7
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	7
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	7
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	7
Section and Topic	Item#	Checklist item	Location where item is reported
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included inthe review, ideally using a flow diagram.	7
-	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	7
		which were character, and chiprani why they were character.	
Study characteristics	17	Cite each included study and present its characteristics.	Suppl. Info.
	17 18		Suppl. Info. 7, Table-1
characteristics Risk of bias		Cite each included study and present its characteristics. Present assessments of risk of bias for each included study. For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an offset estimate and	
characteristics Risk of bias instudies Results of individual	18	Cite each included study and present its characteristics. Present assessments of risk of bias for each included study. For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision(e.g. confidence/credible interval), ideally using	7, Table-1 Fig. 1, Table-1
characteristics Risk of bias instudies Results of individual	18	Cite each included study and present its characteristics. Present assessments of risk of bias for each included study. For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision(e.g. confidence/credible interval), ideally using structured tables or plots. For each synthesis, briefly summarise the characteristics and risk of	7, Table-1 Fig. 1, Table-1 Table-1, Suppl. Fig. 1&
characteristics Risk of bias instudies Results of individual studies Results of	18 19 20a	Cite each included study and present its characteristics. Present assessments of risk of bias for each included study. For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision(e.g. confidence/credible interval), ideally using structured tables or plots. For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the	7, Table-1 Fig. 1, Table-1 Table-1, Suppl. Fig. 1&


Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	
DISCUSSION			
	23a	Provide a general interpretation of the results in the context of other evidence.	8-10
Diamosian	23b	Discuss any limitations of the evidence included in the review.	10
Discussion	23c	Discuss any limitations of the review processes used.	10
	23d	Discuss implications of the results for practice, policy, and future research.	10
OTHER INFOR	MATIO	N	
	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	N/A
Registration and protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	5-6
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	11
Competing interests	26	Declare any competing interests of review authors.	11
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from includedstudies; data used for all analyses; analytic code; any other materials used in the review.	Suppl. Information

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Supplementary Figure 1. Publication bias determination by Funnel plot of polymyxin resistant bacteria in India (A) and contribution of *mcr* gene in the development of polymyxin resistance (B).

Supplementary Figure 2. Publication bias determination by Funnel plot of polymyxin-resistant bacteria in different states of India, (A) Delhi, (B) Odisha, (C) Tamil Nadu, (D) Uttar Pradesh, and (E) West Bengal.

Study name		Statistics with	study removed		Event rate (95% CI) with study removed
	Point	Lower limit	Upper limit	Z-Value	
