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Abstract 18 

Background: Machine learning (ML)-based predictive models for perioperative 19 

major adverse cardiovascular events (MACEs) in patients with stable coronary artery 20 

disease (SCAD) undergoing non-cardiac surgery (NCS) have not been reported 21 

before. 22 
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Methods: Clinical data from 9171 consecutive adult patients with SCAD, who 23 

underwent NCS at the First Affiliated Hospital, Zhejiang University School of 24 

Medicine between January 2013 and May 2023, were used to develop and validate the 25 

prediction models. MACEs were defined as all-cause death, resuscitated cardiac arrest, 26 

myocardial infarction, heart failure and stroke perioperatively. Compare various 27 

resampling and feature selection methods to deal with data imbalance. A traditional 28 

logistic regression (the Revised Cardiac Risk index, RCRI) and nine ML models 29 

(logistic regression, support vector machine, Gaussian Naive Bayes, random forest, 30 

GBDT, XGBoost, LightGBM, CatBoost and best stacking ensemble model) were 31 

compared by the area under the receiver operating characteristic curve (AUROC) and 32 

the area under the precision recall curve (AUPRC). The calibration was assessed 33 

using the calibration curve and the patients' net benefit was measured by decision 34 

curve analysis (DCA). Models were tested via 5-fold cross-validation. Feature 35 

importance was interpreted using SHapley Additive explanation (SHAP).  36 

Results: Among 9171 patients, 514 (5.6%) developed MACEs. The XGBoost 37 

performed best in terms of AUROC (0.898) and AUPRC (0.479),which were better 38 

than the RCRI of  AUROC (0.716) and AUPRC (0.185), Delong test and 39 

Permutation test P<0.001, respectively. The calibration curve of XGBoost 40 

performance accurately predicted the risk of MACEs (brier score 0.040), the DCA 41 

results showed that the XGBoost had a high net benefit for predicting MACEs. The 42 

top-ranked stacking ensemble model consisting of CatBoost, GBDT, GNB, and LR 43 

proved to be the best, with an AUROC value of 0.894 (95% CI 0.860-0.928) and an 44 
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AUPRC value of 0.485 (95% CI 0.383-0.587). Using the mean absolute SHAP values, 45 

we identified the top 20 important features. 46 

Conclusion: The first ML-based perioperative MACEs prediction models for patients 47 

with SCAD were successfully developed and validated. High-risk patients for 48 

MACEs can be effectively identified and targeted interventions can be made to reduce 49 

the incidence of MACEs. 50 

 51 

Lay Summary 52 

We performed a retrospective machine learning classification study of MACEs in 53 

patients with SCAD undergoing non-cardiac surgery to develop and validate an 54 

optimal prediction model. In this study, we analyzed the data missing mechanism and 55 

identified the best missing data interpolation method, while applying appropriate 56 

resampling techniques and feature selection methods for data imbalance 57 

characteristics, and ultimately identified 24 preoperative features for building a 58 

machine learning predictive model. Eight independent machine learning prediction 59 

models and stacking ensemble models were built, and the models were evaluated 60 

comprehensively using ROC curve, PRC curve, calibration plots and DCA curve. 61 

⚫ We have adopted a series of widely used machine learning algorithms and model 62 

evaluation techniques to build clinical prediction models, and achieved better 63 

performance and clinical practicability than the classical RCRI model, which has 64 

taken the first step to explore the research in this field. 65 

⚫ The prediction results based on the optimal machine learning model are 66 

interpretable, output the importance ranking and impact degree of the top 20 67 
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features of MACEs risk prediction, and are consistent with clinical interpretation, 68 

which is conducive to the application of the model in clinical practice. 69 

Keywords: prediction model; machine learning; major adverse cardiovascular events; 70 

non-cardiac surgery; imbalance data; feature selection  71 

 72 

Background 73 

Millions of patients undergo non-cardiac surgeries (NCS) worldwide every year 74 

[1], more than 18% of them accompany with stable coronary artery disease (SCAD) 75 

[2]. Perioperative major adverse cardiovascular events (MACEs) occur in 5.7–10.0% 76 

patients with SCAD undergoing NCS [3], which exceeded significantly compared to 77 

only 2.5–3.0% MACEs occurrence rate in the general population [4]. MACEs 78 

represented a significant source of perioperative morbidity and mortality, including 79 

cardiac arrest, myocardial infarction (MI), heart failure (HF) and stroke [5]. 80 

Accordingly, it is important to evaluate the risk of MACEs for patients with SCAD 81 

undergoing NCS. 82 

Current guidelines highly recommended the use of predictive models to assess the 83 

risk of perioperative MACEs [6, 7]. The most commonly used models are the Revised 84 

Cardiac Risk index (RCRI) [8]. The RCRI is simple and widely validated worldwide. 85 

However, recent large cohort studies have suggested that the RCRI does not have a 86 

strong discriminatory ability [9], especially in patients with known SCAD [10]. 87 

Machine learning (ML) is an area of artificial intelligence (AI) where algorithms 88 

are employed for identification of patterns in datasets, and have demonstrated superior 89 
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predictive performance on nonlinear data as compared to conventional linear models 90 

such as logistic or cox regression [11]. It learns from the data, as opposed to 91 

regression which stems from theory and assumptions, benefiting from human 92 

intervention and subject knowledge to specify a model [12].As a result, the 93 

application of innovative machine-learning techniques capable of capturing 94 

nonlinearity in clinical practice is imperative. 95 

The objective of this study was to derive and validate a ML model based on 96 

easily acquired preoperative clinical data, that can predict perioperative MACEs in 97 

patients with SCAD scheduled for NCS. As far as we know, such a prediction model 98 

has not previously been reported. 99 

Methods 100 

Study design and population 101 

We performed a retrospective machine learning classification study (outcomes 102 

were binary categorical) of MACEs in patients with SCAD undergoing NCS to 103 

develop (train) and validate (test) an optimal prediction model. The study design route 104 

flowchart is shown in Figure 1. The machine learning model predicts a future 105 

diagnosis of perioperative MACEs based on features obtained from preoperative usual 106 

clinical care, including demographics, previous diseases, surgical information, 107 

preoperative electrocardiogram (ECG), preoperative echocardiography and 108 

preoperative laboratory tests results such as hemoglobin levels. This study used data 109 

from 9,171 adult patients with SCAD who underwent NCS at the First Affiliated 110 

Hospital, Zhejiang University School of Medicine (FAHZU) between January 2013 111 
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and May 2023. 112 

This study was conducted according to Transparent Reporting of Multivariable 113 

Prediction Models for Individual Prognosis or Diagnosis (TRIPOD) and "Guidelines 114 

for Development and Reporting Machine-Learning Predictive Models in Biomedical 115 

Research: A Multidisciplinary View". It complied with the principles of the 116 

Declaration of Helsinki and was approved by the Institutional Ethics Review 117 

Committee of the FAHZU (No. of ethical approval: IIT20230114A). Written 118 

informed consent was waived owing to the nature of the retrospective study design 119 

and the collected data was managed in a de-identified form. This study was executed 120 

and reported in accordance with STrengthening the Reporting of OBservational 121 

studies in Epidemiology (STROBE) guidelines.  122 

Inclusion and exclusion criteria 123 

We extracted the study dataset of patients aged 18 years and older who were 124 

hospitalized for surgery with previous SCAD between January 1, 2013 and May 31, 125 

2023 from FAHZU’s clinical data warehouse. The types of surgery were elective NCS 126 

based on the American College of Cardiology (ACC)/American Heart Association 127 

(AHA) guidelines of perioperative cardiovascular evaluation [13]. SCAD was 128 

diagnosed if any of the following conditions were met: angiographic demonstration of 129 

coronary stenosis >50%, history of MI (>3 months before enrolment), history of 130 

coronary revascularization (>3 months before enrolment), positive myocardial 131 

perfusion scintigraphy, positive exercise stress test, or typical symptoms of angina 132 

pectoris with simultaneous signs of myocardial ischemia on the ECG [14]. We 133 
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excluded people who underwent cardiac surgery, emergency surgery, day surgery, and 134 

people who underwent multiple surgeries during a single hospital stay. All patients 135 

were evaluated by routine preoperative assessment. 136 

Data collection and preprocessing 137 

The electronic medical record system in FAHZU was used in this study. The 138 

International Classification of Diseases, Tenth Edition (ICD-10) has been used to 139 

extract the target population. We identified all discharges over 10 years from the 140 

surgery department with a diagnosis of CAD. Further manual screening of medical 141 

records was performed according to the inclusion/exclusion criteria. We then listed all 142 

available clinical data from the electronic medical record system and performed 143 

feature selection. The study omitted variables with a high rate of missing values (e.g., 144 

hs-CRP and troponin I). Finally, a total of 64 pre-operative variables were collected, 145 

including patients' demographics (e.g. age, sex and Body Mass Index (BMI)), 146 

pre-existing diseases (e.g. MI, HF, hypertension and diabetes), surgical information 147 

(e.g. surgical type, duration of surgery (DOS) and general anesthesia (GA)), 148 

preoperative ECG (e.g. abnormal Q waves (AQW) and ST-T wave abnormalities 149 

(ST-Ta)), preoperative echocardiography (e.g. left ventricular ejection fraction(LVEF), 150 

regional wall motion abnormality (RWMA), left ventricle diastolic dysfunction 151 

(LVDD) and pulmonary hypertension (PH)),  pre-operative laboratory parameters 152 

(e.g. Hemoglobin (Hb), Fasting blood glucose (FBG) and Creatinine (Scr)), 153 

pre-operative drugs (e.g. Nitrates and Insulin), American Society of Anesthesiologists 154 

Physical Status (ASA PS). The putative predictors were chosen on the basis of 155 
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previous studies and the clinical experiences of the investigators. 156 

For each feature, we calculated the missing rate in the training dataset, analyzed 157 

the missingness mechanisms, and then selected the appropriate missing value data 158 

imputation method according to the missingness mechanisms. Additionally, 159 

standardization is essential for ensuring that all feature values are on the same scale 160 

and assigned the same weight. All continuous variables (e.g., BMI, laboratory values) 161 

were scaled using StandardScaler or MinMaxScaler in the Scikit-learn package, the 162 

classification of non-binary variables (e.g., surgical type) were one-hot encoded, and 163 

the variables with ordinal characteristics (e.g., ASA PS) were coded with the ordinal 164 

encoder. 165 

Outcomes (Study endpoints and definitions) 166 

The primary outcome was a composite of MACEs (all-cause death, resuscitated 167 

cardiac arrest, MI, HF and stroke) intraoperatively or during hospitalization 168 

postoperatively. Cardiac arrest was defined as the loss of circulation prompting 169 

resuscitation requiring chest compressions, defibrillation, or both [15]. MI was 170 

defined as acute myocardial injury with clinical evidence of acute myocardial 171 

ischemia [16]. Troponin levels were not routinely checked on all enrolled patients. 172 

