1	Machine learning-based predictive models for
2	perioperative major adverse cardiovascular events in
3	patients with stable coronary artery disease undergoing
4	non-cardiac surgery
5	Liang Shen ^{1&} , YunPeng Jin ^{2&} , AXiang Pan ¹ , Kai Wang ² , RunZe Ye ² , YangKai
6	Lin ² , Safraz Anwar ² , WeiCong Xia ² , Min Zhou ^{1#} , XiaoGang Guo ^{2#}
7	¹ Department of Information Technology, The First Affiliated Hospital, Zhejiang
8	University School of Medicine, Hangzhou 310003, China;
9	² Department of Cardiovascular Medicine, The First Affiliated Hospital, Zhejiang
10	University School of Medicine, Hangzhou 310003, China;
11	&. These authors contributed equally to this work and should be considered co-first
12	authors.
13	#. These authors contributed equally to this work and should be considered
14	co-corresponding authors.
15	Corresponding authors:
16	Min Zhou, E-mail: minzhou@zju.edu.cn
17	XiaoGang Guo, E-mail: gxg22222@zju.edu.cn
18	Abstract
19	Background: Machine learning (ML)-based predictive models for perioperative
20	major adverse cardiovascular events (MACEs) in patients with stable coronary artery
21	disease (SCAD) undergoing non-cardiac surgery (NCS) have not been reported
22 ^{NO}	TE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. DETORE.

23	Methods: Clinical data from 9171 consecutive adult patients with SCAD, who
24	underwent NCS at the First Affiliated Hospital, Zhejiang University School of
25	Medicine between January 2013 and May 2023, were used to develop and validate the
26	prediction models. MACEs were defined as all-cause death, resuscitated cardiac arrest,
27	myocardial infarction, heart failure and stroke perioperatively. Compare various
28	resampling and feature selection methods to deal with data imbalance. A traditional
29	logistic regression (the Revised Cardiac Risk index, RCRI) and nine ML models
30	(logistic regression, support vector machine, Gaussian Naive Bayes, random forest,
31	GBDT, XGBoost, LightGBM, CatBoost and best stacking ensemble model) were
32	compared by the area under the receiver operating characteristic curve (AUROC) and
33	the area under the precision recall curve (AUPRC). The calibration was assessed
34	using the calibration curve and the patients' net benefit was measured by decision
35	curve analysis (DCA). Models were tested via 5-fold cross-validation. Feature
36	importance was interpreted using SHapley Additive explanation (SHAP).
37	Results: Among 9171 patients, 514 (5.6%) developed MACEs. The XGBoost
38	performed best in terms of AUROC (0.898) and AUPRC (0.479), which were better
39	than the RCRI of AUROC (0.716) and AUPRC (0.185), Delong test and
40	Permutation test P<0.001, respectively. The calibration curve of XGBoost
41	performance accurately predicted the risk of MACEs (brier score 0.040), the DCA
42	results showed that the XGBoost had a high net benefit for predicting MACEs. The
43	top-ranked stacking ensemble model consisting of CatBoost, GBDT, GNB, and LR
44	proved to be the best, with an AUROC value of 0.894 (95% CI 0.860-0.928) and an

3

45 AUPRC value of 0.485 (95% CI 0.383-0.587). Using the mean absolute SHAP values,

46 we identified the top 20 important features.

47 Conclusion: The first ML-based perioperative MACEs prediction models for patients
48 with SCAD were successfully developed and validated. High-risk patients for
49 MACEs can be effectively identified and targeted interventions can be made to reduce
50 the incidence of MACEs.

51

52 Lay Summary

We performed a retrospective machine learning classification study of MACEs in 53 patients with SCAD undergoing non-cardiac surgery to develop and validate an 54 optimal prediction model. In this study, we analyzed the data missing mechanism and 55 identified the best missing data interpolation method, while applying appropriate 56 resampling techniques and feature selection methods for 57 data imbalance characteristics, and ultimately identified 24 preoperative features for building a 58 machine learning predictive model. Eight independent machine learning prediction 59 models and stacking ensemble models were built, and the models were evaluated 60 comprehensively using ROC curve, PRC curve, calibration plots and DCA curve. 61

We have adopted a series of widely used machine learning algorithms and model
 evaluation techniques to build clinical prediction models, and achieved better
 performance and clinical practicability than the classical RCRI model, which has
 taken the first step to explore the research in this field.

The prediction results based on the optimal machine learning model are
 interpretable, output the importance ranking and impact degree of the top 20

	1
4	ŧ.
	•

68	features of MACEs risk prediction, and are consistent with clinical interpretation,
69	which is conducive to the application of the model in clinical practice.
70	Keywords: prediction model; machine learning; major adverse cardiovascular events;
71	non-cardiac surgery; imbalance data; feature selection
72	
73	Background
74	Millions of patients undergo non-cardiac surgeries (NCS) worldwide every year
75	[1], more than 18% of them accompany with stable coronary artery disease (SCAD)
76	[2]. Perioperative major adverse cardiovascular events (MACEs) occur in 5.7-10.0%
77	patients with SCAD undergoing NCS [3], which exceeded significantly compared to
78	only 2.5–3.0% MACEs occurrence rate in the general population [4]. MACEs
79	represented a significant source of perioperative morbidity and mortality, including
80	cardiac arrest, myocardial infarction (MI), heart failure (HF) and stroke [5].
81	Accordingly, it is important to evaluate the risk of MACEs for patients with SCAD
82	undergoing NCS.
83	Current guidelines highly recommended the use of predictive models to assess the
84	risk of perioperative MACEs [6, 7]. The most commonly used models are the Revised
85	Cardiac Risk index (RCRI) [8]. The RCRI is simple and widely validated worldwide.
86	However, recent large cohort studies have suggested that the RCRI does not have a
87	strong discriminatory ability [9], especially in patients with known SCAD [10].
88	Machine learning (ML) is an area of artificial intelligence (AI) where algorithms
89	are employed for identification of patterns in datasets, and have demonstrated superior

-
~
-

90	predictive performance on nonlinear data as compared to conventional linear models
91	such as logistic or cox regression [11]. It learns from the data, as opposed to
92	regression which stems from theory and assumptions, benefiting from human
93	intervention and subject knowledge to specify a model [12]. As a result, the
94	application of innovative machine-learning techniques capable of capturing
95	nonlinearity in clinical practice is imperative.
96	The objective of this study was to derive and validate a ML model based on
97	easily acquired preoperative clinical data, that can predict perioperative MACEs in
98	patients with SCAD scheduled for NCS. As far as we know, such a prediction model
99	has not previously been reported.
100	Methods
100 101	Study design and population
100 101 102	Methods Study design and population We performed a retrospective machine learning classification study (outcomes
100 101 102 103	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to
100 101 102 103 104	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route
100 101 102 103 104 105	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future
100 101 102 103 104 105 106	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future diagnosis of perioperative MACEs based on features obtained from preoperative usual
100 101 102 103 104 105 106 107	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future diagnosis of perioperative MACEs based on features obtained from preoperative usual clinical care, including demographics, previous diseases, surgical information,
100 101 102 103 104 105 106 107 108	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future diagnosis of perioperative MACEs based on features obtained from preoperative usual clinical care, including demographics, previous diseases, surgical information, preoperative electrocardiogram (ECG), preoperative echocardiography and
100 101 102 103 104 105 106 107 108 109	Methods Study design and population We performed a retrospective machine learning classification study (outcomes) were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future diagnosis of perioperative MACEs based on features obtained from preoperative usual clinical care, including demographics, previous diseases, surgical information, preoperative lectrocardiogram (ECG), preoperative echocardiography and preoperative laboratory tests results such as hemoglobin levels. This study used data
100 101 102 103 104 105 106 107 108 109 110	Methods Study design and population We performed a retrospective machine learning classification study (outcomes were binary categorical) of MACEs in patients with SCAD undergoing NCS to develop (train) and validate (test) an optimal prediction model. The study design route flowchart is shown in Figure 1. The machine learning model predicts a future diagnosis of perioperative MACEs based on features obtained from preoperative usual clinical care, including demographics, previous diseases, surgical information, preoperative electrocardiogram (ECG), preoperative echocardiography and preoperative laboratory tests results such as hemoglobin levels. This study used data from 9,171 adult patients with SCAD who underwent NCS at the First Affiliated

6

and May 2023. 112

113	This study was conducted according to Transparent Reporting of Multivariable
114	Prediction Models for Individual Prognosis or Diagnosis (TRIPOD) and "Guidelines
115	for Development and Reporting Machine-Learning Predictive Models in Biomedical
116	Research: A Multidisciplinary View". It complied with the principles of the
117	Declaration of Helsinki and was approved by the Institutional Ethics Review
118	Committee of the FAHZU (No. of ethical approval: IIT20230114A). Written
119	informed consent was waived owing to the nature of the retrospective study design
120	and the collected data was managed in a de-identified form. This study was executed
121	and reported in accordance with STrengthening the Reporting of OBservational
122	studies in Epidemiology (STROBE) guidelines.
123	Inclusion and exclusion criteria
124	We extracted the study dataset of patients aged 18 years and older who were
125	hospitalized for surgery with previous SCAD between January 1, 2013 and May 31,
126	2023 from FAHZU's clinical data warehouse. The types of surgery were elective NCS

based on the American College of Cardiology (ACC)/American Heart Association 127 (AHA) guidelines of perioperative cardiovascular evaluation [13]. SCAD was 128 diagnosed if any of the following conditions were met: angiographic demonstration of 129 coronary stenosis >50%, history of MI (>3 months before enrolment), history of 130 coronary revascularization (>3 months before enrolment), positive myocardial 131 perfusion scintigraphy, positive exercise stress test, or typical symptoms of angina 132 pectoris with simultaneous signs of myocardial ischemia on the ECG [14]. We 133

7

excluded people who underwent cardiac surgery, emergency surgery, day surgery, and
people who underwent multiple surgeries during a single hospital stay. All patients
were evaluated by routine preoperative assessment.

137 Data collection and preprocessing

The electronic medical record system in FAHZU was used in this study. The 138 International Classification of Diseases, Tenth Edition (ICD-10) has been used to 139 extract the target population. We identified all discharges over 10 years from the 140 surgery department with a diagnosis of CAD. Further manual screening of medical 141 142 records was performed according to the inclusion/exclusion criteria. We then listed all available clinical data from the electronic medical record system and performed 143 feature selection. The study omitted variables with a high rate of missing values (e.g., 144 145 hs-CRP and troponin I). Finally, a total of 64 pre-operative variables were collected, including patients' demographics (e.g. age, sex and Body Mass Index (BMI)), 146 pre-existing diseases (e.g. MI, HF, hypertension and diabetes), surgical information 147 (e.g. surgical type, duration of surgery (DOS) and general anesthesia (GA)), 148 preoperative ECG (e.g. abnormal Q waves (AQW) and ST-T wave abnormalities 149 (ST-Ta)), preoperative echocardiography (e.g. left ventricular ejection fraction(LVEF), 150 regional wall motion abnormality (RWMA), left ventricle diastolic dysfunction 151 (LVDD) and pulmonary hypertension (PH)), pre-operative laboratory parameters 152 (e.g. Hemoglobin (Hb), Fasting blood glucose (FBG) and Creatinine (Scr)), 153 pre-operative drugs (e.g. Nitrates and Insulin), American Society of Anesthesiologists 154 Physical Status (ASA PS). The putative predictors were chosen on the basis of 155

8

156 previous studies and the clinical experiences of the investigators.