Banerjee et al., 2023	0.159	0.119	0.211	-9.552	
Soni et al., 2023	0.162	0.121	0.214	-9.478	
Kaza et al., 2023	0.157	0.117	0.208	-9.609	
Vasesi et al., 2023	0.160	0.120	0.212	-9.529	
Sharma et al., 2023	0.158	0.118	0.210	-9.459	
Ranjan et al., 2023	0.159	0.119	0.211	-9.552	
Shanthini et al.,2023	0.147	0.110	0.195	-10.250	
Rout et al.,2023	0.160	0.113	0.222	-8.022	-
Sharma et al.,2022	0.149	0.112	0.197	-10.173	 -
Elizabeth et al.,2022	0.162	0.121	0.214	-9.472	
Bir et al.,2022	0.156	0.116	0.206	-9.664	 =
Panigrahi et al.,2022	0.157	0.116	0.208	-9.490	 _
Sharma et al.2022	0.156	0.116	0.207	-9.628	
Reddy et al.,2022	0.165	0.125	0.215	-9.681	
Azam et al2021	0.163	0.122	0.214	-9.462	
Nirwan et al.,2021	0.171	0.131	0.219	-9.993	
Bhatia et al.,2021	0.157	0.117	0.208	-9.667	
Kar et al.,2021	0.158	0.117	0.209	-9.536	
Das et al.,2021	0.157	0.117	0.208	-9.583	
Sohail et al.,2021	0.157	0.117	0.208	-9.621	
Gunalan et al.,2021	0.158	0.117	0.208	-9.614	
Priyanka et al.,2021	0.150	0.113	0.196	-10.476	
Bandvopadhvay et al.,2021	0.162	0.113	0.190	-9.507	
Aarthi et al.,2021	0.162	0.123	0.215	-9.454	
Raghupati et al.,2020	0.154	0.123	0.213	-9.796	
Sharma et al.,2020	0.164	0.113	0.204	-9.448	
	0.149	0.122	0.215	-10.326	
Bardhan et al.,2020 Khurana et al.,2020	0.149	0.112	0.196	-10.326 -9.223	
	0.157		0.210	-9.223 -9.770	
Waattal et al.,2020		0.115			
Soundari et al.,2020	0.150	0.112	0.197	-10.222	
Mitra et al.,2020	0.153	0.114	0.203	-9.868	
Das et al.,2020	0.156	0.116	0.207	-9.645	
Gogry et al.,2019	0.157	0.116	0.208	-9.540	
Mathur et al.,2019	0.162	0.121	0.214	-9.493	
Sundaramoorthy et al.,2019 A	0.154	0.115	0.203	-9.853	
Sundaramoorthy et al.,2019 B	0.155	0.116	0.205	-9.791	
Amladi et al.,2019	0.159	0.119	0.211	-9.534	
Garg et al.,2019	0.157	0.117	0.208	-9.602	-
Raghupati et al.,2019	0.154	0.115	0.204	-9.766	
Kumar et al.,2018	0.165	0.124	0.216	-9.504	
Manohar et al.,2017	0.154	0.115	0.204	-9.784	
Kumar et al.,2016 B	0.148	0.111	0.196	-10.191	
Kumar et al., 2016 C	0.160	0.119	0.214	-9.244	-
	0.157	0.118	0.207	-9.781	•

Supplementary Figure 3. Sensitivity plot demonstrating the incidence of polymyxin-resistant bacteria in India.

Study name	Statistics with study removed					Event rate (95% CI) with study removed			
	Point	Lower limit	Upper limit	Z-Value					
Talat et al., 2023	0.084	0.048	0.143	-7.835	1	1	1 -	. 1	Ī
Pathak et al., 2023	0.086	0.049	0.146	-7.797			-	.	
Shanthini et al., 2023	0.089	0.051	0.149	-7.735				-	
Rout et al., 2023	0.096	0.057	0.157	-7.816				-	
Elizabeth et al., 2022	0.080	0.046	0.136	-8.097			******	В	
Bir et al., 2022	0.087	0.050	0.148	-7.708			-	■ 13	
Naha et al.,2022	0.087	0.050	0.147	-7.775			-	-14	
Sharma et al., 2022	0.088	0.051	0.149	-7.737			-	-	
Reddy et al., 2022	0.086	0.049	0.147	-7.667			-	■ 76	
Das et al., 2022	0.089	0.051	0.149	-7.735			-	-	
Azam et al.,2021	0.087	0.050	0.147	-7.766			-	• (C)	
Nirwan et al., 2021	0.088	0.051	0.148	-7.746			-	-8	
Singh et al., 2021	0.077	0.048	0.122	-9.597			 -		
Elizabeth et al., 2021	0.082	0.047	0.139	-7.954			-		
Kar et al., 2021	0.089	0.051	0.149	-7.735			-		
Bandyopadhyay et al., 2021	0.085	0.049	0.143	-7.866				.	
Sharma et al., 2021	0.087	0.050	0.147	-7.775				■ 81	
Aarthi et al., 2021	0.087	0.050	0.147	-7.766			-	■ 30	
Pathak et al., 2020	0.085	0.048	0.146	-7.600			- 	-	
Raghupati et al., 2020	0.085	0.049	0.145	-7.773			-	.	
Roy et al., 2020	0.080	0.046	0.134	-8.286			-=-	20	
Bardhan et al., 2020	0.090	0.052	0.151	-7.725			 	-	
Khamari et al., 2020	0.085	0.049	0.143					.	