They were ordered based on routine clinical practice whenever the treating physician 173 

suspected MI based on the clinical status of the patient or ECG findings. HF was 174 

diagnosed mainly by active clinical symptoms or physical examination findings of 175 

dyspnea, orthopnea, peripheral edema, jugular venous distention, rales, third heart 176 

sound, or chest x-ray with pulmonary vascular redistribution or pulmonary edema 177 
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[17]. Stroke was diagnosed by a neurology consultant based on new neurological 178 

findings that were confirmed by imaging studies [18]. 179 

Class imbalance 180 

The data set of this study included 8657 negative samples (majority class) and 181 

514 positive cases (minority class), with an imbalance ratio (IR) of 16.84:1, indicating 182 

a serious class imbalance. Most standard machine learning algorithms assume or 183 

expect that classification problems have balanced class distributions of equal costs. As 184 

a result, these algorithms are not efficient at handling the complex and imbalanced 185 

data sets that are prevalent in the real world, especially in the medical field. Solving 186 

class imbalance data is mainly realized from two levels of data and algorithm [19]. In 187 

this study, resampling and feature selection are mainly used to process research data, 188 

and ensemble learning models are compared to explore the most appropriate methods 189 

to deal with data imbalance. In order to comprehensively analyze the classification 190 

performance of imbalanced data sets, area under the receiver operating characteristic 191 

curve (AUROC) and area under the precision and recall curve (AUPRC) are 192 

emphasized in model evaluation. 193 

Resampling for class imbalance 194 

Resampling is a technique to balance a dataset by reducing the number of 195 

majority classes or increasing the number of minority classes. Among them, Synthetic 196 

minority over-sampling technique (SMOTE) [20] represents the most widely used 197 

method among the resampling methods. Overfitting caused by random oversampling 198 

can be effectively overcome by interpolating new synthetic instances in the line 199 
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between some minority samples and their k-nearest neighbors. The adaptive synthetic 200 

(ADASYN) [21] sampling method is to use a weighted distribution for different 201 

minority class examples according to their level of difficulty in learning, and minority 202 

samples that are more difficult to learn will generate more synthetic data. The 203 

SMOTE+EEN [22] hybrid sampling method uses Edited Nearest Neighbors (ENN) 204 

technology to clean up overlapping samples after the SMOTE algorithm generates a 205 

new synthetic dataset. In this study, SMOTE, ADASYN and SMOTE+ENN sampling 206 

methods were used to resample the training set data. Then, we controlled the sampling 207 

strategy so that the ratio of positive samples to negative samples in the resampling 208 

dataset is 1. Finally, we trained the eXtreme Gradient Boosting (XGBoost) model 209 

with resampling data combined with cross-validation, and compared the model's 210 

performance metrics on the internal validation set. We used correlation functions in 211 

the Python library imbalance-learn to implement resampling. 212 

Feature selection for class imbalance 213 

Feature selection is also a feasible technique to deal with imbalanced 214 

classification problems. More representative feature sets are selected to remove 215 

irrelevant and redundant features, thereby improving classification performance and 216 

efficiency. Feature selection is carried out on imbalanced data to optimize the feature 217 

space, find a space that tends to represent concepts of a few classes, and then correct 218 

the classifier's bias towards the majority classes. This study contrasts four widely used 219 

feature selection methods based on different strategies, including the 220 

correlation-based feature selection (CFS) algorithm [23], Boruta algorithm [24], 221 
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BorutaShap algorithm [25], and recursive feature elimination (RFE) [26]. CFS 222 

algorithm is a multivariate filter method that chooses subsets of features that 223 

themselves are uncorrelated but show high correlation with the class, independent of 224 

any learning method, and successfully applied to mortality prediction in three-vessel 225 

disease [27]. Boruta algorithm is to compare the importance of the real predictor 226 

variables with those of random so-called shadow variables using statistical testing and 227 

several runs of XGBoost algorithm. BorutaShap algorithm is an extension of the 228 

Boruta algorithm that leverages the SHapley Additive explanation (SHAP) value as a 229 

measure of feature importance with XGBoost classifier. The RFE algorithm starts 230 

with a base model built on all features. A specific proportion of the least important 231 

features are then removed and a new base model is generated using the remaining 232 

features. These steps are recursively applied until a single feature is left as input. In 233 

this study, XGBoost, Light Gradient Boosting Machine (LightGBM), Random Forest 234 

(RF), support vector machine (SVM) and logistic regression (LR) were selected as the 235 

base models for RFE. Feature selection takes XGBoost model as performance 236 

evaluation. Based on data resampling, AUROC performance is evaluated on 237 

validation set through cross-validation combined with automatic hyperparameter 238 

optimization, and the optimal performance is taken as input feature set of machine 239 

learning model. 240 

Machine learning model development 241 

We used random stratification to divide the data set into a training dataset (80%) 242 

and a test dataset (20%). Stratification ensured that the proportions of the cases in the 243 
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training datasets and test datasets were equal, which improved the stability of the 244 

model. The training dataset was used for model building, and the test dataset was used 245 

as a hold-out dataset for external validation and did not participate in model 246 

development (including data balancing processing) and hyperparameter selection. We 247 

used randomly stratified 5-fold cross-validation combined with optimal resampling 248 

strategy on the training data set to adjust the hyperparameters in the model and output 249 

the internal validation performance, which can avoid overfitting and assess the 250 

stability of the models. After obtaining the optimal hyperparameters, we used the 251 

model developed in the training dataset for performance evaluation on the hold-out 252 

testing dataset. In order to achieve the best prediction, eight independent models were 253 

built for this study, including LR, SVM , Gaussian Naïve Bayesian (GNB), RF, 254 

gradient boosting decision tree (GBDT), XGBoost, LightGBM, and categorical 255 

boosting (CatBoost). Tree based ensemble models have been applied to other clinical 256 

tasks with excellent performance compared to traditional machine learning algorithms 257 

[28]. Each model provides the same input variables that are optimally selected based 258 

on feature selection, and in order to avoid collinearity between variables affecting the 259 

performance of the prediction model, multicollinearity and correlation analysis are 260 

performed on the optimally selected samples before modeling. We adjusted the 261 

hyperparameters during the model building process based on the Optuna optimization 262 

library of Bayesian optimization [29], where the optimized measure is the AUROC. 263 

Finally, based on 8 independently optimized machine learning prediction models, we 264 

further used the stacking ensemble model, which has been proven to be superior to 265 
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independent machine learning in many fields [30, 31]. 266 

Machine learning model evaluation 267 

We developed the models using the training dataset performed 1000 rounds of 268 

bootstrapping on the hold-out testing dataset to report results. We reported numerical 269 

results for accuracy, precision, recall, F1 score, AUROC, and AUPRC. To evaluate the 270 

overall performance, we plotted receiver-operating characteristic (ROC) curves and 271 

precision–recall curves (PRC). The ROC is the ratio of sensitivity to (1-specificity). 272 

According to the AUROC evaluation of model performance, models with a larger 273 

AUROC are considered to have better performance. On the other hand, the PRC 274 

illustrates the trade-off between recall (sensitivity) and precision (positive predictive 275 

value). Models with high performance tend to have a balance of high recall and 276 

precision, yielding large AUPRC values. The statistical comparison of AUROC values 277 

and AURPC values were each computed using Delong Test and Permutation test [32, 278 

33]. A calibration plot was used to evaluate the agreement between the observed and 279 

expected values based on the probability of perioperative MACEs predicted by 280 

various models, and calculated the calibration metrics of the Brier score [34]. The 281 

clinical application value of decision curve analysis (DCA) evaluation model.  282 

Comparison with RCRI 283 

To determine whether the new developed models in our study would improve 284 

upon discrimination of cardiovascular risk prediction, we also developed a baseline 285 

model that mimics the classical clinical scoring system RCRI [8]. The baseline model 286 

was a logistic regression model that included only RCRI. Our newly developed 287 
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machine learning model was compared numerically and statistically with this baseline 288 

model in AUROC and AUPRC performance. 289 

Machine learning model explainability 290 

We analyze and visualize the feature importance of the generated predictive 291 

model to comprehend how the model makes predictions and realize an explainable 292 

machine learning model. We used SHAP to analyze and visualize the effect of feature 293 

importance on perioperative MACEs risk based on best-performing predictive models. 294 

The SHAP value represents the effect of features on the prediction in terms of 295 

direction and range by calculating a weighted average and marginal distribution, 296 

which is calculated by comparing the predicted differences in all possible 297 

combinations containing and withholding each feature. 298 

Statistical analysis and modeling tools 299 

The normality of the distribution of continuous variables was tested using the 300 

Shapiro–Wilk test. Normally distributed continuous variables were expressed as mean 301 

± standard deviation (SD) and compared using the independent samples t-test. 302 

Skewed continuous variables were expressed as median and interquartile range (IQR) 303 

and compared using the Mann–Whitney U-test. Categorical variables are expressed as 304 

frequencies and percentages and using chi-square tests or Fisher's exact probability 305 

tests. The differences were considered to be statistically significant at p < 0.05. 306 

Machine learning model development and evaluation was performed in python 3.6 307 

using scikit-learn packages. 308 
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Results 309 

Participant characteristics 310 

We eliminated 4,486 patients based on exclusion criteria, and ultimately 9,171 311 

patients were included in our study. Among them, 514 (5.6%) patients suffered 312 

perioperative MACEs, as shown in Supplementary Table 1. Table 1 presents baseline 313 

clinical characteristics of the training and testing sets, respectively, and univariate 314 

analyses with and without MACEs. Overall, the baseline clinical characteristics of the 315 

training set and testing set samples appeared to be similar. Patients underwent a wide 316 

range of surgeries as expected in a tertiary referral hospital with a median age of 70 317 

(IQR, 64–77) years. General abdominal, thoracic, and vascular surgeries were most 318 

often performed. 319 

Missing-value characteristics 320 
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 The average proportion of missing values in this study dataset was 7.69%, and the 321 

proportion of the training and validation datasets (7.62%) and the testing dataset 322 

(7.99%) were basically the same (Supplementary Table 2). The missing values of 323 

preoperative laboratory tests, preoperative ECG and preoperative echocardiography 324 

were mainly due to the fact that the patient did not complete the corresponding 325 

examination in FAHZU, while the missing BMI value is mainly due to the patient's 326 

body being unable to measure normally. At the same time, we tested the correlation of 327 

missing values of different variables (Supplementary Figure. 1a), the correlation 328 

between the variables measured as a companion test (e.g., laboratory, ECG and 329 

echocardiogram tests) was high (absolute correlation value ≥ 0.7), while the 330 

correlation between BMI, laboratory variables, ECG variables, echocardiogram 331 

variables, and DOS variables was not remarkable (absolute correlation value ≤ 0.2). 332 