For each feature, we calculated the missing rate in the training dataset, analyzed 157 the missingness mechanisms, and then selected the appropriate missing value data 158 imputation method according to the missingness mechanisms. Additionally, 159 standardization is essential for ensuring that all feature values are on the same scale 160 and assigned the same weight. All continuous variables (e.g., BMI, laboratory values) 161 were scaled using StandardScaler or MinMaxScaler in the Scikit-learn package, the 162 classification of non-binary variables (e.g., surgical type) were one-hot encoded, and 163 the variables with ordinal characteristics (e.g., ASA PS) were coded with the ordinal 164 encoder. 165

166 *Outcomes (Study endpoints and definitions)*

167 The primary outcome was a composite of MACEs (all-cause death, resuscitated cardiac arrest, MI, HF and stroke) intraoperatively or during hospitalization 168 postoperatively. Cardiac arrest was defined as the loss of circulation prompting 169 resuscitation requiring chest compressions, defibrillation, or both [15]. MI was 170 171 defined as acute myocardial injury with clinical evidence of acute myocardial ischemia [16]. Troponin levels were not routinely checked on all enrolled patients. 172 They were ordered based on routine clinical practice whenever the treating physician 173 suspected MI based on the clinical status of the patient or ECG findings. HF was 174 diagnosed mainly by active clinical symptoms or physical examination findings of 175 dyspnea, orthopnea, peripheral edema, jugular venous distention, rales, third heart 176 sound, or chest x-ray with pulmonary vascular redistribution or pulmonary edema 177

9

178 [17]. Stroke was diagnosed by a neurology consultant based on new neurological179 findings that were confirmed by imaging studies [18].

180 *Class imbalance*

The data set of this study included 8657 negative samples (majority class) and 181 514 positive cases (minority class), with an imbalance ratio (IR) of 16.84:1, indicating 182 a serious class imbalance. Most standard machine learning algorithms assume or 183 expect that classification problems have balanced class distributions of equal costs. As 184 a result, these algorithms are not efficient at handling the complex and imbalanced 185 186 data sets that are prevalent in the real world, especially in the medical field. Solving class imbalance data is mainly realized from two levels of data and algorithm [19]. In 187 this study, resampling and feature selection are mainly used to process research data, 188 189 and ensemble learning models are compared to explore the most appropriate methods to deal with data imbalance. In order to comprehensively analyze the classification 190 performance of imbalanced data sets, area under the receiver operating characteristic 191 192 curve (AUROC) and area under the precision and recall curve (AUPRC) are emphasized in model evaluation. 193

194 *Resampling for class imbalance*

Resampling is a technique to balance a dataset by reducing the number of majority classes or increasing the number of minority classes. Among them, Synthetic minority over-sampling technique (SMOTE) [20] represents the most widely used method among the resampling methods. Overfitting caused by random oversampling can be effectively overcome by interpolating new synthetic instances in the line

200	between some minority samples and their k-nearest neighbors. The adaptive synthetic
201	(ADASYN) [21] sampling method is to use a weighted distribution for different
202	minority class examples according to their level of difficulty in learning, and minority
203	samples that are more difficult to learn will generate more synthetic data. The
204	SMOTE+EEN [22] hybrid sampling method uses Edited Nearest Neighbors (ENN)
205	technology to clean up overlapping samples after the SMOTE algorithm generates a
206	new synthetic dataset. In this study, SMOTE, ADASYN and SMOTE+ENN sampling
207	methods were used to resample the training set data. Then, we controlled the sampling
208	strategy so that the ratio of positive samples to negative samples in the resampling
209	dataset is 1. Finally, we trained the eXtreme Gradient Boosting (XGBoost) model
210	with resampling data combined with cross-validation, and compared the model's
211	performance metrics on the internal validation set. We used correlation functions in
212	the Python library imbalance-learn to implement resampling.
213	Feature selection for class imbalance
214	Feature selection is also a feasible technique to deal with imbalanced
215	classification problems. More representative feature sets are selected to remove
216	irrelevant and redundant features, thereby improving classification performance and
217	efficiency. Feature selection is carried out on imbalanced data to optimize the feature

- space, find a space that tends to represent concepts of a few classes, and then correct 218
- the classifier's bias towards the majority classes. This study contrasts four widely used 219
- feature selection methods based on different strategies, including the 220
- correlation-based feature selection (CFS) algorithm [23], Boruta algorithm [24], 221

11

222	BorutaShap algorithm [25], and recursive feature elimination (RFE) [26]. CFS
223	algorithm is a multivariate filter method that chooses subsets of features that
224	themselves are uncorrelated but show high correlation with the class, independent of
225	any learning method, and successfully applied to mortality prediction in three-vessel
226	disease [27]. Boruta algorithm is to compare the importance of the real predictor
227	variables with those of random so-called shadow variables using statistical testing and
228	several runs of XGBoost algorithm. BorutaShap algorithm is an extension of the
229	Boruta algorithm that leverages the SHapley Additive explanation (SHAP) value as a
230	measure of feature importance with XGBoost classifier. The RFE algorithm starts
231	with a base model built on all features. A specific proportion of the least important
232	features are then removed and a new base model is generated using the remaining
233	features. These steps are recursively applied until a single feature is left as input. In
234	this study, XGBoost, Light Gradient Boosting Machine (LightGBM), Random Forest
235	(RF), support vector machine (SVM) and logistic regression (LR) were selected as the
236	base models for RFE. Feature selection takes XGBoost model as performance
237	evaluation. Based on data resampling, AUROC performance is evaluated on
238	validation set through cross-validation combined with automatic hyperparameter
239	optimization, and the optimal performance is taken as input feature set of machine
240	learning model.

241 Machine learning model development

We used random stratification to divide the data set into a training dataset (80%) and a test dataset (20%). Stratification ensured that the proportions of the cases in the

244	training datasets and test datasets were equal, which improved the stability of the
245	model. The training dataset was used for model building, and the test dataset was used
246	as a hold-out dataset for external validation and did not participate in model
247	development (including data balancing processing) and hyperparameter selection. We
248	used randomly stratified 5-fold cross-validation combined with optimal resampling
249	strategy on the training data set to adjust the hyperparameters in the model and output
250	the internal validation performance, which can avoid overfitting and assess the
251	stability of the models. After obtaining the optimal hyperparameters, we used the
252	model developed in the training dataset for performance evaluation on the hold-out
253	testing dataset. In order to achieve the best prediction, eight independent models were
254	built for this study, including LR, SVM, Gaussian Naïve Bayesian (GNB), RF,
255	gradient boosting decision tree (GBDT), XGBoost, LightGBM, and categorical
256	boosting (CatBoost). Tree based ensemble models have been applied to other clinical
257	tasks with excellent performance compared to traditional machine learning algorithms
258	[28]. Each model provides the same input variables that are optimally selected based
259	on feature selection, and in order to avoid collinearity between variables affecting the
260	performance of the prediction model, multicollinearity and correlation analysis are
261	performed on the optimally selected samples before modeling. We adjusted the
262	hyperparameters during the model building process based on the Optuna optimization
263	library of Bayesian optimization [29], where the optimized measure is the AUROC.
264	Finally, based on 8 independently optimized machine learning prediction models, we
265	further used the stacking ensemble model, which has been proven to be superior to

13

independent machine learning in many fields [30, 31]. 266

Machine learning model evaluation 267

We developed the models using the training dataset performed 1000 rounds of 268 bootstrapping on the hold-out testing dataset to report results. We reported numerical 269 results for accuracy, precision, recall, F1 score, AUROC, and AUPRC. To evaluate the 270 overall performance, we plotted receiver-operating characteristic (ROC) curves and 271 precision-recall curves (PRC). The ROC is the ratio of sensitivity to (1-specificity). 272 According to the AUROC evaluation of model performance, models with a larger 273 274 AUROC are considered to have better performance. On the other hand, the PRC illustrates the trade-off between recall (sensitivity) and precision (positive predictive 275 value). Models with high performance tend to have a balance of high recall and 276 277 precision, yielding large AUPRC values. The statistical comparison of AUROC values and AURPC values were each computed using Delong Test and Permutation test [32, 278 33]. A calibration plot was used to evaluate the agreement between the observed and 279 280 expected values based on the probability of perioperative MACEs predicted by various models, and calculated the calibration metrics of the Brier score [34]. The 281 clinical application value of decision curve analysis (DCA) evaluation model. 282

Comparison with RCRI 283

To determine whether the new developed models in our study would improve 284 upon discrimination of cardiovascular risk prediction, we also developed a baseline 285 286 model that mimics the classical clinical scoring system RCRI [8]. The baseline model was a logistic regression model that included only RCRI. Our newly developed 287

14

288 machine learning model was compared numerically and statistically with this baseline

289 model in AUROC and AUPRC performance.

290 Machine learning model explainability

- 291 We analyze and visualize the feature importance of the generated predictive
- model to comprehend how the model makes predictions and realize an explainable
- machine learning model. We used SHAP to analyze and visualize the effect of feature
- importance on perioperative MACEs risk based on best-performing predictive models.
- 295 The SHAP value represents the effect of features on the prediction in terms of
- direction and range by calculating a weighted average and marginal distribution,
- which is calculated by comparing the predicted differences in all possible
- 298 combinations containing and withholding each feature.

299 Statistical analysis and modeling tools

- The normality of the distribution of continuous variables was tested using the
- 301 Shapiro–Wilk test. Normally distributed continuous variables were expressed as mean
- \pm standard deviation (SD) and compared using the independent samples t-test.
- 303 Skewed continuous variables were expressed as median and interquartile range (IQR)
- and compared using the Mann–Whitney U-test. Categorical variables are expressed as
- frequencies and percentages and using chi-square tests or Fisher's exact probability
- tests. The differences were considered to be statistically significant at p < 0.05.
- 307 Machine learning model development and evaluation was performed in python 3.6
- 308 using scikit-learn packages.

309 Results

Participant characteristics 310

311	We eliminated 4,486 patients based on exclusion criteria, and ultimately 9,171
312	patients were included in our study. Among them, 514 (5.6%) patients suffered
313	perioperative MACEs, as shown in Supplementary Table 1. Table 1 presents baseline
314	clinical characteristics of the training and testing sets, respectively, and univariate
315	analyses with and without MACEs. Overall, the baseline clinical characteristics of the
316	training set and testing set samples appeared to be similar. Patients underwent a wide
317	range of surgeries as expected in a tertiary referral hospital with a median age of 70
318	(IQR, 64–77) years. General abdominal, thoracic, and vascular surgeries were most
319	often performed.

Missing-value characteristics 320

16

321	The average proportion of missing values in this study dataset was 7.69%, and the
322	proportion of the training and validation datasets (7.62%) and the testing dataset
323	(7.99%) were basically the same (Supplementary Table 2). The missing values of
324	preoperative laboratory tests, preoperative ECG and preoperative echocardiography
325	were mainly due to the fact that the patient did not complete the corresponding
326	examination in FAHZU, while the missing BMI value is mainly due to the patient's
327	body being unable to measure normally. At the same time, we tested the correlation of
328	missing values of different variables (Supplementary Figure. 1a), the correlation
329	between the variables measured as a companion test (e.g., laboratory, ECG and
330	echocardiogram tests) was high (absolute correlation value ≥ 0.7), while the
331	correlation between BMI, laboratory variables, ECG variables, echocardiogram
332	variables, and DOS variables was not remarkable (absolute correlation value ≤ 0.2).
333	Comparison of data missing distribution and completeness of variables
334	(Supplementary Figure. 1b, 1c), missing values include categorical and continuous
335	variables, and there is no uniform pattern of missing values for each variable. Based
336	on the miss at random mechanism of variables, we compared a variety of missing
337	value imputation algorithm on the XGBoost model, cross-validation on the training
338	dataset (Supplementary Table 3), and finally selected the k-Nearest Neighbor (KNN)
339	imputation algorithm with the best performance in this study.