Soundari et al., 2020	0.087	0.050	0.149	-7.654			-	-0	
Mitra et al., 2020	0.086	0.049	0.146	-7.687			-	.	
Das et al., 2020	0.089	0.051	0.150	-7.732			-	- 2	
Gogry et al., 2019	0.084	0.047	0.146	-7.560				.	
Shankar et al., 2019	0.090	0.052	0.151	-7.725			-	-	
Mathur et al., 2019	0.089	0.051	0.150	-7.730			-	-	
Sundaramoorthy et al., 2019 B	0.085	0.049	0.143	-7.866			-		
Subramaniam & Muthukrishnan, 2019	0.080	0.046	0.135	-8.221			-	8	
Amladi et al., 2019	0.087	0.050	0.148	-7.756			-		
Rahman & Ahmad., 2019	0.077	0.046	0.128	-8.694			 =		
Ghafur et al., 2019	0.088	0.050	0.149	-7.619			*****	-	
Kumar et al., 2018	0.088	0.051	0.148	-7.748				-	
Singh et al., 2018	0.083	0.047	0.142						
Aggarwal et al., 2018	0.086	0.050	0.146	-7.788		l		.	
Mathur et al., 2018	0.086	0.050	0.146	-7.781					
Manohar et al., 2017	0.089	0.051	0.149	-7.733				-	
Pragasam et al., 2017	0.086	0.050	0.146	-7.781					
Bernasconi et al., 2016	0.084	0.030	0.142	-7.861					
2011/2000111 01 41., 2010	0.086	0.050	0.144	-7.941				.	
	0.000	0.000	0.174	7.5-1	-0.50	-0.25	0.00	0.25	0.5

Supplementary Figure 4. Sensitivity plot demonstrating the contribution of the *mcr* gene in the development of polymyxin resistance in India.

References

- 1. Banerjee T, Adwityama A, Sharma S, Mishra K, Prusti P, Maitra U. Comparative evaluation of colistin broth disc elution (CBDE) and broth microdilution (BMD) in clinical isolates of Pseudomonas aeruginosa with special reference to heteroresistance. *Indian J Med Microbiol* 2024; **47**: 100494.
- 2. Soni M, Kapoor G, Perumal N, Chaurasia D. Emergence of Multidrug-Resistant Non-Fermenting Gram-Negative Bacilli in a Tertiary Care Teaching Hospital of Central India: Is Colistin Resistance Still a Distant Threat? *Cureus* 2023. Available at: https://www.cureus.com/articles/153479-emergence-of-multidrug-resistant-non-fermenting-gram-negative-bacilli-in-a-tertiary-care-teaching-hospital-of-central-india-is-colistin-resistance-still-a-distant-threat. Accessed January 11, 2024.
- 3. Kaza P, Britto XB, Mahindroo J, *et al.* Extensively-drug resistant (XDR) *Klebsiella pneumoniae* associated with complicated urinary tract infection in Northern India. *Jpn J Infect Dis* 2023: JJID.2023.009.
- 4. Vasesi D, Gupta V, Gupta P, Singhal L. Risk factor and resistance profile of colistin resistant Acinetobacter baumannii and Klebsiella pneumoniae. *Indian J Med Microbiol* 2024; **47**: 100486.
- 5. Sharma S, Banerjee T, Yadav G, Kumar A. Susceptibility profile of blaOXA-23 and metallo-β-lactamases co-harbouring isolates of carbapenem resistant Acinetobacter baumannii (CRAB) against standard drugs and combinations. *Front Cell Infect Microbiol* 2023; **12**: 1068840.
- 6. Ranjan R, Iyer RN, Jangam RR, Arora N. Evaluation of in-vitro colistin susceptibility and clinical profile of carbapenem resistant Enterobacteriaceae related invasive infections. *Indian J Med Microbiol* 2023; **41**: 40–4.
- 7. Shanthini T, Manohar P, Hua X, Leptihn S, Nachimuthu R. *Detection of Hypervirulent* Klebsiella pneumoniae *from Clinical Samples in Tamil Nadu*. Infectious Diseases (except HIV/AIDS); 2023. Available at: http://medrxiv.org/lookup/doi/10.1101/2023.02.19.23286158. Accessed August 17, 2023.