Comparison of data missing distribution and completeness of variables 333 

(Supplementary Figure. 1b, 1c), missing values include categorical and continuous 334 

variables, and there is no uniform pattern of missing values for each variable. Based 335 

on the miss at random mechanism of variables, we compared a variety of missing 336 

value imputation algorithm on the XGBoost model, cross-validation on the training 337 

dataset (Supplementary Table 3), and finally selected the k-Nearest Neighbor (KNN) 338 

imputation algorithm with the best performance in this study. 339 

Resample method 340 
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 The imbalanced training set data is processed by resampling method to overcome 341 

the performance loss caused by data imbalance. Table 2 presents the internal 342 

verification results of LR, RF and XGBoost models in each training set. As shown in 343 

the table, although the three models also achieved high AUROC and AUPRC 344 

performance before balancing the data, the extremely high specificity and extremely 345 

low sensitivity indicated that the classification model without data balance could not 346 

well identify MACEs patients (minority class) due to the inter-class imbalance in the 347 

data. In contrast, after using SMOTE, ANSYN and SMOTE+ENN for data balance, 348 

the sensitivity of the three models has significantly improved, and the indicators of 349 

AUROC and AUPRC have also increased. The results showed that the data balancing 350 

processing can effectively improve the recognition performance of the classification 351 

model for the few class samples. Further contrast the same prediction model based on 352 

different resampling methods to observe the corresponding changes in specificity and 353 

sensitivity. SMOTE+ENN is the best for data balancing and will be applied to model 354 

development and evaluation. 355 

Feature selection 356 

The total number of features in the data set after the pre-processing is 75, and the 357 

features are analyzed and selected sequentially based on eight feature selection 358 

methods. Figure 2A corresponds to the optimal feature subset of the eight feature 359 

selection methods and the AUROC performance of the internal validation set after 360 

cross-validation on the training set. The performance of the optimal subset after 361 

feature selection is better than that of the full feature (Supplementary Table 4), but it 362 
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is also related to the selected feature subset, in which the performance of the feature 363 

subset selected by RFE-XGB and RFE-LR methods is the best. Figure 2B shows that 364 

RFE combines five kinds of basis learning models, selects the best subset recursively 365 

based on the feature importance ranking of the learning model, and evaluating the 366 

AUROC performance of the internal validation set after cross-validation on the 367 

training set. When RFE-XGB and RFE- RF are used for feature selection, AUROC 368 

performance is maintained at a relatively high level when the number of features of 369 

the optimal subset is greater than or equal to 3, and the average AUROC is greater 370 

than 8.0. 371 

The performance and interpretability of the model are fully balanced, and the 372 

number threshold of features contained in the optimal feature subset is controlled 373 

between 3 and 30, and the feature combination with the best performance is selected 374 

by comparing eight feature selection methods. These features included patients' 375 

demographics [BMI], pre-existing diseases [Ischemic heart disease (IHD), and 376 

Dialysis], surgical information [DOS], preoperative echocardiography [fractional 377 

shortening (FS), left ventricular end systolic dimension (LVDs), LVEF and RWMA), 378 

pre-operative laboratory parameters [Leukocyte, Hb, FBF, Scr, Estimated glomerular 379 

filtration rate (eGFR), Total serum protein (TSP), Albumin (ALB), AST, 380 

Cholinesterase (ChE), Total bilirubin (TB), Total calcium (tCa), Chlorine, APTT, 381 

Fibrinogen (FB) and D-dimer], ASA PS. Subsequently, we carried out 382 

multicollinearity analysis of the selected features. First, correlation coefficients and 383 

corresponding P-values of the features were drawn in the heat map, and it was found 384 
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that TSP and ALB, Scr, eGFR and Dialysis may have collinearity (Supplementary 385 

Figure 2). The variance inflation factor (VIF) was further used for the feature 386 

multicollinearity test, and VIF values less than 5 indicated weak multicollinearity 387 

(Supplementary Table 5). It indicates that the features selected in this study can 388 

effectively avoid the negative effects of feature collinearity on the classification 389 

performance of the model. We ultimately used the above 24 features for model 390 

development and evaluation. 391 
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Machine learning model performance 392 

Eight independent candidate models were constructed for perioperative MACEs 393 

prediction using the twenty-four variables mentioned above. Figure 3 A, B presents 394 

the AUROC and the AUPRC of each candidate modeling method in test-set data. All 395 

eight candidate models exhibited superior prediction performances in terms of 396 

AUROC and AUPRC, compared to that of the Baseline-RCRI model, with significant 397 

differences in both AUROC and AUPRC by using the Delong Test and Permutation 398 

test (P <0.001). The XGBoost method delivered the best performance in terms of 399 

AUROC (0.898) and AUPRC (0.479). Table 3 presents the other metrics of mean 400 

values of bootstrapping performance of each model. Further, the DCA curves (Figure 401 

3C) demonstrate that the eight candidate models exhibited a greater net benefit along 402 

with the threshold probability compared with Baseline-RCRI models. The calibration 403 

curve of the eight candidate models is closer to the curve with a slope of 45° than the 404 

Baseline-RCRI model, indicating the better accuracy (Figure 3D), while the Brier 405 

scores were calculated, none exceeding 0.04, and was better than RCRI (0.05). 406 

Machine learning model hyperparameters are listed in Supplementary Table 6. 407 
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The eight prediction models were developed based on the training set data and 408 

5-fold cross-validation. The AUROC and AUPRC per fold on the internal validation 409 

set of the prediction models are shown in Supplementary Table 7. The results show 410 

that the performance is similar in each fold of the verification set, which indicates that 411 

the prediction model has good stability. Further, the internal verification results of 412 

different prediction models were compared with the external verification results.    413 

Figure 4 shows the comparison results of AUROC (A) and AUPRC (B) performance 414 

indicators of the verification set and the test set. The results show that the 415 

comprehensive performance of the validation set and the test set of the prediction 416 

model is similar, and the performance of the test set is slightly better than that of the 417 

verification set, which indicates that various prediction models in this study have 418 

good generalization performance. 419 

Model explainability 420 

Based on the optimal independent model XGBoost, by using SHAP analysis 421 

(Figure 5 A, B), we determined the top 20 features including IHD, ASA PS, Hb, DOS, 422 

LVDs, D-dimer, ALB, Chlorine, FBG, ChE, Leukocyte, Scr, RWMA, eGFR, BMI, 423 

TSP, APTT, tCa, Dialysis, and LVEF as important features for predicting new onset 424 

MACEs. In Figure 5A, we presented the relationships between their values and the 425 

effect of the model output. Intuitively, IHD, ASA PS, DOS, LVDs, D-dimer, FBG, 426 

Leukocyte, Scr, RWMA, APTT, and Dialysis were positively correlated with the 427 

MACEs, whereas Hb, ALB, Chlorine, ChE, eGFR, BMI, TSP, tCa, and LVEF were 428 

negatively correlated with the MACEs.  429 
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 In addition to the overall effect, we applied the SHAP framework to explain 430 

individual cases by providing influential features. Figure 5 shows 2 examples of 431 

random selection - a negative prediction (C) and a positive prediction (D). Features in 432 

blue represent features that contribute to a lower risk while features in red will push 433 

up the risk. These visualizations give users detailed information about how the model 434 

makes predictions and allow them to make appropriate interventions before the new 435 

onset MACEs. 436 

Model Stacking 437 

Stacking ensemble models were subsequently developed, and the stacking 438 

ensemble model is a two-layer structure, the first layer is composed of multiple base 439 

models, and the second layer is fixed as a logistic regression model. Based on the 8 440 

independent models of this study, 247 model combinations were listed by exhaustive 441 

method, and then the stacking model and output performance indicators were 442 

established and sorted. Overall, the top-ranked stacked ensemble model consisting of 443 

CatBoost, GBDT, GNB, and LR proved to be the best, with an AUROC value of 444 

0.894 (95% CI 0.860-0.928) and an AUPRC value of 0.485 (95% CI 0.383-0.587). 445 

Compared to the independent optimal prediction model XGBoost, the stacking model 446 

showed slightly higher AUPRC performance and net benefit value (Figure 6), as well 447 

as higher sensitivity (0.788). 448 

Discussion 449 

To our knowledge, this is the first study of a systematic framework based on 450 

machine learning techniques to develop multiple models, evaluate performance, and 451 
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select the highest-performing model to predict perioperative MACEs in patients with 452 

SCAD scheduled for NCS. This study shows that compared with the classical 453 

prediction model RCRI [8], the eight independent machine learning prediction models 454 

and the optimal stacking ensemble model have a great improvement in performance 455 

and clinical utility, and have satisfactory generalization, among which XGBoost has 456 

the best performance in the independent machine learning prediction model. IHD, 457 

ASA PS, Hb, DOS, LVDs, D-dimer, ALB, Chlorine, FBG and ChE were the top 10 458 

important characteristics affecting model performance. In addition, the model 459 

combining CatBoost, GBDT, GNB, and LR is considered to be the best model for 460 

stacking ensemble learning, further improving the AUPRC, clinical utility, and 461 

sensitivity of the predictive model. These findings help to identify perioperative 462 

MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide 463 

targeted clinical care through timely intervention. 464 

From the data set used in this study, there are some inherent characteristics in the 465 

data set that affect the classification performance of the prediction model, such as data 466 

missing and data imbalance. This paper proposes a series of research strategies to 467 

improve the performance of machine learning classification algorithms based on data 468 

processing. Missing data is a common occurrence in clinical research, and improper 469 

processing will significantly affect the efficacy of the classification model [35]. First, 470 

the identification of missing data mechanism is the basis of selecting missing data 471 

imputation method. There are three typical mechanisms causing missing data: missing 472 

completely at random (MCAR), missing at random (MAR), and missing not at 473 
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random (MNAR). In this study, the missing data mechanism was determined to be 474 

MAR through correlation test and integrity comparison of missing data. On this basis, 475 

different missing data imputation methods were compared, and the most effective one 476 

was selected according to the performance output of the internal validation set, while 477 

directly deleting missing data would lead to estimation bias [36]. Second, in terms of 478 

data balance, this study reconstructs the data set from the data itself. Primarily, 479 

resampling method is used to optimize the sample space, and then feature selection 480 

method is combined to optimize the feature space. After resampling the unbalanced 481 

data, the performance of all models has been significantly improved, especially the 482 

sensitivity of RF model increased from 0 to 0.874 after the SMOTE+ENN method. 483 