340 Resample method

17

341	The imbalanced training set data is processed by resampling method to overcome
342	the performance loss caused by data imbalance. Table 2 presents the internal
343	verification results of LR, RF and XGBoost models in each training set. As shown in
344	the table, although the three models also achieved high AUROC and AUPRC
345	performance before balancing the data, the extremely high specificity and extremely
346	low sensitivity indicated that the classification model without data balance could not
347	well identify MACEs patients (minority class) due to the inter-class imbalance in the
348	data. In contrast, after using SMOTE, ANSYN and SMOTE+ENN for data balance,
349	the sensitivity of the three models has significantly improved, and the indicators of
350	AUROC and AUPRC have also increased. The results showed that the data balancing
351	processing can effectively improve the recognition performance of the classification
352	model for the few class samples. Further contrast the same prediction model based on
353	different resampling methods to observe the corresponding changes in specificity and
354	sensitivity. SMOTE+ENN is the best for data balancing and will be applied to model
355	development and evaluation.

356 Feature selection

The total number of features in the data set after the pre-processing is 75, and the 357 features are analyzed and selected sequentially based on eight feature selection 358 methods. Figure 2A corresponds to the optimal feature subset of the eight feature 359 selection methods and the AUROC performance of the internal validation set after 360 cross-validation on the training set. The performance of the optimal subset after 361 feature selection is better than that of the full feature (Supplementary Table 4), but it 362

363	is also related to the selected feature subset, in which the performance of the feature
364	subset selected by RFE-XGB and RFE-LR methods is the best. Figure 2B shows that
365	RFE combines five kinds of basis learning models, selects the best subset recursively
366	based on the feature importance ranking of the learning model, and evaluating the
367	AUROC performance of the internal validation set after cross-validation on the
368	training set. When RFE-XGB and RFE- RF are used for feature selection, AUROC
369	performance is maintained at a relatively high level when the number of features of
370	the optimal subset is greater than or equal to 3, and the average AUROC is greater
371	than 8.0.
372	The performance and interpretability of the model are fully balanced, and the
373	number threshold of features contained in the optimal feature subset is controlled
374	between 3 and 30, and the feature combination with the best performance is selected
375	by comparing eight feature selection methods. These features included patients'
376	demographics [BMI], pre-existing diseases [Ischemic heart disease (IHD), and
377	Dialysis], surgical information [DOS], preoperative echocardiography [fractional
378	shortening (FS), left ventricular end systolic dimension (LVDs), LVEF and RWMA),
379	pre-operative laboratory parameters [Leukocyte, Hb, FBF, Scr, Estimated glomerular
380	filtration rate (eGFR), Total serum protein (TSP), Albumin (ALB), AST,
381	Cholinesterase (ChE), Total bilirubin (TB), Total calcium (tCa), Chlorine, APTT,
382	Fibrinogen (FB) and D-dimer], ASA PS. Subsequently, we carried out
383	multicollinearity analysis of the selected features. First, correlation coefficients and
384	corresponding P-values of the features were drawn in the heat map, and it was found

385	that TSP and ALB,	Scr, eGFR an	nd Dialysis mag	y have collinearity	(Supplementary

- Figure 2). The variance inflation factor (VIF) was further used for the feature 386
- 387 multicollinearity test, and VIF values less than 5 indicated weak multicollinearity
- (Supplementary Table 5). It indicates that the features selected in this study can 388
- effectively avoid the negative effects of feature collinearity on the classification 389
- 390 performance of the model. We ultimately used the above 24 features for model
- development and evaluation. 391

20

Machine learning model performance 392

393	Eight independent candidate models were constructed for perioperative MACEs
394	prediction using the twenty-four variables mentioned above. Figure 3 A, B presents
395	the AUROC and the AUPRC of each candidate modeling method in test-set data. All
396	eight candidate models exhibited superior prediction performances in terms of
397	AUROC and AUPRC, compared to that of the Baseline-RCRI model, with significant
398	differences in both AUROC and AUPRC by using the Delong Test and Permutation
399	test (P < 0.001). The XGBoost method delivered the best performance in terms of
400	AUROC (0.898) and AUPRC (0.479). Table 3 presents the other metrics of mean
401	values of bootstrapping performance of each model. Further, the DCA curves (Figure
402	3C) demonstrate that the eight candidate models exhibited a greater net benefit along
403	with the threshold probability compared with Baseline-RCRI models. The calibration
404	curve of the eight candidate models is closer to the curve with a slope of 45° than the
405	Baseline-RCRI model, indicating the better accuracy (Figure 3D), while the Brier
406	scores were calculated, none exceeding 0.04 , and was better than RCRI (0.05).
407	Machine learning model hyperparameters are listed in Supplementary Table 6.

408	The eight prediction models were developed based on the training set data and
409	5-fold cross-validation. The AUROC and AUPRC per fold on the internal validation
410	set of the prediction models are shown in Supplementary Table 7. The results show
411	that the performance is similar in each fold of the verification set, which indicates that
412	the prediction model has good stability. Further, the internal verification results of
413	different prediction models were compared with the external verification results.
414	Figure 4 shows the comparison results of AUROC (A) and AUPRC (B) performance
415	indicators of the verification set and the test set. The results show that the
416	comprehensive performance of the validation set and the test set of the prediction
417	model is similar, and the performance of the test set is slightly better than that of the
418	verification set, which indicates that various prediction models in this study have
419	good generalization performance.
420	Model explainability
421	Based on the optimal independent model XGBoost, by using SHAP analysis
422	(Figure 5 A, B), we determined the top 20 features including IHD, ASA PS, Hb, DOS,
423	LVDs, D-dimer, ALB, Chlorine, FBG, ChE, Leukocyte, Scr, RWMA, eGFR, BMI,
424	TSP, APTT, tCa, Dialysis, and LVEF as important features for predicting new onset
425	MACEs. In Figure 5A, we presented the relationships between their values and the
426	effect of the model output. Intuitively, IHD, ASA PS, DOS, LVDs, D-dimer, FBG,
427	Leukocyte, Scr, RWMA, APTT, and Dialysis were positively correlated with the
428	MACEs, whereas Hb, ALB, Chlorine, ChE, eGFR, BMI, TSP, tCa, and LVEF were
429	negatively correlated with the MACEs.

22

430	In addition to the overall effect, we applied the SHAP framework to explain
431	individual cases by providing influential features. Figure 5 shows 2 examples of
432	random selection - a negative prediction (C) and a positive prediction (D). Features in
433	blue represent features that contribute to a lower risk while features in red will push
434	up the risk. These visualizations give users detailed information about how the model
435	makes predictions and allow them to make appropriate interventions before the new
436	onset MACEs.

Model Stacking 437

Stacking ensemble models were subsequently developed, and the stacking 438 ensemble model is a two-layer structure, the first layer is composed of multiple base 439 models, and the second layer is fixed as a logistic regression model. Based on the 8 440 independent models of this study, 247 model combinations were listed by exhaustive 441 method, and then the stacking model and output performance indicators were 442 established and sorted. Overall, the top-ranked stacked ensemble model consisting of 443 CatBoost, GBDT, GNB, and LR proved to be the best, with an AUROC value of 444 0.894 (95% CI 0.860-0.928) and an AUPRC value of 0.485 (95% CI 0.383-0.587). 445 Compared to the independent optimal prediction model XGBoost, the stacking model 446 showed slightly higher AUPRC performance and net benefit value (Figure 6), as well 447 as higher sensitivity (0.788). 448 449 Discussion

To our knowledge, this is the first study of a systematic framework based on 450 451 machine learning techniques to develop multiple models, evaluate performance, and

452	select the highest-performing model to predict perioperative MACEs in patients with
453	SCAD scheduled for NCS. This study shows that compared with the classical
454	prediction model RCRI [8], the eight independent machine learning prediction models
455	and the optimal stacking ensemble model have a great improvement in performance
456	and clinical utility, and have satisfactory generalization, among which XGBoost has
457	the best performance in the independent machine learning prediction model. IHD,
458	ASA PS, Hb, DOS, LVDs, D-dimer, ALB, Chlorine, FBG and ChE were the top 10
459	important characteristics affecting model performance. In addition, the model
460	combining CatBoost, GBDT, GNB, and LR is considered to be the best model for
461	stacking ensemble learning, further improving the AUPRC, clinical utility, and
462	sensitivity of the predictive model. These findings help to identify perioperative
463	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide
463 464	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention.
463 464 465	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the
463 464 465 466	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data
463 464 465 466 467	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to
463 464 465 466 467 468	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to improve the performance of machine learning classification algorithms based on data
463 464 465 466 467 468 469	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to improve the performance of machine learning classification algorithms based on data processing. Missing data is a common occurrence in clinical research, and improper
463 464 465 466 467 468 469 470	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to improve the performance of machine learning classification algorithms based on data processing. Missing data is a common occurrence in clinical research, and improper processing will significantly affect the efficacy of the classification model [35]. First,
463 464 465 466 467 468 469 470 471	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to improve the performance of machine learning classification algorithms based on data processing. Missing data is a common occurrence in clinical research, and improper processing will significantly affect the efficacy of the classification model [35]. First, the identification of missing data mechanism is the basis of selecting missing data
463 464 465 466 467 468 469 470 471 472	MACEs risk in patients with SCAD scheduled for NCS before surgery and to provide targeted clinical care through timely intervention. From the data set used in this study, there are some inherent characteristics in the data set that affect the classification performance of the prediction model, such as data missing and data imbalance. This paper proposes a series of research strategies to improve the performance of machine learning classification algorithms based on data processing. Missing data is a common occurrence in clinical research, and improper processing will significantly affect the efficacy of the classification model [35]. First, the identification of missing data mechanism is the basis of selecting missing data: imputation method. There are three typical mechanisms causing missing data:

474	random (MNAR). In this study, the missing data mechanism was determined to be
475	MAR through correlation test and integrity comparison of missing data. On this basis,
476	different missing data imputation methods were compared, and the most effective one
477	was selected according to the performance output of the internal validation set, while
478	directly deleting missing data would lead to estimation bias [36]. Second, in terms of
479	data balance, this study reconstructs the data set from the data itself. Primarily,
480	resampling method is used to optimize the sample space, and then feature selection
481	method is combined to optimize the feature space. After resampling the unbalanced
482	data, the performance of all models has been significantly improved, especially the
483	sensitivity of RF model increased from 0 to 0.874 after the SMOTE+ENN method.
484	SMOTE+ENN method, after SMOTE algorithm generates new synthetic data set,
485	uses ENN clearing technology to reduce the problem that SMOTE often introduces
486	more noise and overfitting to some extent [37]. On the basis of selecting suitable
487	resampling methods, the feature selection method based on AUC evaluation criteria
488	was adopted in this study. Some studies have concluded through experiments that
489	feature selection is more important than classification method selection in order to
490	overcome overfitting problems and achieve better classification performance [38].
491	The feature selection method is used to delete category-irrelevant features, reduce the
492	dimension of data, find a space that tends to represent the concepts of minority classes,
493	correct the classifier's bias to the majority classes, and solve the unbalanced
494	classification problem with poor classification performance of minority classes [39].
495	Although univariate analysis of clinical features was performed in this study,

496	threshold filtering features were not directly set according to p-value in the process of
497	feature selection, mainly considering that univariate analysis might ignore the
498	interaction between features [40]. The 8 feature selection methods in this study
499	mainly select features based on the relevance and importance of features, and the
500	results show that the performance of the model after feature selection is indeed
501	improved. The internal verification performance comparison of different feature
502	selection methods finally determines 24 effective features. The distribution of feature
503	categories was fairly balanced, including 1 feature of patients' demographics, 2
504	features of pre-existing diseases, 1 feature of surgical information, 4 features of
505	preoperative echocardiography, 15 features of pre-operative laboratory parameters
506	and ASA PS. The feature subset after feature selection is continued to be
507	multicollinear detected and processed by correlation coefficient test and VIF method,
508	so as to reduce the complexity of classification model construction and improve
509	model stability and generalization ability.
510	Considering the clinical applicability of the prediction model, the prediction
511	model in this study uses only routine clinical and laboratory data and selects only a
512	small number of features, which is conducive to the data being automatically
513	collected through the program and the model being applied to other institutions to
514	obtain stable performance. In addition, this study only used preoperative data, not
515	intraoperative data, so it has the ability to predict prognosis before surgery. The use of
516	intraoperative data may improve prediction accuracy but may lead to an exaggeration
517	of model performance and delay in implementing interventions to patients.