- 8. Rout B, Dash SK, Sahu KK, Behera B, Praharaj I, Otta S. *Evaluation of different methods for in vitro susceptibility testing of colistin in carbapenem resistant Gram negative bacilli*. 2023. Available at: https://www.microbiologyresearch.org/content/journal/acmi/10.1099/acmi.0.000595.v1. Accessed August 17, 2023.
- 9. Sharma S, Banerjee T, Kumar A, Yadav G, Basu S. Extensive outbreak of colistin resistant, carbapenemase (blaOXA-48, blaNDM) producing Klebsiella pneumoniae in a large tertiary care hospital, India. *Antimicrob Resist Infect Control* 2022; **11**: 1.
- 10. Elizabeth R, Baishya S, Kalita B, *et al.* Colistin exposure enhances expression of eptB in colistin-resistant Escherichia coli co-harboring mcr-1. *Sci Rep* 2022; **12**: 1348.
- 11. Bir R, Gautam H, Arif N, et al. Analysis of colistin resistance in carbapenem-resistant *Enterobacterales* and XDR *Klebsiella pneumoniae*. Ther Adv Infect Dis 2022; **9**: 204993612210806.
- 12. Panigrahi K, Pathi BK, Poddar N, *et al.* Colistin Resistance Among Multi-Drug Resistant Gram-Negative Bacterial Isolates From Different Clinical Samples of ICU Patients: Prevalence and Clinical Outcomes. *Cureus* 2022. Available at: https://www.cureus.com/articles/97516-colistin-resistance-among-multi-drug-resistant-gram-negative-bacterial-isolates-from-

- different-clinical-samples-of-icu-patients-prevalence-and-clinical-outcomes. Accessed August 17, 2023.
- 13. Sharma S, Banerjee T, Garg R, Das P. Evaluation Report of the Colistin Broth Disk Elution Method with *Acinetobacter baumannii* Isolates from a Low-Resource Setting Carvalho-Assef APD, ed. *Microbiol Spectr* 2022; **10**: e00871-22.
- 14. Reddy BRC, Geetha RV, Singh M, Rani RU, Nekkanti KN. Mcr-1 expression in progression of colistin resistance gram negative bacilli of clinical specimens derived from Intensive Care Units, wards and hospital setting of Deccan Eco Region of Southern India. *J Pharm Negat Results* 2022; **13**.
- 15. Das A, Sahoo RK, Gaur M, *et al.* Molecular prevalence of resistance determinants, virulence factors and capsular serotypes among colistin resistance carbapenemase producing Klebsiella pneumoniae: a multi-centric retrospective study. *3 Biotech* 2022; **12**: 30.
- 16. Nirwan PK, Chatterjee N, Panwar R, Dudeja M, Jaggi N. Mutations in two component system (PhoPQ and PmrAB) in colistin resistant Klebsiella pneumoniae from North Indian tertiary care hospital. *J Antibiot (Tokyo)* 2021; **74**: 450–7.
- 17. Azam M, Gaind R, Yadav G, *et al.* Colistin Resistance Among Multiple Sequence Types of Klebsiella pneumoniae Is Associated With Diverse Resistance Mechanisms: A Report From India. *Front Microbiol* 2021; **12**: 609840.
- 18. Kar P, Behera B, Mohanty S, Jena J, Mahapatra A. Detection of Colistin Resistance in Carbapenem Resistant Enterobacteriaceae by Reference Broth Microdilution and Comparative Evaluation of Three Other Methods. *J Lab Physicians* 2021; **13**: 263–9.
- 19. Mathur P, Singh P, Singh GP, Prasad C, Singh PK, Bindra A. Healthcare-associated Infections in Pediatric Patients in Neurotrauma Intensive Care Unit: A Retrospective Analysis. *Indian J Crit Care Med* 2021; **25**: 1308–13.