SMOTE+ENN method, after SMOTE algorithm generates new synthetic data set, 484 

uses ENN clearing technology to reduce the problem that SMOTE often introduces 485 

more noise and overfitting to some extent [37]. On the basis of selecting suitable 486 

resampling methods, the feature selection method based on AUC evaluation criteria 487 

was adopted in this study. Some studies have concluded through experiments that 488 

feature selection is more important than classification method selection in order to 489 

overcome overfitting problems and achieve better classification performance [38]. 490 

The feature selection method is used to delete category-irrelevant features, reduce the 491 

dimension of data, find a space that tends to represent the concepts of minority classes, 492 

correct the classifier's bias to the majority classes, and solve the unbalanced 493 

classification problem with poor classification performance of minority classes [39]. 494 

Although univariate analysis of clinical features was performed in this study, 495 
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threshold filtering features were not directly set according to p-value in the process of 496 

feature selection, mainly considering that univariate analysis might ignore the 497 

interaction between features [40]. The 8 feature selection methods in this study 498 

mainly select features based on the relevance and importance of features, and the 499 

results show that the performance of the model after feature selection is indeed 500 

improved. The internal verification performance comparison of different feature 501 

selection methods finally determines 24 effective features. The distribution of feature 502 

categories was fairly balanced, including 1 feature of patients' demographics, 2 503 

features of pre-existing diseases, 1 feature of surgical information, 4 features of 504 

preoperative echocardiography, 15 features of pre-operative laboratory parameters 505 

and ASA PS. The feature subset after feature selection is continued to be 506 

multicollinear detected and processed by correlation coefficient test and VIF method, 507 

so as to reduce the complexity of classification model construction and improve 508 

model stability and generalization ability. 509 

Considering the clinical applicability of the prediction model, the prediction 510 

model in this study uses only routine clinical and laboratory data and selects only a 511 

small number of features, which is conducive to the data being automatically 512 

collected through the program and the model being applied to other institutions to 513 

obtain stable performance. In addition, this study only used preoperative data, not 514 

intraoperative data, so it has the ability to predict prognosis before surgery. The use of 515 

intraoperative data may improve prediction accuracy but may lead to an exaggeration 516 

of model performance and delay in implementing interventions to patients. 517 
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In our study, XGBoost provided the best predictive performance among the 518 

independent models built. Compared with the classical model RCRI, which uses 519 

logistic regression with 6 equal weight variables, the main advantages of XGBoost 520 

model are the ability to capture the nonlinear relationships between the model features 521 

and the outcome, as well as having higher order interactions between features. 522 

Evaluates the performance of the machine learning predict model in external test set, 523 

performs 1000 rounds of bootstrapping sampling method to report the result 524 

confidence interval to evaluate the stability of the model parameters. The ROC curve 525 

and its corresponding AUC are a function of the sensitivity and specificity of the 526 

predictive model and are used to quantify the overall ability of the test to correctly 527 

identify normal and abnormal ones. The prediction models developed in this study all 528 

had AUROC values greater than 0.88 on the test set, and the AUROC value of the 529 

XGBoost model was close to 0.9, which means that on average, the test will correctly 530 

predict abnormal outcomes 90% of the time, and the model has excellent prediction 531 

ability. Compared with the ROC curve, the PRC curve assesses the true proportion of 532 

the positive prediction and provides more information on the prediction assessment of 533 

the imbalanced dataset. The AUPRC value is low compared to the higher AUROC 534 

value, and the AUPRC value of the prediction model we developed is between 0.39 535 

and 0.48, but it is still much higher than the classical model RCRI (AUPRC=0.185). 536 

The reason for the low AUPRC value is that the low incidence of perioperative 537 

MACEs leads to the imbalance of research data categories, although we have 538 

performed techniques such as resampling and feature selection before model 539 
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construction to try to reduce the impact of data imbalance on model performance, it is 540 

difficult to significantly increase the AUPRC value. In addition to the evaluation of 541 

the predictive performance of the model, we also reported the calibration of the model, 542 

which was reported in the form of a calibration plot. The calibration plot shows that 543 

the predictive model developed in this study is well calibrated, although it appears to 544 

have a tendency to slightly underestimate the risk of MACEs. ROC curve, PRC curve, 545 

sensitivity, specificity, and calibration for assessing predictive models are reported, 546 

but do not provide answers as to whether models are effective in clinical practice. 547 

Decision analysis attempts to address the question of clinical utility assessment by 548 

combining the clinical outcomes of the model [41]. The DCA curve shows that the 549 

developed prediction model has good clinical practicability and has obvious 550 

advantages over the classical RCRI model. Finally, in order to further improve the 551 

performance of the prediction model, we used a stacking ensemble algorithm based 552 

on the optimization of independent machine learning prediction models [31]. 553 

Compared with the XGBoost model, the optimal stacking model combining CatBoost, 554 

GBDT, GNB and LR improved the AUPRC, clinical practicability and sensitivity of 555 

the prediction model. 556 

The interpretability of machine learning predictions requires attention, so that 557 

doctors can understand them, trust them and gain useful insights for the clinical 558 

practice. However, the “black box” nature of the ML algorithm and the difficulty for 559 

clinicians to understand and trust the interpretation of the data are still the most 560 

difficult hurdle to overcome [42]. XGBoost was excellent at predicting post-operative 561 
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mortality, with performance comparable to deep learning [11]. Compared to deep 562 

learning, XGBoost has the advantage of using the SHAP to interpret the model output, 563 

demonstrating the possibility of solving the "black box" problem. In this study, taking 564 

XGBoost as an example, we calculated the SHAP values of important features and 565 

used SHAP graphs to intuitively show the impact of features on the prediction model. 566 

IHD, ASA PS, and Hb were the top three important features of the XGBoost. This is 567 

consistent with clinical practice because IHD, ASA PS, and Hb have been used as 568 

important predictive indicators in previous clinical prediction models [43]. It is worth 569 

mentioning that, chlorine was not considered as a predictive indicator in univariate 570 

analysis. However, chlorine was the eighth important feature in XGBoost. In fact, 571 

chlorine has been proved to be related to heart failure [44]. Most of the predictive 572 

indicators in XGBoost can be improved, which means the patients can benefit from 573 

appropriate preoperative intervention. 574 
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This study had several strengths. To begin with, there is a higher incidence of 575 

perioperative MACEs in the patient with SCAD scheduled for NCS compared to the 576 

general population, but few studies have been conducted. We have adopted a series of 577 

widely used machine learning algorithms and model evaluation techniques to build 578 

clinical prediction models, and achieved better performance and clinical practicability 579 

than the classical RCRI model, which has taken the first step to explore the research 580 

in this field. In addition, the prediction results based on the optimal machine learning 581 

model are interpretable, output the importance ranking and impact degree of the top 582 

20 features of MACEs risk prediction, and are consistent with clinical interpretation, 583 

which is conducive to the application of the model in clinical practice. Moreover, we 584 

use Bayesian algorithm to automatically adjust the model hyperparameters, so that the 585 

selection of appropriate missing data imputation method, resampling technology and 586 

feature selection method can be combined with automatic hyperparameter tuning, and 587 

it is also confirmed that the appropriate resampling technology combined with feature 588 

selection can greatly improve the impact of data imbalance on model performance. 589 

Finally, we put forward the stacking ensemble model, and use the exhaustion method 590 

to form 247 stacking models, evaluate the performance of each model in turn, and 591 

select the optimal stacking model. Compared with the optimal independent model 592 

XGBoost, the optimal stacking ensemble model showed slightly higher AUPRC 593 

performance and clinical utility, with higher sensitivity. 594 
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  The study has several limitations. First, in terms of feature collection, currently 595 

features are mainly from single text data of electronic medical records, and 596 

high-quality features can be extracted based on image (such as electrocardiogram) 597 

recognition technology. Second, we developed models based on data sets from a 598 

single medical center. Exploring the predictability of this model in other medical 599 

centers could add even more value. However, it should be noted that the data set in 600 

this study was extracted from 10 years of data from a large medical center with 601 

multiple hospitals, and the model evaluation used a testing set that was completely 602 

independent of model development as external validation. Third, as a retrospective 603 

study, the effect of predicting perioperative MACEs risk on prognosis in patients with 604 

SCAD remains unknown. 605 

In future studies, we will further develop and validate current machine learning 606 

models based on data from other large, multicentre populations that can predict 607 

different types of MACEs (e.g., all-cause death, resuscitated cardiac arrest, MI, HF 608 

and stroke) and provide interventions accordingly. Another direction is to integrate the 609 

model into the clinician's workflow by designing an interactive interface, integrating 610 

with electronic medical record systems, and further exploring the model's impact on 611 

clinician behavior and patient outcomes. 612 

Conclusion 613 

In this study, we analyzed the data missing mechanism and identified the best 614 

missing data interpolation method, while applying appropriate resampling techniques 615 

and feature selection methods for data imbalance characteristics, and ultimately 616 
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identified 24 preoperative features for building a machine learning predictive model. 617 

Eight independent machine learning prediction models and stacking ensemble models 618 

were built, and the models were evaluated comprehensively using ROC curve, PRC 619 

curve, calibration plots and DCA curve. The results show that the machine learning 620 

prediction model developed in this study has better prediction performance and 621 

generalization than the classical RCRI model, and has the potential to be applied in 622 

clinical practice. With further validation and refinement, machine learning predictive 623 

models can help more effectively assess perioperative MACEs risk and target 624 

interventions to at-risk populations, as well as provide better clinical access and ease 625 

of use. 626 

 627 

List of abbreviations 628 

NCS: non-cardiac surgery 629 

SCAD: stable coronary artery disease 630 

MACEs: major adverse cardiovascular events 631 

MI: myocardial infarction 632 

HF: heart failure 633 

RCRI: Revised Cardiac Risk index 634 

ML: Machine learning 635 

AI: artificial intelligence 636 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301253doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301253


32 
 

ECG: electrocardiogram 637 

FAHZU: First Affiliated Hospital, Zhejiang University School of Medicine 638 

TRIPOD: Transparent Reporting of Multivariable Prediction Models for Individual 639 

Prognosis or Diagnosis 640 

STROBE: STrengthening the Reporting of OBservational studies in Epidemiology 641 

ACC: American College of Cardiology 642 

AHA: American Heart Association 643 

ICD-10: International Classification of Diseases, Tenth Edition 644 

BMI: Body Mass Index 645 

DOS: duration of surgery 646 

GA: general anesthesia 647 

AQW: abnormal Q waves 648 

ST-Ta: ST-T wave abnormalities 649 

LVEF: left ventricular ejection fraction 650 

RWMA: regional wall motion abnormality 651 

LVDD: left ventricle diastolic dysfunction 652 

PH: pulmonary hypertension 653 

Hb: Hemoglobin 654 

FBG: Fasting blood glucose 655 
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Scr: Creatinine 656 