518	In our study, XGBoost provided the best predictive performance among the
519	independent models built. Compared with the classical model RCRI, which uses
520	logistic regression with 6 equal weight variables, the main advantages of XGBoost
521	model are the ability to capture the nonlinear relationships between the model features
522	and the outcome, as well as having higher order interactions between features.
523	Evaluates the performance of the machine learning predict model in external test set,
524	performs 1000 rounds of bootstrapping sampling method to report the result
525	confidence interval to evaluate the stability of the model parameters. The ROC curve
526	and its corresponding AUC are a function of the sensitivity and specificity of the
527	predictive model and are used to quantify the overall ability of the test to correctly
528	identify normal and abnormal ones. The prediction models developed in this study all
529	had AUROC values greater than 0.88 on the test set, and the AUROC value of the
530	XGBoost model was close to 0.9, which means that on average, the test will correctly
531	predict abnormal outcomes 90% of the time, and the model has excellent prediction
532	ability. Compared with the ROC curve, the PRC curve assesses the true proportion of
533	the positive prediction and provides more information on the prediction assessment of
534	the imbalanced dataset. The AUPRC value is low compared to the higher AUROC
535	value, and the AUPRC value of the prediction model we developed is between 0.39
536	and 0.48, but it is still much higher than the classical model RCRI (AUPRC=0.185).
537	The reason for the low AUPRC value is that the low incidence of perioperative
538	MACEs leads to the imbalance of research data categories, although we have
539	performed techniques such as resampling and feature selection before model

27

540	construction to try to reduce the impact of data imbalance on model performance, it is
541	difficult to significantly increase the AUPRC value. In addition to the evaluation of
542	the predictive performance of the model, we also reported the calibration of the model,
543	which was reported in the form of a calibration plot. The calibration plot shows that
544	the predictive model developed in this study is well calibrated, although it appears to
545	have a tendency to slightly underestimate the risk of MACEs. ROC curve, PRC curve,
546	sensitivity, specificity, and calibration for assessing predictive models are reported,
547	but do not provide answers as to whether models are effective in clinical practice.
548	Decision analysis attempts to address the question of clinical utility assessment by
549	combining the clinical outcomes of the model [41]. The DCA curve shows that the
550	developed prediction model has good clinical practicability and has obvious
551	advantages over the classical RCRI model. Finally, in order to further improve the
552	performance of the prediction model, we used a stacking ensemble algorithm based
553	on the optimization of independent machine learning prediction models [31].
554	Compared with the XGBoost model, the optimal stacking model combining CatBoost,
555	GBDT, GNB and LR improved the AUPRC, clinical practicability and sensitivity of
556	the prediction model.
557	The interpretability of machine learning predictions requires attention, so that
558	doctors can understand them, trust them and gain useful insights for the clinical
559	practice. However, the "black box" nature of the ML algorithm and the difficulty for
560	clinicians to understand and trust the interpretation of the data are still the most

difficult hurdle to overcome [42]. XGBoost was excellent at predicting post-operative 561

562	mortality, with performance comparable to deep learning [11]. Compared to deep
563	learning, XGBoost has the advantage of using the SHAP to interpret the model output,
564	demonstrating the possibility of solving the "black box" problem. In this study, taking
565	XGBoost as an example, we calculated the SHAP values of important features and
566	used SHAP graphs to intuitively show the impact of features on the prediction model.
567	IHD, ASA PS, and Hb were the top three important features of the XGBoost. This is
568	consistent with clinical practice because IHD, ASA PS, and Hb have been used as
569	important predictive indicators in previous clinical prediction models [43]. It is worth
570	mentioning that, chlorine was not considered as a predictive indicator in univariate
571	analysis. However, chlorine was the eighth important feature in XGBoost. In fact,
572	chlorine has been proved to be related to heart failure [44]. Most of the predictive
573	indicators in XGBoost can be improved, which means the patients can benefit from
574	appropriate preoperative intervention.

575	This study had several strengths. To begin with, there is a higher incidence of
576	perioperative MACEs in the patient with SCAD scheduled for NCS compared to the
577	general population, but few studies have been conducted. We have adopted a series of
578	widely used machine learning algorithms and model evaluation techniques to build
579	clinical prediction models, and achieved better performance and clinical practicability
580	than the classical RCRI model, which has taken the first step to explore the research
581	in this field. In addition, the prediction results based on the optimal machine learning
582	model are interpretable, output the importance ranking and impact degree of the top
583	20 features of MACEs risk prediction, and are consistent with clinical interpretation,
584	which is conducive to the application of the model in clinical practice. Moreover, we
585	use Bayesian algorithm to automatically adjust the model hyperparameters, so that the
586	selection of appropriate missing data imputation method, resampling technology and
587	feature selection method can be combined with automatic hyperparameter tuning, and
588	it is also confirmed that the appropriate resampling technology combined with feature
589	selection can greatly improve the impact of data imbalance on model performance.
590	Finally, we put forward the stacking ensemble model, and use the exhaustion method
591	to form 247 stacking models, evaluate the performance of each model in turn, and
592	select the optimal stacking model. Compared with the optimal independent model
593	XGBoost, the optimal stacking ensemble model showed slightly higher AUPRC
594	performance and clinical utility, with higher sensitivity.

30

595	The study has several limitations. First, in terms of feature collection, currently
596	features are mainly from single text data of electronic medical records, and
597	high-quality features can be extracted based on image (such as electrocardiogram)
598	recognition technology. Second, we developed models based on data sets from a
599	single medical center. Exploring the predictability of this model in other medical
600	centers could add even more value. However, it should be noted that the data set in
601	this study was extracted from 10 years of data from a large medical center with
602	multiple hospitals, and the model evaluation used a testing set that was completely
603	independent of model development as external validation. Third, as a retrospective
604	study, the effect of predicting perioperative MACEs risk on prognosis in patients with
605	SCAD remains unknown.
606	In future studies, we will further develop and validate current machine learning
607	models based on data from other large, multicentre populations that can predict
608	different types of MACEs (e.g., all-cause death, resuscitated cardiac arrest, MI, HF
609	and stroke) and provide interventions accordingly. Another direction is to integrate the
610	model into the clinician's workflow by designing an interactive interface, integrating
611	with electronic medical record systems, and further exploring the model's impact on
612	clinician behavior and patient outcomes.
613	Conclusion
614	In this study, we analyzed the data missing mechanism and identified the best

missing data interpolation method, while applying appropriate resampling techniques 615

and feature selection methods for data imbalance characteristics, and ultimately 616

617	identified 24 preoperative features for building a machine learning predictive model.
618	Eight independent machine learning prediction models and stacking ensemble models
619	were built, and the models were evaluated comprehensively using ROC curve, PRC
620	curve, calibration plots and DCA curve. The results show that the machine learning
621	prediction model developed in this study has better prediction performance and
622	generalization than the classical RCRI model, and has the potential to be applied in
623	clinical practice. With further validation and refinement, machine learning predictive
624	models can help more effectively assess perioperative MACEs risk and target
625	interventions to at-risk populations, as well as provide better clinical access and ease
626	of use.
627	
628	List of abbreviations
629	NCS: non-cardiac surgery
630	SCAD: stable coronary artery disease
631	MACEs: major adverse cardiovascular events
632	MI: myocardial infarction
633	HF: heart failure
634	RCRI: Revised Cardiac Risk index
635	ML: Machine learning
636	AI: artificial intelligence

32

637 ECG: electrocardiogram

- 638 FAHZU: First Affiliated Hospital, Zhejiang University School of Medicine
- 639 **TRIPOD**: Transparent Reporting of Multivariable Prediction Models for Individual
- 640 Prognosis or Diagnosis
- 641 **STROBE**: STrengthening the Reporting of OBservational studies in Epidemiology
- 642 ACC: American College of Cardiology
- 643 AHA: American Heart Association
- 644 **ICD-10**: International Classification of Diseases, Tenth Edition
- 645 **BMI**: Body Mass Index
- 646 **DOS**: duration of surgery
- 647 GA: general anesthesia
- 648 **AQW**: abnormal Q waves
- 649 **ST-Ta**: ST-T wave abnormalities
- 650 **LVEF**: left ventricular ejection fraction
- 651 **RWMA**: regional wall motion abnormality
- 652 **LVDD**: left ventricle diastolic dysfunction
- 653 **PH**: pulmonary hypertension
- 654 **Hb**: Hemoglobin
- **FBG**: Fasting blood glucose

- 656 Scr: Creatinine
- 657 ASA PS: American Society of Anesthesiologists Physical Status
- **IR**: imbalance ratio
- **AUROC**: area under the receiver operating characteristic curve
- **AUPRC**: area under the precision and recall curve
- **SMOTE**: Synthetic minority over-sampling technique
- **ADASYN**: adaptive synthetic
- **ENN**: Edited Nearest Neighbors
- **XGBoost**: eXtreme Gradient Boosting
- **CFS**: correlation-based feature selection
- **RFE**: recursive feature elimination
- **SHAP**: SHapley Additive exPlanation
- 668 LightGBM: Light Gradient Boosting Machine
- **RF**: Random Forest
- **LR**: logistic regression
- **SVM**: support vector machine
- **GNB**: Gaussian Naïve Bayesian
- **GBDT**: gradient boosting decision tree
- **CatBoost**: categorical boosting

- **ROC**: receiver-operating characteristic
- **PRC**: curves and precision–recall curves
- **DCA**: decision curve analysis
- **SD**: standard deviation
- **IQR**: interquartile range
- 680 KNN: k-Nearest Neighbor
- **IHD**: Ischemic heart disease
- **FS**: fractional shortening
- **LVDs**: left ventricular end systolic dimension
- **eGFR**: Estimated glomerular filtration rate
- **TSP**: Total serum protein
- 686 ALB: Albumin
- 687 ChE: Cholinesterase
- **TB**: Total bilirubin
- **tCa**: Total calcium
- **FB**: Fibrinogen
- **VIF**: variance inflation factor
- 692 MCAR: missing completely at random
- 693 MAR: missing at random

35

694 **MNAR**: missing not at random

695 **Declarations**

696 Availability of data and materials

- 697 The datasets generated during and/or analyzed during the current study are not
- publicly available but are available from the corresponding author at reasonable
- 699 request.

700 Ethics approval and consent to participate

- 701 This study was approved by the Institutional Ethics Review Committee of the the
- 702 First Affiliated Hospital, Zhejiang University School of Medicine (No. of ethical
- approval: IIT20230114A). Written informed consent was waived owing to the nature
- of the retrospective study design and the collected data was managed in a
- 705 de-identified form.
- 706 Consent for publication
- 707 Not applicable.
- 708 Competing interests
- The authors declare that they have no known competing financial interests or personal
- relationships that could have appeared to influence the work reported in this paper.