- 20. Sohail MN, Rathnamma D, Priya SC, *et al.* Salmonella from Farm to Table: Isolation, Characterization, and Antimicrobial Resistance of Salmonella from Commercial Broiler Supply Chain and Its Environment Cantore S, ed. *BioMed Res Int* 2021; **2021**: 1–12.
- 21. Gunalan A, Sarumathi D, Sastry AS, Ramanathan V, Rajaa S, Sistla S. Effect of combined colistin and meropenem against meropenem resistant Acinetobacter baumannii and Pseudomonas aeruginosa by checkerboard method: A cross sectional analytical study.
- 22. Priyanka, Meena PR, Meghwanshi KK, Rana A, Singh AP. Leafy greens as a potential source of multidrug-resistant diarrhoeagenic Escherichia coli and Salmonella. *Microbiology* 2021; **167**. Available at: https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.001059. Accessed August 17, 2023.
- 23. Bandyopadhyay S, Bhattacharyya D, Samanta I, *et al.* Characterization of Multidrug-Resistant Biofilm-Producing *Escherichia coli* and *Klebsiella pneumoniae* in Healthy Cattle and Cattle with Diarrhea. *Microb Drug Resist* 2021; **27**: 1457–69.
- 24. Sharma S, Banerjee T, Yadav G, Palandurkar K. Mutations at Novel Sites in *pmrA/B* and *lpxA/D* Genes and Absence of Reduced Fitness in Colistin-Resistant *Acinetobacter baumannii* from a Tertiary Care Hospital, India. *Microb Drug Resist* 2021; **27**: 628–36.
- 25. Aarthi M, Subramanian S, Krishnan P. Colistin resistance among multidrug resistant gram negative bacteria isolated from cancer patients from Chennai, South India. *Int J Infect Dis* 2020; **101**: 39.

- 26. Ragupathi NKD, Sethuvel DPM, Anandan S, *et al.* First hybrid complete genome of Aeromonas veronii reveals chromosome-mediated novel structural variant mcr-3.30 from a human clinical sample. *Access Microbiol* 2020; **2**. Available at: https://www.microbiologyresearch.org/content/journal/acmi/10.1099/acmi.0.000103. Accessed August 17, 2023.
- 27. Bardhan T, Chakraborty M, Bhattacharjee B. Prevalence of Colistin-Resistant, Carbapenem-Hydrolyzing Proteobacteria in Hospital Water Bodies and Out-Falls of West Bengal, India. *Int J Environ Res Public Health* 2020; **17**: 1007.
- 28. Khurana S, Malhotra R, Mathur P. Evaluation of Vitek®2 performance for colistin susceptibility testing for Gram-negative isolates. *JAC-Antimicrob Resist* 2020; **2**: dlaa101.
- 29. Palani GS, Ghafur A, Krishnan P, Rayvathy B, Thirunarayan M. Intestinal carriage of colistin resistant Enterobacteriaceae in hospitalized patients from an Indian center. *Diagn Microbiol Infect Dis* 2020; **97**: 114998.
- 30. Mitra S, Basu S, Rath S, Sahu SK. Colistin resistance in Gram-negative ocular infections: prevalence, clinical outcome and antibiotic susceptibility patterns. *Int Ophthalmol* 2020; **40**: 1307–17.
- 31. Das S, Roy S, *et al.* Colistin Susceptibility Testing of Gram-Negative Bacilli: Better Performance of Vitek2 System than E-Test Compared to Broth Microdilution Method as the Gold Standard Test. *Indian J Med Microbiol* 2020; **38**: 58–65.
- 32. Wattal C, Goel N, Oberoi JK, Datta S, Raveendran R. Performance of Three Commercial Assays for Colistin Susceptibility in Clinical Isolates and Mcr-1 Carrying Reference Strain. *Indian J Med Microbiol* 2019; **37**: 488–95.
- 33. Gogry FA, Siddiqui MT, Haq. QMohdR. Emergence of mcr-1 conferred colistin resistance among bacterial isolates from urban sewage water in India. *Environ Sci Pollut Res* 2019; **26**: 33715–7.