ASA PS: American Society of Anesthesiologists Physical Status 657 

IR: imbalance ratio 658 

AUROC: area under the receiver operating characteristic curve 659 

AUPRC: area under the precision and recall curve 660 

SMOTE: Synthetic minority over-sampling technique 661 

ADASYN: adaptive synthetic 662 

ENN: Edited Nearest Neighbors 663 

XGBoost: eXtreme Gradient Boosting 664 

CFS: correlation-based feature selection 665 

RFE: recursive feature elimination 666 

SHAP: SHapley Additive exPlanation 667 

LightGBM: Light Gradient Boosting Machine 668 

RF: Random Forest 669 

LR: logistic regression 670 

SVM: support vector machine 671 

GNB: Gaussian Naïve Bayesian 672 

GBDT: gradient boosting decision tree 673 

CatBoost: categorical boosting  674 
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ROC: receiver-operating characteristic 675 

PRC: curves and precision–recall curves 676 

DCA: decision curve analysis 677 

SD: standard deviation 678 

IQR: interquartile range 679 

KNN: k-Nearest Neighbor 680 

IHD: Ischemic heart disease 681 

FS: fractional shortening  682 

LVDs: left ventricular end systolic dimension 683 

eGFR: Estimated glomerular filtration rate 684 

TSP: Total serum protein  685 

ALB: Albumin 686 

ChE: Cholinesterase  687 

TB: Total bilirubin 688 

tCa: Total calcium 689 

FB: Fibrinogen 690 

VIF: variance inflation factor 691 

MCAR: missing completely at random  692 

MAR: missing at random 693 
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MNAR: missing not at random 694 
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Figure Legends 859 

Figure 1. Flowchart of study design route. 860 

Figure 2. Performance assessment of feature selection methods. (A) The optimal feature subset of 861 

the eight feature selection methods and the AUROC performance of the internal validation set 862 

after cross-validation on the training set. (B) RFE combines five kinds of basis learning models, 863 
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selects the best subset recursively based on the feature importance ranking of the learning model, 864 

and evaluating the AUROC performance of the internal validation set after cross-validation on the 865 

training set. 866 

Figure 3. Performance assessment of the models. (A) Receiver operating characteristic curve 867 

(ROC) of MACEs prediction models in testing set. (B) Precision-Recall curve (PRC) of MACEs 868 

prediction models in testing set. (C) Decision curve analysis (DCA) for the nine MACEs 869 

prediction models in the testing set. (D) Calibration plots of MACEs prediction models in the 870 

testing set. 871 

Figure 4. Compare the performance of validation sets and testing sets on different models. (A) 872 

Compare AUROC values of validation set and testing set. (B) Compare AUPRC values of 873 

validation set and testing set.  874 

Figure 5. SHAP interprets the XGBoost Predictive model. (A) The SHAP analysis was performed 875 

on the XGBoost. Each row of the graph represents a variable and the horizontal coordinate is the 876 

SHAP value, which represents the distribution of the effect of the variable on the risk of MACEs, 877 

with positive values indicating a risk of MACEs and negative values indicating no risk of MACEs.     878 

A point represents a patient, while red represents a higher value and blue represents a lower value.     879 

(B) The average of the absolute values of the SHAP values for each variable in the XGBoost is 880 

taken as the significance of that variable. (C) Examples of negative predictions for MACEs. (D) 881 

Examples of positive predictions for MACEs. 882 

Figure 6. The ROC, PR and DCA curve performance of stacking model. ROC: receiver operating 883 

characteristic; PR: precision-recall; DCA: decision curve analysis; AUROC: area under the 884 

receiver operating characteristic curve; AUPRC: area under precision-recall curve. 885 
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Tables 886 

Table 1. Baseline clinical characteristics of the study population and their association with 887 

perioperative outcomes. 888 

Variables 

Total  

(n=9171) 

Training and validation set (n=7336) Testing set (n=1835) 

Non-MACEs 

(n=6925) 

MACEs  

(n=411) 

P-value Non-MACEs 

(n=1732) 

MACEs  

(n=103) 

P-value 

Demographic 

Age (years) 70 (63, 76) 70 (64, 76) 72 (63, 79) 0.003 70 (63, 76) 69 (62, 77) 0.845 

Male 6133 (66.9) 4597 (66.4) 304 (74.0) 0.002 1155 (66.7) 77 (74.8) 0.090 

Body mass index 

(kg/m2) 

23.6 (21.5, 

25.7) 

23.7 (21.6, 

25.8) 

22.0 (19.9, 

24.4) 
<0.001 23.6 (21.5, 25.6) 

22.6 (19.8, 

24.4) 
0.003 

Comorbidities 

Hypertension 5737 (62.6) 4323 (62.4) 266 (64.7) 0.350 1076 (62.1) 72 (69.9) 0.113 

Diabetes mellitus 2534 (27.6) 1880 (27.1) 141 (34.3) 0.002 472 (27.3) 41 (39.8) 0.006 

Stroke 863 (9.4) 637 (9.2) 55 (13.4) 0.005 158 (9.1) 12 (11.7) 0.390 

Dialysis 196 (2.1) 119 (1.7) 51 (12.4) <0.001 18 (1.0) 8 (7.8) <0.001 

COPD 214 (2.3) 171 (2.5) 8 (1.9) 0.504 34 (2.0) 1 (1.0) 0.719 

Cardiac history 

Ischemic heart disease 3454 (37.7) 2498 (36.1) 252 (61.3) <0.001 641 (37.0) 63 (61.2) <0.001 

Myocardial infarction 2147 (23.4) 1567 (22.6) 116 (28.2) 0.009 434 (25.1) 30 (29.1) 0.356 

Heart failure 491 (5.4) 331 (4.8) 73 (17.8) <0.001 68 (3.9) 19 (18.4) <0.001 

Atrial fibrillation 416 (4.5) 286 (4.1) 48 (11.7) <0.001 74 (4.3) 8 (7.8) 0.132 

Valvular heart disease 168 (1.8) 122 (1.8) 18 (4.4) <0.001 22 (1.3) 6 (5.8) 0.004 

PTCA 1823 (19.9) 1373 (19.8) 78 (19.0) 0.675 349 (20.2) 23 (22.3) 0.593 

CABG 146 (1.6) 112 (1.6) 9 (2.2) 0.376 22 (1.3) 3 (2.9) 0.162 

Preoperative blood tests 

Leukocyte(×109/L) 6.2(5.1, 7.7) 6.2 (5.1, 7.6) 7.4(5.6, 10.3) <0.001 6.1 (5.0, 7.5) 7.3(5.4, 11.3) <0.001 

Hemoglobin (g/L) 
131 (117, 

144) 

132 (118, 144) 104 (84, 123) <0.001 132 (118, 144) 100 (82, 119) <0.001 

Platelet (×109/L) 
195 (157, 

239) 

195 (158, 239) 179 (134,237) <0.001 198 (158, 239) 182 (133,237) 0.023 

Fasting blood glucose 

(mmol/L) 

5.47 (4.83, 

6.68) 

5.45 (4.82, 

6.58) 

6.80 (5.20, 

9.23) 
<0.001 5.43 (4.81, 6.53) 

7.05 (5.23, 

9.69) 
<0.001 

Serum creatinine 

(μmol/L) 
77 (65, 93) 77 (65, 92) 94 (70, 176) <0.001 76 (65, 92) 85 (67, 139) <0.001 

eGFR 

(mL/min/1.73m2) 
81 (65, 91) 82 (66, 91) 62 (28, 84) <0.001 81 (66, 91) 71 (36, 90) <0.001 

Total serum protein 

(g/L) 

69.0 (64.0, 

73.2) 

69.3 (64.5, 

73.4) 

63.1 (55.5, 

68.4) 
<0.001 69.2 (64.1, 73.4) 

59.9 (53.8, 

68.6) 
<0.001 

Albumin (g/L) 
42.7 (38.6, 

45.8) 

42.9 (39.1, 

45.9) 

37.2 (32.4, 

41.3) 
<0.001 42.9 (39.2, 45.9) 

35.5 (31.3, 

39.8) 
<0.001 

Globulin (g/L) 26.1 (23.5, 26.2 (23.6, 25.3 (21.7, <0.001 26.0 (23.5, 29.0) 25.0 (20.8, 0.017 
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29.0) 29.0) 28.9) 29.6) 

ALT (U/L) 18 (13, 26) 18 (13, 26) 16 (10, 27) 0.001 18 (13, 27) 17 (11, 31) 0.738 

AST (U/L) 20 (16, 26) 20 (16, 25) 20 (15, 31) 0.225 20 (16, 26) 22 (15, 40) 0.078 

GGT (U/L) 25 (17, 42) 25 (17, 42) 27 (16, 52) 0.157 26 (17, 43) 29 (19, 68) 0.025 

ALP (U/L) 77 (63, 94) 76 (63, 94) 80 (62, 108) 0.043 77 (64, 93) 80 (62, 113) 0.170 

Cholinesterase (U/L) 
7435 (6151, 

8663) 

7500 (6280, 

8708) 

5546 (3976, 

7184) 
<0.001 

7553 (6289, 

8751) 

5360 (3294, 

7124) 
<0.001 

Total bilirubin 

(μmol/L) 

10.3 (7.6, 

14.3) 
10.3 (7.6, 14.3) 

9.0 (6.2, 

14.5) 
0.004 10.4 (7.9, 14.1) 

8.6 (6.8, 

16.7) 
0.393 

Direct bilirubin 

(μmol/L) 

4.0 (3.0, 

5.4) 
4.0 (3.0, 5.4) 

4.0 (3.0, 

6.1) 
0.174 4.0 (3.0, 5.5) 

4.3 (3.0, 

8.2) 
0.074 

Indirect bilirubin 

(μmol/L) 

6.0 (4.1, 

9.0) 
6.1 (4.2, 9.0) 

5.0 (3.0, 

7.4) 
<0.001 6.1 (4.4, 9.0) 

4.6 (3.0, 

8.4) 
<0.001 

Potassium (mmol/L) 
4.13 (3.85, 

4.42) 

4.14 (3.85, 

4.42) 

4.10 (3.70, 

4.46) 
0.081 4.13 (3.85, 4.44) 

3.99 (3.70, 

4.40) 
0.013 

Sodium (mmol/L) 

142.0 

(140.0, 

143.0) 

142.0 (140.0, 

143.0) 

140.0 

(138.0, 

143.0) 

<0.001 
142.0 (140.0, 

143.0) 

140.0 

(137.0, 

142.0) 

<0.001 

Chlorine (mmol/L) 

104.0 

(102.0, 

106.0) 

104.0 (102.0, 

106.0) 

104.0 

(101.0, 

107.0) 

0.765 
104.0 (102.0, 

106.0) 