711 Funding

- This work was supported by grants from the National Natural Science Foundation of 712
- China (82170331), Joint Funds from the National Natural Science Foundation of 713
- China (U21A20337), and grants from the Key Research and Development Plan of 714
- 715 Zhejiang Province (2020C03017)

716 Authors' contributions

717 LS and YPJ contributed to the conception, design, analysed data and coding of the work, and drafted the manuscript. AXP, KW, RZY, YKL, SA and WCX contributed to 718 the acquisition, analysis, and interpretation of data for the work. MZ and XGG were 719 720 responsible for conceptualization and formal analysis, critically revised the manuscript. All authors read and approved the final manuscript. 721

- **Acknowledgments** 722
- 723 This work was supported by grants from the National Natural Science Foundation of
- China, Joint Funds from the National Natural Science Foundation of China, and 724
- 725 grants from the Key Research and Development Plan of Zhejiang Province

726 Supplementary Material

data supplement.docx 727

728 References

- [1] Weiser TG, Haynes AB, Molina G, et al. Size and distribution of the global volume of surgery 729 730 in 2012[J]. Bull World Health Organ, 2016, 94(3): 201-209F. doi:10.2471/BLT.15.159293
- 731 [2] Smilowitz NR, Gupta N, Guo Y, Beckman JA, Bangalore S, Berger JS. Trends in 732 cardiovascular risk factor and disease prevalence in patients undergoing non-cardiac 733 surgery[J]. Heart, 2018, 104(14): 1180-1186. doi:10.1136/heartjnl-2017-312391
- [3] Handke J, Scholz AS, Dehne S, Krisam J, Gillmann HJ, Janssen H, Arens C, Espeter F, Uhle F, 734
- 735 Motsch J, Weigand MA, Larmann J. Presepsin for pre-operative prediction of major adverse 736 cardiovascular events in coronary heart disease patients undergoing noncardiac surgery: Post hoc

analysis of the Leukocytes and Cardiovascular Peri-operative Events-2 (LeukoCAPE-2) Study. Eur 737 J Anaesthesiol. 2020 Oct;37(10):908-919. doi: 10.1097/EJA.000000000001243. PMID: 738 739 32516228.

740 [4] Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative Major 741 Adverse Cardiovascular and Cerebrovascular Events Associated With Noncardiac 742 Surgery[J]. JAMA Cardiol,2017,2(2):181-187. doi:10.1001/jamacardio.2016.4792

[5] Devereaux PJ, Chan MT, Alonso-Coello P, Walsh M, Berwanger O, Villar JC, et al. 743 744 Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery, JAMA, (2012) 307:2295-304, doi: 10.1001/jama.2012.5502 745

746 [6] Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 747 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients 748 undergoing noncardiac surgery: executive summary: a report of the American College of 749 Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. (2014) 130:2215-45. doi: 10.1161/CIR.0000000000000105 750

751 [7] Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, De Hert S, de Laval I, Geisler T. Hinterbuchner L. Ibanez B. Lenarczyk R. Mansmann UR. McGreavy P. Mueller C. 752 753 Muneretto C, Niessner A, Potpara TS, Ristić A, Sade LE, Schirmer H, Schüpke S, Sillesen H, 754 Skulstad H, Torracca L, Tutarel O, Van Der Meer P, Wojakowski W, Zacharowski K; ESC Scientific Document Group. 2022 ESC Guidelines on cardiovascular assessment and management 755 of patients undergoing non-cardiac surgery. Eur Heart J. 2022 Oct 14;43(39):3826-3924. doi: 756 10.1093/eurheartj/ehac270. PMID: 36017553. 757

[8] Lee TH, Marcantonio ER, Mangione CM, et al. Derivation and prospective validation of a 758 759 simple index for prediction of cardiac risk of major noncardiac 760 surgery[J]. Circulation, 1999, 100(10):1043-1049. doi:10.1161/01.cir.100.10.1043

761 [9] Davis C, Tait G, Carroll J, Wijeysundera DN, Beattie WS. The revised cardiac risk index in the new millennium: a single center prospective cohort re-evaluation of the original variables in 9,519 762 763 consecutive elective surgical patients. Can J Anaesth 2013;60:855-63.

764 [10] Che L, Xu L, Huang Y, Yu C. Clinical utility of the revised cardiac risk index in older Chinese 765 patients with known coronary artery disease[J]. Clin Interv Aging, 2017, 13:35-41. Published 2017 766 Dec 22. doi:10.2147/CIA.S144832

767 [11] Lee SW, Lee HC, Suh J, et al. Multi-center validation of machine learning model for prediction postoperative mortality[J]. NPJ Digit Med,2022,5(1):91. 768 preoperative of 769 doi:10.1038/s41746-022-00625-6

770 [12] Watson X, D'Souza J, Cooper D, Markham R. Artificial intelligence in cardiology: 771 fundamentals and applications. Intern Med J. 2022 Jun;52(6):912-920. doi: 10.1111/imj.15562. 772 Epub 2022 May 31. PMID: 34613658.

[13] Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on 773 774 perioperative cardiovascular evaluation and management of patients undergoing noncardiac 775 surgery: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 776 2014;130:2215-45. doi: 777 10.1161/CIR.000000000000105.

778 [14] Fihn SD, Gardin JM. Abrams J, al. 2012 et ACCF/AHA/ACP/AATS/PCNA/SCAI/STSguideline for the diagnosis and management of 779 780 patients with stable ischemic heart disease: executive summary: a report of the American College

781	of Cardiology Foundation/American Heart Association task force on practice guidelines, and the
782	American College of Physicians, American Association for Thoracic Surgery, Preventive
783	Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions,
784	and Society of Thoracic Surgeons. Circulation. 2012;126:3097-137. doi:
785	10.1161/CIR.0b013e3182776f83.
786	[15] Andersen LW, Holmberg MJ, Berg KM, et al. In-Hospital Cardiac Arrest: A Review. JAMA.
787	2019;321:1200-10. doi: 10.1001/jama.2019.1696.
788	[16] Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. J
789	Am Coll Cardiol. 2012;60:1581-98. doi: 10.1016/j.jacc.2012.08.001.
790	[17] Yancy CW, Jessup M, Bozkurt B,, et al. 2013 ACCF/AHA guideline for the management of
791	heart failure: a report of the American College of Cardiology Foundation/American Heart
792	Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147-239. doi:
793	10.1016/j.jacc.2013.05.019.
794	[18] Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st
795	century: a statement for healthcare professionals from the American Heart Association/American
796	Stroke Association. Stroke. 2013;44:2064-89. doi: 10.1161/STR.0b013e318296aeca.
797	[19] Zhang J , Cui X , Li J ,et al.Imbalanced classification of mental workload using a
798	cost-sensitive majority weighted minority oversampling strategy[J].Cognition Technology and
799	Work, 2017.DOI:10.1007/s10111-017-0447-x.
800	[20] Chawla N V , Bowyer K W , Hall L O ,et al.SMOTE: synthetic minority over-sampling
801	technique[J].AI Access Foundation, 2002(1).DOI:10.1613/JAIR.953.
802	[21] He H , Bai Y , Garcia E A ,et al.ADASYN: Adaptive synthetic sampling approach for
803	imbalanced learning[J].IEEE, 2008.DOI:10.1109/IJCNN.2008.4633969.
804	[22] Batista G E A P A , Prati R C , Monard M C .A study of the behavior of several methods for
OUE	halanging maching lagrange training data[1] A am Sigkdd Explorations Novalattar 2004

- 805 balancing machine learning training data[J].Acm Sigkdd Explorations Newsletter, 2004, 6(1):20-29.DOI:10.1145/1007730.1007735. 806
- 807 [23] Hall M A .Correlation-based Feature Selection for Machine Learning[J].Phd Thesis Waikato Univer Sity, 2000. 808
- 809 [24] Kursa M B, Rudnicki W R. Feature Selection with Boruta Package[J]. Journal of Statistical 810 Software, 2010, 36(11):1-13.DOI:10.18637/jss.v036.i11.
- 811 [25] Caballero, W.N., Gaw, N., Jenkins, P.R., & Johnstone, C. (2023). Toward automated
- instructor pilots in legacy Air Force systems: Physiology-based flight difficulty classification via 812 machine learning. Expert Syst. Appl., 231, 120711. 813
- 814 [26] Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data
- 815 using random forest. BMC **Bioinformatics**. 2006;7:3. Published 2006 Jan 6. doi:10.1186/1471-2105-7-3. 816
- 817 [27] Feng X, Zhang C, Huang X, et al. Machine learning improves mortality prediction in three-vessel disease. Atherosclerosis. 2023;367:1-7. doi:10.1016/j.atherosclerosis.2023.01.003. 818
- [28] Gould, M.K., Huang, B.Z., Tammemagi, M.C., Kinar, Y., & Shiff, R. (2021). Machine 819
- 820 Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data. 821 American journal of respiratory and critical care medicine.
- 822 [29] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation
- Hyperparameter Optimization Framework. Proceedings of the 25th ACM SIGKDD International 823
- Conference on Knowledge Discovery & Data Mining. 824

perpetuity. All rights reserved. No reuse allowed without permission.

- [30] Kardani, N., Zhou, A., Nazem, M., & Shen, S. (2020). Improved prediction of slope stability
- using a hybrid stacking ensemble method based on finite element analysis and field data. Journal
- 827 of rock mechanics and geotechnical engineering.
- 828 [31] Wang, J., Chen, H., Wang, H., Liu, W., Peng, D., Zhao, Q., & Xiao, M. (2023). A Risk
- Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care
 Facilities: Machine Learning Study. Journal of Medical Internet Research, 25.
- [32] DeLong, E.R., DeLong, D.M., & Clarke-Pearson, D.L. (1988). Comparing the areas under
- two or more correlated receiver operating characteristic curves: a nonparametric approach.
- Biometrics, 44 3, 837-45.
- [33] Chung, E.Y., & Romano, J.P. (2013). EXACT AND ASYMPTOTICALLY ROBUST
 PERMUTATION TESTS. Annals of Statistics, 41, 484-507.
- [34] Rufibach, K. (2010). Use of Brier score to assess binary predictions. Journal of clinical
 epidemiology, 63 8, 938-9; author reply 939.
- [35] Farhangfar, A., Kurgan, L., & Dy, J.G. (2008). Impact of imputation of missing values on
 classification error for discrete data. Pattern Recognit., 41, 3692-3705.
- [36] Collins, L.M., Schafer, J.L., & Kam, C. (2001). A comparison of inclusive and restrictive
 strategies in modern missing data procedures. Psychological methods, 6 4, 330-51.
- [37] Batista, G.E., Prati, R.C., & Monard, M.C. (2004). A study of the behavior of several
 methods for balancing machine learning training data. SIGKDD Explor., 6, 20-29.
- [38] Putten, P.V., & Someren, M.V. (2004). A Bias-Variance Analysis of a Real World Learning
 Problem: The CoIL Challenge 2000. Machine Learning, 57, 177-195.
- [39] Liu, H., Zhou, M., & Liu, Q. (2019). An embedded feature selection method for imbalanced
 data classification. IEEE/CAA Journal of Automatica Sinica, 6, 703-715.
- 848 [40] Guyon, I.M., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. J.
- 849 Mach. Learn. Res., 3, 1157-1182.
- [41] Vickers, A.J., Van calster, B., & Steyerberg, E.W. (2016). Net benefit approaches to the
 evaluation of prediction models, molecular markers, and diagnostic tests. The BMJ, 352.
- 852 [42] Cuocolo, R., Perillo, T., De Rosa, E., Ugga, L., & Petretta, M. (2019). Current applications of
- big data and machine learning in cardiology. Journal of Geriatric Cardiology : JGC, 16, 601 607.
- 854 [43] Halvorsen, Sigrun et al. "2022 ESC Guidelines on cardiovascular assessment and 855 management of patients undergoing non-cardiac surgery." European heart journal (2022): n. pag.
- [44] Zandijk, A.J., van Norel, M.R., Julius, F.E., Sepehrvand, N., Pannu, N.I., McAlister, F.A.,
- 857 Voors, A.A., & Ezekowitz, J.A. (2021). Chloride in Heart Failure: The Neglected Electrolyte.
- 858 JACC. Heart failure, 9 12, 904-915.