- 34. Mathur P, Khurana S, De Man TJB, *et al.* Multiple importations and transmission of colistin-resistant *Klebsiella pneumoniae* in a hospital in northern India. *Infect Control Hosp Epidemiol* 2019; **40**: 1387–93.
- 35. Sundaramoorthy NS, Mohan HM, Subramaniam S, et al. Ursolic acid inhibits colistin efflux and curtails colistin resistant Enterobacteriaceae. AMB Express 2019; 9: 27.
- 36. Sundaramoorthy NS, Suresh P, Selva Ganesan S, GaneshPrasad A, Nagarajan S. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. *Sci Rep* 2019; **9**: 19845.
- 37. Amladi A, Abirami B, Devi Sm, *et al.* Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. *Indian J Med Res* 2019; **149**: 185.
- 38. Garg A, Garg J, Kumar S, Bhattacharya A, Agarwal S, Upadhyay G. Molecular epidemiology & therapeutic options of carbapenem-resistant Gram-negative bacteria. *Indian J Med Res* 2019; **149**: 285.
- 39. Ragupathi ND, Bakthavatchalam Y, Mathur P, *et al.* Plasmid profiles among some ESKAPE pathogens in a tertiary care centre in south India. *Indian J Med Res* 2019; **149**: 222.
- 40. Kumar A, Biswas L, Omgy N, et al. Colistin resistance due to insertional inactivation of the mgrB in Klebsiella pneumoniae of clinical origin: First report from India: Resistencia a

- colistina debido a inactivación insercional del gen mgrB en aislados clínicos de Klebsiella pneumoniae: Primera notificación en India. *Rev Esp Quimioter* 2018; **31**: 406.
- 41. Manohar P, Shanthini T, Ayyanar R, *et al.* The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. *J Med Microbiol* 2017; **66**: 874–83.
- 42. Kumar M. Colistin and Tigecycline Resistance in Carbapenem-Resistant Enterobacteriaceae: Checkmate to Our Last Line Of Defense. *Infect Control Hosp Epidemiol* 2016; **37**: 624–5.
- 43. Kumar M, Gupta A, Sahoo RK, Jena J, Debata NK, Subudhi E. Functional Genome Screening to Elucidate the Colistin Resistance Mechanism. *Sci Rep* 2016; **6**: 23156.
- 44. Seethalakshmi PS, Ru VPN, Prabhakaran A, *et al.* Genomic investigation unveils high-risk ESBL producing Enterobacteriaceae within a rural environmental water body. *Curr Res Microb Sci* 2024; **6**: 100216.
- 45. Naha S, Basak P, Sands K, *et al.* Carriage and within-host diversity of *mcr-1.1-* harbouring *Escherichia coli* from pregnant mothers: inter- and intra-mother transmission dynamics of *mcr-1.1. Emerg Microbes Infect* 2023; **12**: 2278899.
- 46. Premnath MAC, Prabakaran K, Sivasankar S, Boppe A, Sriramajayam L, Jeyaraj S. Occurrence of mcr genes and alterations in mgrB gene in intrinsic colistin- resistant Enterobacterales isolated from chicken meat samples. *Int J Food Microbiol* 2023; **404**: 110323.
- 47. Talat A, Blake KS, Dantas G, Khan AU. Metagenomic Insight into Microbiome and Antibiotic Resistance Genes of High Clinical Concern in Urban and Rural Hospital Wastewater of Northern India Origin: a Major Reservoir of Antimicrobial Resistance Liu J, ed. *Microbiol Spectr* 2023; **11**: e04102-22.
- 48. Pathak A, Tejan N, Dubey A, *et al.* Outbreak of colistin resistant, carbapenemase (blaNDM, blaOXA-232) producing Klebsiella pneumoniae causing blood stream infection among neonates at a tertiary care hospital in India. *Front Cell Infect Microbiol* 2023; **13**: 1051020.
- 49. Aldeia C, Campos-Madueno EI, Sendi P, Endimiani A. Complete Genome Sequence of the First Colistin-Resistant Raoultella electrica Strain Dunning Hotopp JC, ed. *Microbiol Resour Announc* 2023; **12**: e00047-23.