104.0 

(101.0, 

107.0) 

0.728 

Total calcium(mmol/L) 
2.24 (2.14, 

2.33) 

2.25 (2.15, 

2.34) 

2.14 (2.00, 

2.25) 
<0.001 2.25 (2.16, 2.34) 

2.10 (2.00, 

2.24) 
<0.001 

Inorganic phosphorus 

(mmol/L) 

1.10 (0.97, 

1.22) 

1.10 (0.98, 

1.22) 

1.11 (0.95, 

1.33) 
0.027 1.09 (0.97, 1.21) 

1.06 (0.90, 

1.27) 
0.629 

Uric acid (μmol/L) 
316 (256, 

381) 
315 (257, 380) 

300 (230, 

389) 
0.022 320 (260, 384) 

294 (218, 

378) 
0.026 

Triglyceride (mmol/L) 
1.22 (0.91, 

1.69) 

1.22 (0.91, 

1.69) 

1.16 (0.87, 

1.56) 
0.019 1.21 (0.91, 1.70) 

1.22 (0.90, 

1.68) 
0.980 

Total cholesterol 

(mmol/L) 

3.64 (3.05, 

4.37) 

3.64 (3.06, 

4.36) 

3.41 (2.80, 

4.15) 
<0.001 3.70 (3.09, 4.46) 

3.45 (2.90, 

4.33) 
0.062 

LDL-C (mmol/L) 
1.83 (1.40, 

2.44) 

1.83 (1.41, 

2.43) 

1.73 (1.23, 

2.25) 
<0.001 1.87 (1.42, 2.51) 

1.74 (1.41, 

2.55) 
0.159 

PT (s) 
11.0 (10.9, 

12.1) 

11.4 (10.9, 

12.1) 

12.0 (11.3, 

13.3) 
<0.001 11.4 (10.9, 12.0) 

12.5 (11.7, 

13.5) 
<0.001 

APTT (s) 
27.2 (25.2, 

29.4) 

27.1 (25.2, 

29.3) 

28.6 (26.2, 

34.2) 
<0.001 27.1 (25.1, 29.1) 

29.9 (26.5, 

35.5) 
<0.001 

Fibrinogen (g/L) 
3.00 (2.53, 

3.65) 

2.99 (2.53, 

3.64) 

3.32 (2.49, 

4.34) 
<0.001 3.00 (2.56, 3.59) 

2.93 (2.28, 

4.18) 
0.717 

D-dimer(μg/L FEU) 
460 (234, 

1055) 
434 (223, 962) 

1366 (552, 

3788) 
<0.001 439 (230, 1000) 

2340 (704, 

5116) 
<0.001 

Preoperative ECG 

AQW 501 (6.3) 357 (5.9) 32 (10.3) 0.001 104 (6.9) 8 (12.1) 0.134 
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ST-Ta 3901 (49.0) 2913 (47.9) 204 (65.8) <0.001 739 (48.8) 45 (68.2) 0.002 

Preoperative echocardiography 

AO (mm) 
30.0 (27.0, 

33.0) 

30.0 (27.0, 

33.0) 

30.5 (28.0, 

33.0) 
0.108 30.0 (27.0, 32.0) 

30.0 (27.5, 

32.0) 
0.817 

IVSd (mm) 
9.0 (9.0, 

10.0) 
9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
<0.001 9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
0.124 

LVDd (mm) 
48.0 (44.0, 

51.0) 

47.0 (44.0, 

51.0) 

48.0 (45.0, 

52.0) 
0.001 48.0 (44.0, 51.0) 

50.0 (45.0, 

53.0) 
0.035 

FS (%) 
37.0 (33.0, 

40.0) 

37.0 (34.0, 

40.0) 

35.0 (31.8, 

39.0) 
<0.001 37.0 (34.0, 40.0) 

34.0 (31.0, 

39.0) 
<0.001 

LA (mm) 
34.0 (30.0, 

38.0) 

34.0 (30.0, 

38.0) 

35.0 (31.0, 

41.0) 
<0.001 34.0 (30.3, 37.0) 

35.0 (31.0, 

40.0) 
0.044 

LVPWd (mm) 
9.0 (9.0, 

10.0) 
9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
<0.001 9.0 (9.0, 10.0) 

10.0 (8.5, 

11.0) 
0.334 

LVDs (mm) 
30.0 (27.0, 

33.0) 

30.0 (27.0, 

32.0) 

31.0 (28.0, 

35.0) 
<0.001 30.0 (27.0, 33.0) 

31.0 (27.0, 

35.0) 
0.055 

LVEF (%) 
66.0 (62.0, 

71.0) 

66.0 (62.0, 

71.0) 

63.0 (58.0, 

69.0) 
<0.001 66.0 (62.0, 70.0) 

62.0 (58.3, 

68.8) 
<0.001 

RWMA 532 (7.5) 348 (6.5) 68 (19.7) <0.001 90 (6.9) 26 (28.9) <0.001 

PH 326 (4.6) 221 (4.1) 47 (13.6) <0.001 49 (3.7) 9 (10.0) <0.001 

LVDD 6210 (87.1) 4741 (88.1) 253 (73.1) <0.001 1155 (88.1) 61 (67.8) <0.001 

ASA class    <0.001   <0.001 

Ⅱ 3887 (42.4) 3072 (44.4) 61 (14.8)  742 (42.8) 12 (11.7)  

Ⅲ 5210 (56.8) 3834 (55.4) 312 (75.9)  985 (56.9) 79 (76.7)  

Ⅳ 74 (0.8) 19 (0.3) 38 (9.2)  5 (0.3) 12 (11.7)  

General anesthesia 6702 (73.1) 5016 (72.4) 338 (82.2) <0.001 1273 (73.5) 75 (72.8) 0.879 

Types of surgery 

General 2823 (30.8) 2082 (30.1) 154 (37.5) 0.002 546 (31.5) 41 (39.8) 0.080 

Abdominal 2156 (23.5) 1573 (22.7) 131 (31.9) <0.001 414 (23.9) 38 (36.9) 0.003 

Nonabdominal 667 (7.3) 509 (7.4) 23 (5.6) 0.183 132 (7.6) 3 (2.9) 0.075 

Thoracic 1060 (11.6) 805 (11.6) 29 (7.1) 0.005 219 (12.6) 7 (6.8) 0.079 

Orthopedic 854 (9.3) 643 (9.3) 46 (11.2) 0.198 154 (8.9) 11 (10.7) 0.538 

ENT 236 (2.6) 192 (2.8) 2 (0.5) 0.005 39 (2.3) 3 (2.9) 0.509 

Neurological 444 (4.8) 321 (4.6) 31 (7.5) 0.007 80 (4.6) 12 (11.7) 0.001 

Gynecologic 171 (1.9) 139 (2.0) 4 (1.0) 0.141 27 (1.6) 1 (1.0) 1.000 

Urologic 1550 (16.9) 1185 (17.1) 54 (13.1) 0.037 307 (17.7) 4 (3.9) <0.001 

Ophthalmology 767 (8.4) 603 (8.7) 1 (0.2) <0.001 162 (9.4) 1 (1.0) 0.001 

Vascular 1113 (12.1) 835 (12.1) 87 (21.2) <0.001 169 (9.8) 22 (21.4) <0.001 

Aortic 113 (1.2) 76 (1.1) 16 (3.9) <0.001 17 (1.0) 4 (3.9) 0.027 

Non-aortic 1000 (10.9) 759 (11.0) 71 (17.3) <0.001 152 (8.8) 18 (17.5) 0.003 

Dental 153 (1.7) 120 (1.7) 3 (0.7) 0.124 29 (1.7) 1 (1.0) 1.000 

DOS (min) 87 (50, 147) 84 (49, 141) 140 (80, 211) <0.001 87 (50, 144) 139(79, 234) <0.001 

Notes: Results presented as median (IQR), or n (%). 889 
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Abbreviations:COPD, chronic obstructive pulmonary disease; PTCA, percutaneous transluminal coronary angioplasty; CABG, coronary 890 

artery bypass graft; eGFR, estimated glomerular filtration rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, 891 

gamma-glutamyl transferase; ALP, alkaline phosphatase;  LDL-C, low density lipoprotein cholesterol; PT,  prothrombin time; APTT, 892 

activated partial thromboplastin time; AQW,  abnormal Q waves; ST-Ta, ST-T wave abnormalities; AO, aorta diameter; IVSd, 893 

interventricular septum thickness at end diastole; LVDd, left ventricular end diastolic dimension; FS, fractional shortening; LA, left atrial 894 

anteroposterior dimension; LVPWd, left ventricular posterior wall thickness at end diastole; LVDs, left ventricular end systolic 895 

dimension; LVEF, left ventricular ejection fraction; RWMA, regional wall motion abnormality; PH, pulmonary hypertension; LVDD, 896 

left ventricle diastolic dysfunction; ASA, American Society of Anesthesiologists; ENT, ear, nose, and throat; DOS, duration of surgery. 897 
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Table 2. The internal verification results of models trained were obtained by using different 898 

balanced class methods combined with cross-validation using all features. 899 

Models Methods AUROC(95%CI) AUPRC(95%CI) Accuracy Specificity Sensitivity 
Youden 

Index 

LR - 0.879(+/-0.024) 0.451(+/-0.126) 0.879 0.991 0.270 0.261 

RF - 0.864(+/-0.036) 0.414(+/-0.095) 0.944 1.000 0.000 0.000 

XGBoost - 0.862(+/-0.047) 0.403(+/-0.055) 0.946 1.000 0.034 0.034 

LR SMOTE 0.867(+/-0.036) 0.412(+/-0.121) 0.824 0.828 0.757 0.585 

RF SMOTE 0.870(+/-0.047) 0.386(+/-0.105) 0.943 0.979 0.343 0.322 

XGBoost SMOTE 0.875(+/-0.041) 0.427(+/-0.137) 0.942 0.976 0.372 0.348 

LR ANSYN 0.864(+/-0.041) 0.408(+/-0.134) 0.806 0.809 0.764 0.573 

RF ANSYN 0.871(+/-0.044) 0.388(+/-0.104) 0.941 0.973 0.399 0.372 

XGBoost ANSYN 0.877(+/-0.035) 0.415(+/-0.137) 0.947 0.982 0.348 0.330 

LR SMOTE+ENN 0.868(+/-0.036) 0.396(+/-0.105) 0.726 0.719 0.842 0.561 

RF SMOTE+ENN 0.863(+/-0.053) 0.360(+/-0.096) 0.864 0.691 0.874 0.565 

XGBoost SMOTE+ENN 0.872(+/-0.037) 0.397(+/-0.105) 0.894 0.907 0.672 0.579 

Table 3. The predictive performance in the test set of the 9 models. LR: logistic regression; SVM: 900 

support vector machine; GNB: Gaussian Naive Bayes; RF: random forest; GBDT: gradient 901 

boosting decision tree; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting 902 

machine; CatBoost: categorical boosting; AUROC: area under the receiver operating characteristic 903 

curve; AUPRC: area under the precision recall curve. 904 

Models 
AUROC 

(95%CI) 