859 **Figure Legends**

- **Figure 1**. Flowchart of study design route.
- 861 Figure 2. Performance assessment of feature selection methods. (A) The optimal feature subset of
- the eight feature selection methods and the AUROC performance of the internal validation set
- after cross-validation on the training set. (B) RFE combines five kinds of basis learning models,

selects the best subset recursively based on the feature importance ranking of the learning model,

865	and evaluating the AUROC performance of the internal validation set after cross-validation on the
866	training set.
867	Figure 3. Performance assessment of the models. (A) Receiver operating characteristic curve
868	(ROC) of MACEs prediction models in testing set. (B) Precision-Recall curve (PRC) of MACEs
869	prediction models in testing set. (C) Decision curve analysis (DCA) for the nine MACEs
870	prediction models in the testing set. (D) Calibration plots of MACEs prediction models in the
871	testing set.
872	Figure 4. Compare the performance of validation sets and testing sets on different models. (A)
873	Compare AUROC values of validation set and testing set. (B) Compare AUPRC values of
874	validation set and testing set.
875	Figure 5. SHAP interprets the XGBoost Predictive model. (A) The SHAP analysis was performed
876	on the XGBoost. Each row of the graph represents a variable and the horizontal coordinate is the
877	SHAP value, which represents the distribution of the effect of the variable on the risk of MACEs,
878	with positive values indicating a risk of MACEs and negative values indicating no risk of MACEs.
879	A point represents a patient, while red represents a higher value and blue represents a lower value.
880	(B) The average of the absolute values of the SHAP values for each variable in the XGBoost is
881	taken as the significance of that variable. (C) Examples of negative predictions for MACEs. (D)
882	Examples of positive predictions for MACEs.
883	Figure 6. The ROC, PR and DCA curve performance of stacking model. ROC: receiver operating
884	characteristic; PR: precision-recall; DCA: decision curve analysis; AUROC: area under the
885	receiver operating characteristic curve; AUPRC: area under precision-recall curve.

886 **Tables**

887 Table 1. Baseline clinical characteristics of the study population and their association with

888 perioperative outcomes.

	Total	Training and valid	Fraining and validation set (n=7336)			Testing set (n=1835)		
Variables	(n=9171)	Non-MACEs	MACEs	P-value	Non-MACEs	MACEs	P-value	
		(n=6925)	(n=411)		(n=1732)	(n=103)		
Demographic				•				
Age (years)	70 (63, 76)	70 (64, 76)	72 (63, 79)	0.003	70 (63, 76)	69 (62, 77)	0.845	
Male	6133 (66.9)	4597 (66.4)	304 (74.0)	0.002	1155 (66.7)	77 (74.8)	0.090	
Body mass index	23.6 (21.5,	23.7 (21.6,	22.0 (19.9,	0.001		22.6 (19.8,	0.002	
(kg/m2)	25.7)	25.8)	24.4)	<0.001	23.6 (21.5, 25.6)	24.4)	0.005	
Comorbidities								
Hypertension	5737 (62.6)	4323 (62.4)	266 (64.7)	0.350	1076 (62.1)	72 (69.9)	0.113	
Diabetes mellitus	2534 (27.6)	1880 (27.1)	141 (34.3)	0.002	472 (27.3)	41 (39.8)	0.006	
Stroke	863 (9.4)	637 (9.2)	55 (13.4)	0.005	158 (9.1)	12 (11.7)	0.390	
Dialysis	196 (2.1)	119 (1.7)	51 (12.4)	< 0.001	18 (1.0)	8 (7.8)	< 0.001	
COPD	214 (2.3)	171 (2.5)	8 (1.9)	0.504	34 (2.0)	1 (1.0)	0.719	
Cardiac history				•				
Ischemic heart disease	3454 (37.7)	2498 (36.1)	252 (61.3)	< 0.001	641 (37.0)	63 (61.2)	< 0.001	
Myocardial infarction	2147 (23.4)	1567 (22.6)	116 (28.2)	0.009	434 (25.1)	30 (29.1)	0.356	
Heart failure	491 (5.4)	331 (4.8)	73 (17.8)	< 0.001	68 (3.9)	19 (18.4)	< 0.001	
Atrial fibrillation	416 (4.5)	286 (4.1)	48 (11.7)	< 0.001	74 (4.3)	8 (7.8)	0.132	
Valvular heart disease	168 (1.8)	122 (1.8)	18 (4.4)	< 0.001	22 (1.3)	6 (5.8)	0.004	
PTCA	1823 (19.9)	1373 (19.8)	78 (19.0)	0.675	349 (20.2)	23 (22.3)	0.593	
CABG	146 (1.6)	112 (1.6)	9 (2.2)	0.376	22 (1.3)	3 (2.9)	0.162	
Preoperative blood tests				•				
Leukocyte(×109/L)	6.2(5.1, 7.7)	6.2 (5.1, 7.6)	7.4(5.6, 10.3)	< 0.001	6.1 (5.0, 7.5)	7.3(5.4, 11.3)	< 0.001	
Hemoglobin (g/L)	131 (117, 144)	132 (118, 144)	104 (84, 123)	<0.001	132 (118, 144)	100 (82, 119)	<0.001	
	195 (157,							
Platelet ($\times 10^{9}/L$)	239)	195 (158, 239)	179 (134,237)	<0.001	198 (158, 239)	182 (133,237)	0.023	
Fasting blood glucose (mmol/L)	5.47 (4.83, 6.68)	5.45 (4.82, 6.58)	6.80 (5.20, 9.23)	<0.001	5.43 (4.81, 6.53)	7.05 (5.23, 9.69)	< 0.001	
Serum creatinine (µmol/L)	77 (65, 93)	77 (65, 92)	94 (70, 176)	<0.001	76 (65, 92)	85 (67, 139)	<0.001	
eGFR (mL/min/1.73m2)	81 (65, 91)	82 (66, 91)	62 (28, 84)	<0.001	81 (66, 91)	71 (36, 90)	<0.001	
Total serum protein (g/L)	69.0 (64.0, 73.2)	69.3 (64.5, 73.4)	63.1 (55.5, 68.4)	<0.001	69.2 (64.1, 73.4)	59.9 (53.8, 68.6)	<0.001	
Albumin (g/L)	42.7 (38.6, 45.8)	42.9 (39.1, 45.9)	37.2 (32.4, 41.3)	<0.001	42.9 (39.2, 45.9)	35.5 (31.3, 39.8)	<0.001	
Globulin (g/L)	26.1 (23.5,	26.2 (23.6,	25.3 (21.7,	< 0.001	26.0 (23.5, 29.0)	25.0 (20.8,	0.017	

	29.0)	29.0)	28.9)			29.6)		
	18 (13 26)	18 (13, 26)	16 (10, 27)	0.001	18 (13-27)	17 (11, 31)	0.738	
AST (U/L)	20 (16, 26)	20 (16, 25)	20 (15, 31)	0.225	20 (16, 26)	22 (15, 40)	0.078	
GGT (U/L)	25 (17, 42)	25 (17, 42)	27 (16, 52)	0.157	26 (17, 43)	29 (19, 68)	0.025	
	77 (63, 94)	76 (63, 94)	80 (62, 108)	0.043	77 (64, 93)	80 (62, 113)	0.170	
	7435 (6151	7500 (6280	5546 (3976	0.045	7553 (6289	5360 (3294	0.170	
Cholinesterase (U/L)	8663)	8708)	7184)	< 0.001	8751)	7124)	< 0.001	
Total bilirubin	10.3 (7.6,		9.0 (6.2,			8.6 (6.8,		
(µmol/L)	14.3)	10.3 (7.6, 14.3)	14.5)	0.004	10.4 (7.9, 14.1)	16.7)	0.393	
Direct bilirubin	4.0 (3.0,	40(2054)	4.0 (3.0,	0.174	40(20.55)	4.3 (3.0,	0.074	
(µmol/L)	5.4)	4.0 (3.0, 3.4)	6.1)	0.174	4.0 (3.0, 5.3)	8.2)	0.074	
Indirect bilirubin	6.0 (4.1,	61(42.9.0)	5.0 (3.0,	<0.001	61(44.9.0)	4.6 (3.0,	<0.001	
(µmol/L)	9.0)	0.1 (4.2, 9.0)	7.4)	<0.001	0.1 (4.4, 9.0)	8.4)	<0.001	
Potassium (mmol/L)	4.13 (3.85,	4.14 (3.85,	4.10 (3.70,	0.081	4 13 (3 85 4 44)	3.99 (3.70,	0.013	
(iiiio) 2)	4.42)	4.42)	4.46)	0.001		4.40)	0.010	
	142.0	142.0 (140.0,	140.0		142.0 (140.0,	140.0		
Sodium (mmol/L)	(140.0,	143.0)	(138.0,	< 0.001	143.0)	(137.0,	< 0.001	
	143.0)	,	143.0)		,	142.0)	<u> </u>	
	104.0	104.0 (102.0.	104.0		104.0 (102.0.	104.0		
Chlorine (mmol/L)	(102.0,	106.0)	(101.0,	0.765	106.0)	(101.0,	0.728	
	106.0)	100.0)	107.0)		100.0)	107.0)		
Total calcium(mmol/L)	2.24 (2.14,	2.25 (2.15,	2.14 (2.00,		2 25 (2 16 2 34)	2.10 (2.00,	<0.001	
	2.33)	2.34)	2.25)	(01001	2120 (2110, 210 1)	2.24)	(01001	
Inorganic phosphorus	1.10 (0.97,	1.10 (0.98,	1.11 (0.95,	0.027	1.09 (0.97, 1.21)	1.06 (0.90,	0.629	
(mmol/L)	1.22)	1.22)	1.33)	0.027	1.09 (0.97, 1.21)	1.27)	0.025	
Uric acid (umol/L)	316 (256,	315 (257, 380)	300 (230,	0.022	320 (260-384)	294 (218,	0.026	
	381)	515 (257, 500)	389)			378)		
Triglyceride (mmol/L)	1.22 (0.91,	1.22 (0.91,	1.16 (0.87,	0.010 1.21 (0.01, 1.70)		1.22 (0.90,	0.980	
	1.69)	1.69)	1.56)	0.017	1.21 (0.91, 1.70)	1.68)	0.900	
Total cholesterol	3.64 (3.05,	3.64 (3.06,	3.41 (2.80,	<0.001	3 70 (3 09 4 46)	3.45 (2.90,	0.062	
(mmol/L)	4.37)	4.36)	4.15)	<0.001	5.70 (5.0), 1.10)	4.33)	0.002	
LDL-C (mmol/L)	1.83 (1.40,	1.83 (1.41,	1.73 (1.23,	< 0.001	1.87 (1.42, 2.51)	1.74 (1.41,	0.159	
	2.44)	2.43)	2.25)	<0.001	1.07 (1.12, 2.51)	2.55)	0.155	
PT (s)	11.0 (10.9,	11.4 (10.9,	12.0 (11.3,	< 0.001	11.4 (10.9, 12.0)	12.5 (11.7,	< 0.001	
	12.1)	12.1)	13.3)	(01001	1111 (100), 1210)	13.5)	101001	
APTT (s)	27.2 (25.2,	27.1 (25.2,	28.6 (26.2,	< 0.001	27.1 (25.1, 29.1)	29.9 (26.5,	< 0.001	
	29.4)	29.3)	34.2)			35.5)		
Fibringgen (g/L)	3.00 (2.53,	2.99 (2.53,	3.32 (2.49,	<0.001	3 00 (2 56 3 59)	2.93 (2.28,	0.717	
	3.65)	3.64)	4.34)	<0.001	5.00 (2.50, 5.57)	4.18)	0./1/	
D-dimer(ug/L FELD	460 (234,	434 (223-962)	1366 (552,	<0.001	439 (230, 1000)	2340 (704,	<0.001	
	1055)	.51 (225, 762)	3788)	.0.001	.55 (250, 1000)	5116)		
Preoperative ECG		1	1	1	1	1	T	
AQW	501 (6.3)	357 (5.9)	32 (10.3)	0.001	104 (6.9)	8 (12.1)	0.134	