- 50. S S, Premnath M, Pr P, et al. Predicting human risk with multidrug resistant Enterobacter hormaechei MS2 with MCR 9 gene isolated from the feces of healthy broiler through whole genome sequence based analysis. In Review; 2023. Available at: https://www.researchsquare.com/article/rs-2710811/v1. Accessed August 17, 2023.
- 51. Talat A, Usmani A, Khan AU. Detection of *E. coli* IncX1 Plasmid-Mediated *mcr-5.1* Gene in an Indian Hospital Sewage Water Using Shotgun Metagenomic Sequencing: A First Report. *Microb Drug Resist* 2022; **28**: 759–64.
- 52. Naha S, Sands K, Mukherjee S, Dutta S, Basu S. A 12 year experience of colistin resistance in *Klebsiella pneumoniae* causing neonatal sepsis: two-component systems, efflux pumps, lipopolysaccharide modification and comparative phylogenomics. *J Antimicrob Chemother* 2022; 77: 1586–91.
- 53. Singh S, Pathak A, Rahman M, *et al.* Genetic Characterisation of Colistin Resistant Klebsiella pneumoniae Clinical Isolates From North India. *Front Cell Infect Microbiol* 2021; **11**: 666030.

- 54. Elizabeth R, Wangkheimayum J, Singha KM, Chanda DD, Bhattacharjee A. Subinhibitory concentration stress of colistin enhanced PhoPQ expression in *Escherichia coli* harboring *mcr* -1. *J Basic Microbiol* 2021; **61**: 1029–34.
- 55. Karade S, Sen S, Shergill SPS, Jani K, Shouche Y, Gupta RM. Whole genome sequence of colistin-resistant Escherichia coli from western India. *Med J Armed Forces India* 2021; **77**: 297–301.
- 56. Pathak A, Singh S, Kumar A, Prasad KN. Emergence of chromosome borne colistin resistance gene, mcr-1 in clinical isolates of Pseudomonas aeruginosa. *Int J Infect Dis* 2020; **101**: 22.
- 57. Roy S, Das P, Das S, *et al.* Detection of the emergence of *mcr-1* –mediated colistin-resistant *Escherichia coli* and *Klebsiella pneumoniae* through a hospital-based surveillance in an oncology center in eastern India. *Infect Control Hosp Epidemiol* 2020; **41**: 378–80.
- 58. Dey S, Gaur M, Sahoo RK, *et al.* Genomic characterization of XDR Klebsiella pneumoniae ST147 co-resistant to carbapenem and colistin The first report in India. *J Glob Antimicrob Resist* 2020; **22**: 54–6.
- 59. Sahoo RK, Das A, Sahoo S, Gaur M, Rao EV, Subudhi E. The first report of colistin—carbapenem resistance in Klebsiella pneumoniae ST70 isolated from the pediatric unit in India. *Braz J Microbiol* 2020; **51**: 1–3.
- 60. Khamari B, Lama M, Pachi Pulusu C, *et al.* Molecular Analyses of Biofilm-Producing Clinical *Acinetobacter baumannii* Isolates from a South Indian Tertiary Care Hospital. *Med Princ Pract* 2020; **29**: 580–7.
- 61. Naha S, Sands K, Mukherjee S, *et al.* KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: Clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. *Int J Antimicrob Agents* 2020; **55**: 105903.
- 62. Pathak A, Singh S, Prasad N, Prasad KN. SAT-423 EMERGENCE OF blaNDM AND mcr-1 POSITIVE PAN- AND EXTREMELY- DRUG RESISTANT BACTERIAL INFECTIONS IN PATIENTS WITH RENAL DISEASES. *Kidney Int Rep* 2020; **5**: S176–7.
- 63. Bean DC, Agarwal A, Cherian BP, Wareham DW. Hypermucoviscous polymyxin-resistant Klebsiella pneumoniae from Kolkata, India: Genomic and phenotypic analysis. *J Glob Antimicrob Resist* 2019; **17**: 1–2.