AUPRC 

(95%CI) 
Accuracy Specificity Precision 

 Recall 

(Sensitivity) 

F1 

score 

Youden 

Index 

Baseline-RCRI 0.716(+/-0.045) 0.185(+/-0.078) 0.679 0.680 0.109 0.662 0.187 0.342 

LR 0.896(+/-0.033) 0.438(+/-0.106) 0.732 0.722 0.160 0.895 0.271 0.617 

SVM 0.892(+/-0.034) 0.431(+/-0.103) 0.780 0.777 0.181 0.837 0.298 0.613 

GNB 0.880(+/-0.034) 0.392(+/-0.081) 0.879 0.887 0.279 0.740 0.404 0.627 

RF 0.892(+/-0.035) 0.454(+/-0.099) 0.777 0.773 0.181 0.845 0.297 0.618 

GBDT 0.895(+/-0.032) 0.460(+/-0.103) 0.901 0.916 0.314 0.652 0.423 0.568 

XGBoost 0.898(+/-0.034) 0.479(+/-0.101) 0.874 0.881 0.271 0.748 0.397 0.629 

LightGBM 0.897(+/-0.033) 0.445(+/-0.102) 0.845 0.850 0.230 0.758 0.353 0.608 

CatBoost 0.890(+/-0.034) 0.448(+/-0.102) 0.804 0.803 0.199 0.826 0.320 0.630 

Figures 905 
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 906 

Figure 1.  907 
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 908 

Figure 2.  909 

 910 

Figure 3. 911 
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 912 

Figure 4.  913 

914 

Figure 5. 915 
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 916 

Figure 6.  917 

 918 
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Table 1. Baseline clinical characteristics of the study population and their association with 

perioperative outcomes. 

Variables 

Total  

(n=9171) 

Training and validation set (n=7336) Testing set (n=1835) 

Non-MACEs 

(n=6925) 

MACEs  

(n=411) 

P-value Non-MACEs 

(n=1732) 

MACEs  

(n=103) 

P-value 

Demographic 

Age (years) 70 (63, 76) 70 (64, 76) 72 (63, 79) 0.003 70 (63, 76) 69 (62, 77) 0.845 

Male 6133 (66.9) 4597 (66.4) 304 (74.0) 0.002 1155 (66.7) 77 (74.8) 0.090 

Body mass index 

(kg/m2) 

23.6 (21.5, 

25.7) 

23.7 (21.6, 

25.8) 

22.0 (19.9, 

24.4) 
<0.001 23.6 (21.5, 25.6) 

22.6 (19.8, 

24.4) 
0.003 

Comorbidities 

Hypertension 5737 (62.6) 4323 (62.4) 266 (64.7) 0.350 1076 (62.1) 72 (69.9) 0.113 

Diabetes mellitus 2534 (27.6) 1880 (27.1) 141 (34.3) 0.002 472 (27.3) 41 (39.8) 0.006 

Stroke 863 (9.4) 637 (9.2) 55 (13.4) 0.005 158 (9.1) 12 (11.7) 0.390 

Dialysis 196 (2.1) 119 (1.7) 51 (12.4) <0.001 18 (1.0) 8 (7.8) <0.001 

COPD 214 (2.3) 171 (2.5) 8 (1.9) 0.504 34 (2.0) 1 (1.0) 0.719 

Cardiac history 

Ischemic heart disease 3454 (37.7) 2498 (36.1) 252 (61.3) <0.001 641 (37.0) 63 (61.2) <0.001 

Myocardial infarction 2147 (23.4) 1567 (22.6) 116 (28.2) 0.009 434 (25.1) 30 (29.1) 0.356 

Heart failure 491 (5.4) 331 (4.8) 73 (17.8) <0.001 68 (3.9) 19 (18.4) <0.001 

Atrial fibrillation 416 (4.5) 286 (4.1) 48 (11.7) <0.001 74 (4.3) 8 (7.8) 0.132 

Valvular heart disease 168 (1.8) 122 (1.8) 18 (4.4) <0.001 22 (1.3) 6 (5.8) 0.004 

PTCA 1823 (19.9) 1373 (19.8) 78 (19.0) 0.675 349 (20.2) 23 (22.3) 0.593 

CABG 146 (1.6) 112 (1.6) 9 (2.2) 0.376 22 (1.3) 3 (2.9) 0.162 

Preoperative blood tests 

Leukocyte(×109/L) 6.2(5.1, 7.7) 6.2 (5.1, 7.6) 7.4(5.6, 10.3) <0.001 6.1 (5.0, 7.5) 7.3(5.4, 11.3) <0.001 

Hemoglobin (g/L) 
131 (117, 

144) 

132 (118, 144) 104 (84, 123) <0.001 132 (118, 144) 100 (82, 119) <0.001 

Platelet (×109/L) 
195 (157, 

239) 

195 (158, 239) 179 (134,237) <0.001 198 (158, 239) 182 (133,237) 0.023 

Fasting blood glucose 

(mmol/L) 

5.47 (4.83, 

6.68) 

5.45 (4.82, 

6.58) 

6.80 (5.20, 

9.23) 
<0.001 5.43 (4.81, 6.53) 

7.05 (5.23, 

9.69) 
<0.001 

Serum creatinine 

(μmol/L) 
77 (65, 93) 77 (65, 92) 94 (70, 176) <0.001 76 (65, 92) 85 (67, 139) <0.001 

eGFR 

(mL/min/1.73m2) 
81 (65, 91) 82 (66, 91) 62 (28, 84) <0.001 81 (66, 91) 71 (36, 90) <0.001 

Total serum protein 

(g/L) 

69.0 (64.0, 

73.2) 

69.3 (64.5, 

73.4) 

63.1 (55.5, 

68.4) 
<0.001 69.2 (64.1, 73.4) 

59.9 (53.8, 

68.6) 
<0.001 

Albumin (g/L) 
42.7 (38.6, 

45.8) 

42.9 (39.1, 

45.9) 

37.2 (32.4, 

41.3) 
<0.001 42.9 (39.2, 45.9) 

35.5 (31.3, 

39.8) 
<0.001 

Globulin (g/L) 
26.1 (23.5, 

29.0) 

26.2 (23.6, 

29.0) 

25.3 (21.7, 

28.9) 
<0.001 26.0 (23.5, 29.0) 

25.0 (20.8, 

29.6) 
0.017 

ALT (U/L) 18 (13, 26) 18 (13, 26) 16 (10, 27) 0.001 18 (13, 27) 17 (11, 31) 0.738 
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AST (U/L) 20 (16, 26) 20 (16, 25) 20 (15, 31) 0.225 20 (16, 26) 22 (15, 40) 0.078 

GGT (U/L) 25 (17, 42) 25 (17, 42) 27 (16, 52) 0.157 26 (17, 43) 29 (19, 68) 0.025 

ALP (U/L) 77 (63, 94) 76 (63, 94) 80 (62, 108) 0.043 77 (64, 93) 80 (62, 113) 0.170 

Cholinesterase (U/L) 
7435 (6151, 

8663) 

7500 (6280, 

8708) 

5546 (3976, 

7184) 
<0.001 

7553 (6289, 

8751) 

5360 (3294, 

7124) 
<0.001 

Total bilirubin 

(μmol/L) 

10.3 (7.6, 

14.3) 
10.3 (7.6, 14.3) 

9.0 (6.2, 

14.5) 
0.004 10.4 (7.9, 14.1) 

8.6 (6.8, 

16.7) 
0.393 

Direct bilirubin 

(μmol/L) 

4.0 (3.0, 

5.4) 
4.0 (3.0, 5.4) 

4.0 (3.0, 

6.1) 
0.174 4.0 (3.0, 5.5) 

4.3 (3.0, 

8.2) 
0.074 

Indirect bilirubin 

(μmol/L) 

6.0 (4.1, 

9.0) 
6.1 (4.2, 9.0) 

5.0 (3.0, 

7.4) 
<0.001 6.1 (4.4, 9.0) 

4.6 (3.0, 

8.4) 
<0.001 

Potassium (mmol/L) 
4.13 (3.85, 

4.42) 

4.14 (3.85, 

4.42) 

4.10 (3.70, 

4.46) 
0.081 4.13 (3.85, 4.44) 

3.99 (3.70, 

4.40) 
0.013 

Sodium (mmol/L) 

142.0 

(140.0, 

143.0) 

142.0 (140.0, 

143.0) 

140.0 

(138.0, 

143.0) 

<0.001 
142.0 (140.0, 

143.0) 

140.0 

(137.0, 

142.0) 

<0.001 

Chlorine (mmol/L) 

104.0 

(102.0, 

106.0) 

104.0 (102.0, 

106.0) 

104.0 

(101.0, 

107.0) 

0.765 
104.0 (102.0, 

106.0) 

104.0 

(101.0, 

107.0) 

0.728 

Total calcium(mmol/L) 
2.24 (2.14, 

2.33) 

2.25 (2.15, 

2.34) 

2.14 (2.00, 

2.25) 
<0.001 2.25 (2.16, 2.34) 

2.10 (2.00, 

2.24) 
<0.001 

Inorganic phosphorus 

(mmol/L) 

1.10 (0.97, 

1.22) 

1.10 (0.98, 

1.22) 

1.11 (0.95, 

1.33) 
0.027 1.09 (0.97, 1.21) 

1.06 (0.90, 

1.27) 
0.629 

Uric acid (μmol/L) 
316 (256, 

381) 
315 (257, 380) 

300 (230, 

389) 
0.022 320 (260, 384) 

294 (218, 

378) 
0.026 

Triglyceride (mmol/L) 
1.22 (0.91, 

1.69) 

1.22 (0.91, 

1.69) 

1.16 (0.87, 

1.56) 
0.019 1.21 (0.91, 1.70) 

1.22 (0.90, 

1.68) 
0.980 

Total cholesterol 

(mmol/L) 

3.64 (3.05, 

4.37) 

3.64 (3.06, 

4.36) 

3.41 (2.80, 

4.15) 
<0.001 3.70 (3.09, 4.46) 

3.45 (2.90, 

4.33) 
0.062 

LDL-C (mmol/L) 
1.83 (1.40, 

2.44) 

1.83 (1.41, 

2.43) 

1.73 (1.23, 

2.25) 
<0.001 1.87 (1.42, 2.51) 

1.74 (1.41, 

2.55) 
0.159 

PT (s) 
11.0 (10.9, 

12.1) 

11.4 (10.9, 

12.1) 