43

ST-Ta	3901 (49.0)	2913 (47.9)	204 (65.8)	< 0.001	739 (48.8)	45 (68.2)	0.002	
Preoperative echocardiog	graphy							
AQ (mm)	30.0 (27.0,	30.0 (27.0,	30.5 (28.0,	0.108	30.0 (27.0.32.0)	30.0 (27.5,	0.817	
AO (mm)	33.0)	33.0)	33.0)	0.108	50.0 (27.0, 52.0)	32.0)	0.81/	
IVSd (mm)	9.0 (9.0,	90(90,100)	10.0 (9.0,	<0.001	90(90,100)	10.0 (9.0,	0.124	
	10.0)	9.0 (9.0, 10.0)	11.0)	<0.001	9.0 (9.0, 10.0)	11.0)	0.124	
LVDd (mm)	48.0 (44.0,	47.0 (44.0,	48.0 (45.0,	0.001	48.0 (44.0, 51.0)	50.0 (45.0,	0.035	
	51.0)	51.0)	52.0)	0.001	10.0 (11.0, 51.0)	53.0)	0.055	
ES (%)	37.0 (33.0,	37.0 (34.0,	35.0 (31.8,	<0.001	37.0 (34.0, 40.0)	34.0 (31.0,	<0.001	
	40.0)	40.0)	39.0)	(0.001	57.0 (51.0, 10.0)	39.0)	<0.001	
LA (mm)	34.0 (30.0,	34.0 (30.0,	35.0 (31.0,	<0.001	34.0 (30.3, 37.0)	35.0 (31.0,	0.044	
	38.0)	38.0)	41.0)			40.0)		
LVPWd (mm)	9.0 (9.0,	9.0 (9.0, 10.0)	10.0 (9.0,	<0.001	9.0 (9.0, 10.0)	10.0 (8.5,	0.334	
	10.0)	,10 (,10, 10,0)	11.0)	(0.001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.0)	0.001	
LVDs (mm)	30.0 (27.0,	30.0 (27.0,	31.0 (28.0,	< 0.001	30.0 (27.0, 33.0)	31.0 (27.0,	0.055	
	33.0)	32.0)	35.0)			35.0)		
LVEF (%)	66.0 (62.0,	66.0 (62.0,	63.0 (58.0,	<0.001 66.0 (62.0, 70.0)		62.0 (58.3,	< 0.001	
	71.0)	71.0)	69.0)			68.8)		
RWMA	532 (7.5)	348 (6.5)	68 (19.7)	< 0.001	90 (6.9)	26 (28.9)	< 0.001	
РН	326 (4.6)	221 (4.1)	47 (13.6)	< 0.001	49 (3.7)	9 (10.0)	< 0.001	
LVDD	6210 (87.1)	4741 (88.1)	253 (73.1)	< 0.001	1155 (88.1)	61 (67.8)	< 0.001	
ASA class				< 0.001			< 0.001	
П	3887 (42.4)	3072 (44.4)	61 (14.8)		742 (42.8)	12 (11.7)		
III	5210 (56.8)	3834 (55.4)	312 (75.9)		985 (56.9)	79 (76.7)		
IV	74 (0.8)	19 (0.3)	38 (9.2)		5 (0.3)	12 (11.7)		
General anesthesia	6702 (73.1)	5016 (72.4)	338 (82.2)	< 0.001	1273 (73.5)	75 (72.8)	0.879	
Types of surgery		1					•	
General	2823 (30.8)	2082 (30.1)	154 (37.5)	0.002	546 (31.5)	41 (39.8)	0.080	
Abdominal	2156 (23.5)	1573 (22.7)	131 (31.9)	< 0.001	414 (23.9)	38 (36.9)	0.003	
Nonabdominal	667 (7.3)	509 (7.4)	23 (5.6)	0.183	132 (7.6)	3 (2.9)	0.075	
Thoracic	1060 (11.6)	805 (11.6)	29 (7.1)	0.005	219 (12.6)	7 (6.8)	0.079	
Orthopedic	854 (9.3)	643 (9.3)	46 (11.2)	0.198	154 (8.9)	11 (10.7)	0.538	
ENT	236 (2.6)	192 (2.8)	2 (0.5)	0.005	39 (2.3)	3 (2.9)	0.509	
Neurological	444 (4.8)	321 (4.6)	31 (7.5)	0.007	80 (4.6)	12 (11.7)	0.001	
Gynecologic	171 (1.9)	139 (2.0)	4 (1.0)	0.141	27 (1.6)	1 (1.0)	1.000	
Urologic	1550 (16.9)	1185 (17.1)	54 (13.1)	0.037	307 (17.7)	4 (3.9)	< 0.001	
Ophthalmology	767 (8.4)	603 (8.7)	1 (0.2)	< 0.001	162 (9.4)	1 (1.0)	0.001	
Vascular	1113 (12.1)	835 (12.1)	87 (21.2)	< 0.001	169 (9.8)	22 (21.4)	< 0.001	
Aortic	113 (1.2)	76 (1.1)	16 (3.9)	< 0.001	17 (1.0)	4 (3.9)	0.027	
Non-aortic	1000 (10.9)	759 (11.0)	71 (17.3)	< 0.001	152 (8.8)	18 (17.5)	0.003	
Dental	153 (1.7)	120 (1.7)	3 (0.7)	0.124	29 (1.7)	1 (1.0)	1.000	
DOS (min)	87 (50, 147)	84 (49, 141)	140 (80, 211)	< 0.001	87 (50, 144)	139(79, 234)	< 0.001	

889 Notes: Results presented as median (IQR), or n (%).

- 890 Abbreviations: COPD, chronic obstructive pulmonary disease; PTCA, percutaneous transluminal coronary angioplasty; CABG, coronary
- 891 artery bypass graft; eGFR, estimated glomerular filtration rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,
- 892 gamma-glutamyl transferase; ALP, alkaline phosphatase; LDL-C, low density lipoprotein cholesterol; PT, prothrombin time; APTT,
- 893 activated partial thromboplastin time; AQW, abnormal Q waves; ST-Ta, ST-T wave abnormalities; AO, aorta diameter; IVSd,
- 894 interventricular septum thickness at end diastole; LVDd, left ventricular end diastolic dimension; FS, fractional shortening; LA, left atrial
- 895 anteroposterior dimension; LVPWd, left ventricular posterior wall thickness at end diastole; LVDs, left ventricular end systolic
- 896 dimension; LVEF, left ventricular ejection fraction; RWMA, regional wall motion abnormality; PH, pulmonary hypertension; LVDD,
- 897 left ventricle diastolic dysfunction; ASA, American Society of Anesthesiologists; ENT, ear, nose, and throat; DOS, duration of surgery.

45

898 Table 2. The internal verification results of models trained were obtained by using different 899 balanced class methods combined with cross-validation using all features.

Models	Methods	AUROC(95%CI)	AUPRC(95%CI)	Accuracy	Specificity	Sensitivity	Youden Index
LR	-	0.879(+/-0.024)	0.451(+/-0.126)	0.879	0.991	0.270	0.261
RF	-	0.864(+/-0.036)	0.414(+/-0.095)	0.944	1.000	0.000	0.000
XGBoost	-	0.862(+/-0.047)	0.403(+/-0.055)	0.946	1.000	0.034	0.034
LR	SMOTE	0.867(+/-0.036)	0.412(+/-0.121)	0.824	0.828	0.757	0.585
RF	SMOTE	0.870(+/-0.047)	0.386(+/-0.105)	0.943	0.979	0.343	0.322
XGBoost	SMOTE	0.875(+/-0.041)	0.427(+/-0.137)	0.942	0.976	0.372	0.348
LR	ANSYN	0.864(+/-0.041)	0.408(+/-0.134)	0.806	0.809	0.764	0.573
RF	ANSYN	0.871(+/-0.044)	0.388(+/-0.104)	0.941	0.973	0.399	0.372
XGBoost	ANSYN	0.877(+/-0.035)	0.415(+/-0.137)	0.947	0.982	0.348	0.330
LR	SMOTE+ENN	0.868(+/-0.036)	0.396(+/-0.105)	0.726	0.719	0.842	0.561
RF	SMOTE+ENN	0.863(+/-0.053)	0.360(+/-0.096)	0.864	0.691	0.874	0.565
XGBoost	SMOTE+ENN	0.872(+/-0.037)	0.397(+/-0.105)	0.894	0.907	0.672	0.579

900	Table 3. The predictive performance in the test set of the 9 models. LR: logistic regression; SVM:
901	support vector machine; GNB: Gaussian Naive Bayes; RF: random forest; GBDT: gradient
902	boosting decision tree; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting
903	machine; CatBoost: categorical boosting; AUROC: area under the receiver operating characteristic
904	curve; AUPRC: area under the precision recall curve.

Models	AUROC (95%CI)	AUPRC (95%CI)	Accuracy	Specificity	Precision	Recall (Sensitivity)	F1 score	Youden Index
Baseline-RCRI	0.716(+/-0.045)	0.185(+/-0.078)	0.679	0.680	0.109	0.662	0.187	0.342
LR	0.896(+/-0.033)	0.438(+/-0.106)	0.732	0.722	0.160	0.895	0.271	0.617
SVM	0.892(+/-0.034)	0.431(+/-0.103)	0.780	0.777	0.181	0.837	0.298	0.613
GNB	0.880(+/-0.034)	0.392(+/-0.081)	0.879	0.887	0.279	0.740	0.404	0.627
RF	0.892(+/-0.035)	0.454(+/-0.099)	0.777	0.773	0.181	0.845	0.297	0.618
GBDT	0.895(+/-0.032)	0.460(+/-0.103)	0.901	0.916	0.314	0.652	0.423	0.568
XGBoost	0.898(+/-0.034)	0.479(+/-0.101)	0.874	0.881	0.271	0.748	0.397	0.629
LightGBM	0.897(+/-0.033)	0.445(+/-0.102)	0.845	0.850	0.230	0.758	0.353	0.608
CatBoost	0.890(+/-0.034)	0.448(+/-0.102)	0.804	0.803	0.199	0.826	0.320	0.630

Figures 905

(A) Compare AUROC values of validation set and testing set Validation set Testing set 1.0 -0.8 AUROC 9.0 0.4 0.2 0.0 SVM GNB CaB LR RF GBDT XGB LGB Models

Figure 6.