- 64. Shankar C, Venkatesan M, Rajan R, *et al.* Molecular characterization of colistin-resistant Klebsiella pneumoniae & its clonal relationship among Indian isolates. *Indian J Med Res* 2019; **149**: 199.
- 65. Paul M, Narendrakumar L, R. Vasanthakumary A, Joseph I, Thomas S. Genome sequence of a multidrug-resistant Klebsiella pneumoniae ST78 with high colistin resistance isolated from a patient in India. *J Glob Antimicrob Resist* 2019; **17**: 187–8.
- 66. Subramaniam N, Muthukrishnan A. Oral mucositis and microbial colonization in oral cancer patients undergoing radiotherapy and chemotherapy: A prospective analysis in a tertiary care dental hospital. *J Investig Clin Dent* 2019; **10**. Available at: https://onlinelibrary.wiley.com/doi/10.1111/jicd.12454. Accessed August 17, 2023.
- 67. RAHMAN M, Ahmad S. 549. First Report for Emergence of Chromosomal Borne Colistin Resistance Gene mcr-1 in a Clinical Acinetobacter Baumannii Isolates from India. *Open Forum Infect Dis* 2019; **6**: S261–2.

- 68. Ghafur A, Shankar C, GnanaSoundari P, et al. Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli and Klebsiella pneumoniae from Indian food samples. J Glob Antimicrob Resist 2019; 16: 48–52.
- 69. Shankar C, Karunasree S, Manesh A, Veeraraghavan B. First Report of Whole-Genome Sequence of Colistin-Resistant *Klebsiella quasipneumoniae* subsp. *similipneumoniae* Producing KPC-9 in India. *Microb Drug Resist* 2019; **25**: 489–93.
- 70. Singh S, Pathak A, Kumar A, *et al.* Emergence of Chromosome-Borne Colistin Resistance Gene *mcr-1* in Clinical Isolates of Klebsiella pneumoniae from India. *Antimicrob Agents Chemother* 2018; **62**: e01885-17.
- 71. Aggarwal R, Rastogi N, Mathur P, *et al.* Colistin-resistant Klebsiella pneumoniae in Surgical Polytrauma Intensive Care Unit of Level-1 Trauma Center: First Case Series from Trauma Patients in India. *Indian J Crit Care Med Peer-Rev Off Publ Indian Soc Crit Care Med* 2018; **22**: 103.
- 72. Mathur P, Veeraraghavan B, Devanga Ragupathi NK, *et al.* Multiple mutations in lipid-A modification pathway & novel *fosA* variants in colistin-resistant *Klebsiella pneumoniae*. *Future Sci OA* 2018; **4**: FSO319.
- 73. Pragasam AK, Shankar C, Veeraraghavan B, *et al.* Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae Causing Bacteremia from India—A First Report. *Front Microbiol* 2017; 7. Available at: http://journal.frontiersin.org/article/10.3389/fmicb.2016.02135/full. Accessed August 17, 2023.
- 74. Marathe NP, Pal C, Gaikwad SS, Jonsson V, Kristiansson E, Larsson DGJ. Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. *Water Res* 2017; **124**: 388–97.
- 75. Veeraraghavan B, Anandan S, Ragupathi NKD, Vijayakumar S, Sethuvel DPM, Biswas I. Draft Genome Sequence of Colistin-Resistant *Acinetobacter baumannii* Strain VB22595 Isolated from a Central Line-Associated Bloodstream Infection. *Genome Announc* 2016; **4**: e00835-16.
- 76. Bernasconi OJ, Kuenzli E, Pires J, *et al.* Travelers Can Import Colistin-Resistant Enterobacteriaceae, Including Those Possessing the Plasmid-Mediated *mcr-1* Gene. *Antimicrob Agents Chemother* 2016; **60**: 5080–4.
- 77. Kumar M, Saha S, Subudhi E. More Furious Than Ever: *Escherichia coli* -Acquired Coresistance Toward Colistin and Carbapenems. *Clin Infect Dis* 2016: ciw508.