12.0 (11.3, 

13.3) 
<0.001 11.4 (10.9, 12.0) 

12.5 (11.7, 

13.5) 
<0.001 

APTT (s) 
27.2 (25.2, 

29.4) 

27.1 (25.2, 

29.3) 

28.6 (26.2, 

34.2) 
<0.001 27.1 (25.1, 29.1) 

29.9 (26.5, 

35.5) 
<0.001 

Fibrinogen (g/L) 
3.00 (2.53, 

3.65) 

2.99 (2.53, 

3.64) 

3.32 (2.49, 

4.34) 
<0.001 3.00 (2.56, 3.59) 

2.93 (2.28, 

4.18) 
0.717 

D-dimer(μg/L FEU) 
460 (234, 

1055) 
434 (223, 962) 

1366 (552, 

3788) 
<0.001 439 (230, 1000) 

2340 (704, 

5116) 
<0.001 

Preoperative ECG 

AQW 501 (6.3) 357 (5.9) 32 (10.3) 0.001 104 (6.9) 8 (12.1) 0.134 

ST-Ta 3901 (49.0) 2913 (47.9) 204 (65.8) <0.001 739 (48.8) 45 (68.2) 0.002 

Preoperative echocardiography 
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AO (mm) 
30.0 (27.0, 

33.0) 

30.0 (27.0, 

33.0) 

30.5 (28.0, 

33.0) 
0.108 30.0 (27.0, 32.0) 

30.0 (27.5, 

32.0) 
0.817 

IVSd (mm) 
9.0 (9.0, 

10.0) 
9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
<0.001 9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
0.124 

LVDd (mm) 
48.0 (44.0, 

51.0) 

47.0 (44.0, 

51.0) 

48.0 (45.0, 

52.0) 
0.001 48.0 (44.0, 51.0) 

50.0 (45.0, 

53.0) 
0.035 

FS (%) 
37.0 (33.0, 

40.0) 

37.0 (34.0, 

40.0) 

35.0 (31.8, 

39.0) 
<0.001 37.0 (34.0, 40.0) 

34.0 (31.0, 

39.0) 
<0.001 

LA (mm) 
34.0 (30.0, 

38.0) 

34.0 (30.0, 

38.0) 

35.0 (31.0, 

41.0) 
<0.001 34.0 (30.3, 37.0) 

35.0 (31.0, 

40.0) 
0.044 

LVPWd (mm) 
9.0 (9.0, 

10.0) 
9.0 (9.0, 10.0) 

10.0 (9.0, 

11.0) 
<0.001 9.0 (9.0, 10.0) 

10.0 (8.5, 

11.0) 
0.334 

LVDs (mm) 
30.0 (27.0, 

33.0) 

30.0 (27.0, 

32.0) 

31.0 (28.0, 

35.0) 
<0.001 30.0 (27.0, 33.0) 

31.0 (27.0, 

35.0) 
0.055 

LVEF (%) 
66.0 (62.0, 

71.0) 

66.0 (62.0, 

71.0) 

63.0 (58.0, 

69.0) 
<0.001 66.0 (62.0, 70.0) 

62.0 (58.3, 

68.8) 
<0.001 

RWMA 532 (7.5) 348 (6.5) 68 (19.7) <0.001 90 (6.9) 26 (28.9) <0.001 

PH 326 (4.6) 221 (4.1) 47 (13.6) <0.001 49 (3.7) 9 (10.0) <0.001 

LVDD 6210 (87.1) 4741 (88.1) 253 (73.1) <0.001 1155 (88.1) 61 (67.8) <0.001 

ASA class    <0.001   <0.001 

Ⅱ 3887 (42.4) 3072 (44.4) 61 (14.8)  742 (42.8) 12 (11.7)  

Ⅲ 5210 (56.8) 3834 (55.4) 312 (75.9)  985 (56.9) 79 (76.7)  

Ⅳ 74 (0.8) 19 (0.3) 38 (9.2)  5 (0.3) 12 (11.7)  

General anesthesia 6702 (73.1) 5016 (72.4) 338 (82.2) <0.001 1273 (73.5) 75 (72.8) 0.879 

Types of surgery 

General 2823 (30.8) 2082 (30.1) 154 (37.5) 0.002 546 (31.5) 41 (39.8) 0.080 

Abdominal 2156 (23.5) 1573 (22.7) 131 (31.9) <0.001 414 (23.9) 38 (36.9) 0.003 

Nonabdominal 667 (7.3) 509 (7.4) 23 (5.6) 0.183 132 (7.6) 3 (2.9) 0.075 

Thoracic 1060 (11.6) 805 (11.6) 29 (7.1) 0.005 219 (12.6) 7 (6.8) 0.079 

Orthopedic 854 (9.3) 643 (9.3) 46 (11.2) 0.198 154 (8.9) 11 (10.7) 0.538 

ENT 236 (2.6) 192 (2.8) 2 (0.5) 0.005 39 (2.3) 3 (2.9) 0.509 

Neurological 444 (4.8) 321 (4.6) 31 (7.5) 0.007 80 (4.6) 12 (11.7) 0.001 

Gynecologic 171 (1.9) 139 (2.0) 4 (1.0) 0.141 27 (1.6) 1 (1.0) 1.000 

Urologic 1550 (16.9) 1185 (17.1) 54 (13.1) 0.037 307 (17.7) 4 (3.9) <0.001 

Ophthalmology 767 (8.4) 603 (8.7) 1 (0.2) <0.001 162 (9.4) 1 (1.0) 0.001 

Vascular 1113 (12.1) 835 (12.1) 87 (21.2) <0.001 169 (9.8) 22 (21.4) <0.001 

Aortic 113 (1.2) 76 (1.1) 16 (3.9) <0.001 17 (1.0) 4 (3.9) 0.027 

Non-aortic 1000 (10.9) 759 (11.0) 71 (17.3) <0.001 152 (8.8) 18 (17.5) 0.003 

Dental 153 (1.7) 120 (1.7) 3 (0.7) 0.124 29 (1.7) 1 (1.0) 1.000 

DOS (min) 87 (50, 147) 84 (49, 141) 140 (80, 211) <0.001 87 (50, 144) 139(79, 234) <0.001 

Notes: Results presented as median (IQR), or n (%). 

Abbreviations:COPD, chronic obstructive pulmonary disease; PTCA, percutaneous transluminal coronary angioplasty; CABG, coronary 

artery bypass graft; eGFR, estimated glomerular filtration rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, 
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gamma-glutamyl transferase; ALP, alkaline phosphatase;  LDL-C, low density lipoprotein cholesterol; PT,  prothrombin time; APTT, 

activated partial thromboplastin time; AQW,  abnormal Q waves; ST-Ta, ST-T wave abnormalities; AO, aorta diameter; IVSd, 

interventricular septum thickness at end diastole; LVDd, left ventricular end diastolic dimension; FS, fractional shortening; LA, left atrial 

anteroposterior dimension; LVPWd, left ventricular posterior wall thickness at end diastole; LVDs, left ventricular end systolic 

dimension; LVEF, left ventricular ejection fraction; RWMA, regional wall motion abnormality; PH, pulmonary hypertension; LVDD, 

left ventricle diastolic dysfunction; ASA, American Society of Anesthesiologists; ENT, ear, nose, and throat; DOS, duration of surgery. 
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Table 2. The internal verification results of models trained were obtained by using different 

balanced class methods combined with cross-validation using all features. 

Models Methods AUROC(95%CI) AUPRC(95%CI) Accuracy Specificity Sensitivity 
Youden 

Index 

LR - 0.879(+/-0.024) 0.451(+/-0.126) 0.879 0.991 0.270 0.261 

RF - 0.864(+/-0.036) 0.414(+/-0.095) 0.944 1.000 0.000 0.000 

XGBoost - 0.862(+/-0.047) 0.403(+/-0.055) 0.946 1.000 0.034 0.034 

LR SMOTE 0.867(+/-0.036) 0.412(+/-0.121) 0.824 0.828 0.757 0.585 

RF SMOTE 0.870(+/-0.047) 0.386(+/-0.105) 0.943 0.979 0.343 0.322 

XGBoost SMOTE 0.875(+/-0.041) 0.427(+/-0.137) 0.942 0.976 0.372 0.348 

LR ANSYN 0.864(+/-0.041) 0.408(+/-0.134) 0.806 0.809 0.764 0.573 

RF ANSYN 0.871(+/-0.044) 0.388(+/-0.104) 0.941 0.973 0.399 0.372 

XGBoost ANSYN 0.877(+/-0.035) 0.415(+/-0.137) 0.947 0.982 0.348 0.330 

LR SMOTE+ENN 0.868(+/-0.036) 0.396(+/-0.105) 0.726 0.719 0.842 0.561 

RF SMOTE+ENN 0.863(+/-0.053) 0.360(+/-0.096) 0.864 0.691 0.874 0.565 

XGBoost SMOTE+ENN 0.872(+/-0.037) 0.397(+/-0.105) 0.894 0.907 0.672 0.579 
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Table 3. The predictive performance in the test set of the 9 models. LR: logistic regression; SVM: 

support vector machine; GNB: Gaussian Naive Bayes; RF: random forest; GBDT: gradient 

boosting decision tree; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting 

machine; CatBoost: categorical boosting; AUROC: area under the receiver operating characteristic 

curve; AUPRC: area under the precision recall curve. 

Models 
AUROC 

(95%CI) 

AUPRC 

(95%CI) 
Accuracy Specificity Precision 

 Recall 

(Sensitivity) 

F1 

score 

Youden 

Index 

Baseline-RCRI 0.716(+/-0.045) 0.185(+/-0.078) 0.679 0.680 0.109 0.662 0.187 0.342 

LR 0.896(+/-0.033) 0.438(+/-0.106) 0.732 0.722 0.160 0.895 0.271 0.617 

SVM 0.892(+/-0.034) 0.431(+/-0.103) 0.780 0.777 0.181 0.837 0.298 0.613 

GNB 0.880(+/-0.034) 0.392(+/-0.081) 0.879 0.887 0.279 0.740 0.404 0.627 

RF 0.892(+/-0.035) 0.454(+/-0.099) 0.777 0.773 0.181 0.845 0.297 0.618 

GBDT 0.895(+/-0.032) 0.460(+/-0.103) 0.901 0.916 0.314 0.652 0.423 0.568 

XGBoost 0.898(+/-0.034) 0.479(+/-0.101) 0.874 0.881 0.271 0.748 0.397 0.629 

LightGBM 0.897(+/-0.033) 0.445(+/-0.102) 0.845 0.850 0.230 0.758 0.353 0.608 

CatBoost 0.890(+/-0.034) 0.448(+/-0.102) 0.804 0.803 0.199 0.826 0.320 0.630 
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