	Total	Training and validation set (n=7336)			Testing set (n=1835)		
Variables	(n=9171)	Non-MACEs	MACEs	P-value	Non-MACEs	MACEs	P-value
		(n=6925)	(n=411)		(n=1732)	(n=103)	
Demographic							
Age (years)	70 (63, 76)	70 (64, 76)	72 (63, 79)	0.003	70 (63, 76)	69 (62, 77)	0.845
Male	6133 (66.9)	4597 (66.4)	304 (74.0)	0.002	1155 (66.7)	77 (74.8)	0.090
Body mass index	23.6 (21.5,	23.7 (21.6,	22.0 (19.9,	0.001		22.6 (19.8,	0.000
(kg/m2)	25.7)	25.8)	24.4)	<0.001	23.6 (21.5, 25.6)	24.4)	0.003
Comorbidities	•	•					
Hypertension	5737 (62.6)	4323 (62.4)	266 (64.7)	0.350	1076 (62.1)	72 (69.9)	0.113
Diabetes mellitus	2534 (27.6)	1880 (27.1)	141 (34.3)	0.002	472 (27.3)	41 (39.8)	0.006
Stroke	863 (9.4)	637 (9.2)	55 (13.4)	0.005	158 (9.1)	12 (11.7)	0.390
Dialysis	196 (2.1)	119 (1.7)	51 (12.4)	< 0.001	18 (1.0)	8 (7.8)	< 0.001
COPD	214 (2.3)	171 (2.5)	8 (1.9)	0.504	34 (2.0)	1 (1.0)	0.719
Cardiac history				1			ı
Ischemic heart disease	3454 (37.7)	2498 (36.1)	252 (61.3)	< 0.001	641 (37.0)	63 (61.2)	< 0.001
Myocardial infarction	2147 (23.4)	1567 (22.6)	116 (28.2)	0.009	434 (25.1)	30 (29.1)	0.356
Heart failure	491 (5.4)	331 (4.8)	73 (17.8)	< 0.001	68 (3.9)	19 (18.4)	< 0.001
Atrial fibrillation	416 (4.5)	286 (4.1)	48 (11.7)	< 0.001	74 (4.3)	8 (7.8)	0.132
Valvular heart disease	168 (1.8)	122 (1.8)	18 (4.4)	< 0.001	22 (1.3)	6 (5.8)	0.004
РТСА	1823 (19.9)	1373 (19.8)	78 (19.0)	0.675	349 (20.2)	23 (22.3)	0.593
CABG	146 (1.6)	112 (1.6)	9 (2.2)	0.376	22 (1.3)	3 (2.9)	0.162
Preoperative blood tests							
Leukocyte(×109/L)	6.2(5.1, 7.7)	6.2 (5.1, 7.6)	7.4(5.6, 10.3)	< 0.001	6.1 (5.0, 7.5)	7.3(5.4, 11.3)	< 0.001
	131 (117,						
Hemoglobin (g/L)	144)	132 (118, 144)	104 (84, 123)	< 0.001	132 (118, 144)	100 (82, 119)	< 0.001
	195 (157,						
Platelet (×10 ⁹ /L)	239)	195 (158, 239)	179 (134,237)	< 0.001	198 (158, 239)	182 (133,237)	0.023
Fasting blood glucose	5.47 (4.83,	5.45 (4.82,	6.80 (5.20,			7.05 (5.23,	
(mmol/L)	6.68)	6.58)	9.23)	< 0.001	5.43 (4.81, 6.53)	9.69)	< 0.001
Serum creatinine							
(µmol/L)	77 (65, 93)	77 (65, 92)	94 (70, 176)	< 0.001	76 (65, 92)	85 (67, 139)	< 0.001
eGFR							
(mL/min/1.73m2)	81 (65, 91)	82 (66, 91)	62 (28, 84)	< 0.001	81 (66, 91)	71 (36, 90)	< 0.001
Total serum protein	69.0 (64.0,	69.3 (64.5,	63.1 (55.5,			59.9 (53.8,	
(g/L)	73.2)	73.4)	68.4)	< 0.001	69.2 (64.1, 73.4)	68.6)	< 0.001
	42.7 (38.6,	42.9 (39.1,	37.2 (32.4,	0.001		35.5 (31.3,	0.001
Albumin (g/L)	45.8)	45.9)	41.3)	< 0.001	42.9 (39.2, 45.9)	39.8)	< 0.001
	26.1 (23.5,	26.2 (23.6,	25.3 (21.7,			25.0 (20.8,	
Globulin (g/L)	29.0)	29.0)	28.9)	< 0.001	26.0 (23.5, 29.0)	29.6)	0.017
ALT (U/L)	18 (13, 26)	18 (13, 26)	16 (10, 27)	0.001	18 (13, 27)	17 (11, 31)	0.738

Table 1. Baseline clinical characteristics of the study population and their association with perioperative outcomes

AST (U/L)	20 (16, 26)	20 (16, 25) 20 (15, 31)		0.225	0.225 20 (16, 26)		0.078	
GGT (U/L)	25 (17, 42)	25 (17, 42)	27 (16, 52)	0.157	26 (17, 43)	29 (19, 68)	0.025	
ALP (U/L)	77 (63, 94)	76 (63, 94)	80 (62, 108)	0.043	77 (64, 93)	80 (62, 113)	0.170	
Chalinesterras (U.I.)	7435 (6151,	7500 (6280,	5546 (3976,	-0.001	7553 (6289,	5360 (3294,	-0.001	
Chonnesterase (U/L)	8663)	8708)	7184)	<0.001	8751)	7124)	<0.001	
Total bilirubin	10.3 (7.6,	10 3 (7 6 14 3)	9.0 (6.2,	0.004	10 4 (7 0 14 1)	8.6 (6.8,	0 393	
(µmol/L)	14.3)	10.5 (7.0, 14.5)	14.5)	0.004	10.4 (7.9, 14.1)	16.7)	0.575	
Direct bilirubin	4.0 (3.0,	40(30 54)	4.0 (3.0,	0 174	40(3055)	4.3 (3.0,	0.074	
(µmol/L)	5.4)	1.0 (3.0, 5.1)	6.1)	0.171	1.0 (0.0, 0.0)	8.2)		
Indirect bilirubin	6.0 (4.1,	61(42.90)	5.0 (3.0,	<0.001	61(4490)	4.6 (3.0,	<0.001	
(µmol/L)	9.0)	0.1 (1.2, 9.0)	7.4)		0.1 (1.1, 7.0)	8.4)		
Potassium (mmol/L)	4.13 (3.85,	4.14 (3.85,	4.10 (3.70,	0.081	4 13 (3 85 4 44)	3.99 (3.70,	0.013	
roussium (innior 2)	4.42)	4.42)	4.46)	0.001	1.15 (5.65, 1.11)	4.40)	0.015	
	142.0	142.0 (140.0	140.0		142.0 (140.0	140.0	<0.001	
Sodium (mmol/L)	(140.0,	143.0)	(138.0,	< 0.001	143.0)	(137.0,		
	143.0)	145.0)	143.0)		1+5.0)	142.0)		
	104.0	104.0 (102.0	104.0		104.0 (102.0	104.0	0.728	
Chlorine (mmol/L)	(102.0,	106.0)	(101.0,	0.765	106.0)	(101.0,		
	106.0)	100.0)	107.0)		100.0)	107.0)		
Total calcium(mmol/L)	2.24 (2.14,	2.25 (2.15,	2.14 (2.00,	<0.001	2 25 (2 16 2 34)	2.10 (2.00,	< 0.001	
10 mil emeruin(innio) 2)	2.33)	2.34)	2.25)		2120 (2110, 2101)	2.24)		
Inorganic phosphorus	1.10 (0.97,	1.10 (0.98,	1.11 (0.95,	0.027	1.09 (0.97, 1.21)	1.06 (0.90,	0.629	
(mmol/L)	1.22)	1.22)	1.33)	0.027	1.09 (0.97, 1.21)	1.27)	0.029	
Uric acid (umol/L)	316 (256,	315 (257-380)	300 (230,	0.022	320 (260-384)	294 (218,	0.026	
(;	381)		389)		,	378)	0.020	
Triglyceride (mmol/L)	1.22 (0.91,	1.22 (0.91,	1.16 (0.87,	0.019	1 21 (0 91 1 70)	1.22 (0.90,	0.980	
(minor E)	1.69)	1.69)	1.56)	0.015	1.21 (0.91, 1.70)	1.68)	0.960	
Total cholesterol	3.64 (3.05,	3.64 (3.06,	3.41 (2.80,	<0.001	3 70 (3 09 4 46)	3.45 (2.90,	0.062	
(mmol/L)	4.37)	4.36)	4.15)		5170 (510), 1110)	4.33)	01002	
LDL-C (mmol/L)	1.83 (1.40,	1.83 (1.41,	1.73 (1.23,	<0.001	1.87 (1.42, 2.51)	1.74 (1.41,	0.159	
LDL-C (IIIIIOI/L)	2.44)	2.43)	2.25)			2.55)		
PT (s)	11.0 (10.9,	11.4 (10.9,	12.0 (11.3,	<0.001	11.4 (10.9, 12.0)	12.5 (11.7,	<0.001	
r 1 (S)	12.1)	12.1)	13.3)	(0.001	11.1 (10.), 12.0)	13.5)	<0.001	
APTT (s)	27.2 (25.2,	27.1 (25.2,	28.6 (26.2,	<0.001	27 1 (25 1 29 1)	29.9 (26.5,	<0.001	
AF 1 (8)	29.4)	29.3)	34.2)	(01001	2/11 (2011, 2)(1)	35.5)		
Fibrinogen (g/L)	3.00 (2.53,	2.99 (2.53,	3.32 (2.49,	<0.001	3 00 (2 56 3 59)	2.93 (2.28,	0.717	
	3.65)	3.64)	4.34)		5.00 (2.50, 5.57)	4.18)	5.717	
D-dimer(ug/L_FFLD	460 (234,	434 (223, 962)	1366 (552,	<0.001	439 (230, 1000)	2340 (704,	<0.001	
	1055)		3788)	.0.001		5116)		
Preoperative ECG								
AQW	501 (6.3)	357 (5.9)	32 (10.3)	0.001	104 (6.9)	8 (12.1)	0.134	
ST-Ta	3901 (49.0)	2913 (47.9) 204 (65.8) <0.001 739 (48.8)		45 (68.2)	0.002			
Preoperative echocardiography								

AO (mm)	30.0 (27.0, 33.0)	30.0 (27.0, 33.0)	30.5 (28.0, 33.0)	0.108	30.0 (27.0, 32.0)	30.0 (27.5, 32.0)	0.817
IVSd (mm)	9.0 (9.0, 10.0)	9.0 (9.0, 10.0)	10.0 (9.0, 11.0)	<0.001	9.0 (9.0, 10.0)	10.0 (9.0, 11.0)	0.124
LVDd (mm)	48.0 (44.0, 51.0)	47.0 (44.0, 51.0)	48.0 (45.0, 52.0)	0.001	48.0 (44.0, 51.0)	50.0 (45.0, 53.0)	0.035
FS (%)	37.0 (33.0, 40.0)	37.0 (34.0, 40.0)	35.0 (31.8, 39.0)	<0.001	37.0 (34.0, 40.0)	34.0 (31.0, 39.0)	<0.001
LA (mm)	34.0 (30.0, 38.0)	34.0 (30.0, 38.0)	35.0 (31.0, 41.0)	<0.001	34.0 (30.3, 37.0)	35.0 (31.0, 40.0)	0.044
LVPWd (mm)	9.0 (9.0, 10.0)	9.0 (9.0, 10.0)	10.0 (9.0, 11.0)	<0.001	9.0 (9.0, 10.0)	10.0 (8.5, 11.0)	0.334
LVDs (mm)	30.0 (27.0, 33.0)	30.0 (27.0, 32.0)	31.0 (28.0, 35.0)	<0.001	30.0 (27.0, 33.0)	31.0 (27.0, 35.0)	0.055
LVEF (%)	66.0 (62.0, 71.0)	66.0 (62.0, 71.0)	63.0 (58.0, 69.0)	<0.001	66.0 (62.0, 70.0)	62.0 (58.3, 68.8)	< 0.001
RWMA	532 (7.5)	348 (6.5)	68 (19.7)	< 0.001	90 (6.9)	26 (28.9)	< 0.001
РН	326 (4.6)	221 (4.1)	47 (13.6)	< 0.001	49 (3.7)	9 (10.0)	< 0.001
LVDD	6210 (87.1)	4741 (88.1)	253 (73.1)	< 0.001	1155 (88.1)	61 (67.8)	< 0.001
ASA class				< 0.001			< 0.001
Ш	3887 (42.4)	3072 (44.4)	61 (14.8)		742 (42.8)	12 (11.7)	
III	5210 (56.8)	3834 (55.4)	312 (75.9)		985 (56.9)	79 (76.7)	
IV	74 (0.8)	19 (0.3)	38 (9.2)		5 (0.3)	12 (11.7)	
General anesthesia	6702 (73.1)	5016 (72.4)	338 (82.2)	< 0.001	1273 (73.5)	75 (72.8)	0.879
Types of surgery			•	•		•	
General	2823 (30.8)	2082 (30.1)	154 (37.5)	0.002	546 (31.5)	41 (39.8)	0.080
Abdominal	2156 (23.5)	1573 (22.7)	131 (31.9)	< 0.001	414 (23.9)	38 (36.9)	0.003
Nonabdominal	667 (7.3)	509 (7.4)	23 (5.6)	0.183	132 (7.6)	3 (2.9)	0.075
Thoracic	1060 (11.6)	805 (11.6)	29 (7.1)	0.005	0.005 219 (12.6)		0.079
Orthopedic	854 (9.3)	643 (9.3)	46 (11.2)	0.198	154 (8.9)	11 (10.7)	0.538
ENT	236 (2.6)	192 (2.8)	2 (0.5)	0.005	39 (2.3)	3 (2.9)	0.509
Neurological	444 (4.8)	321 (4.6)	31 (7.5)	0.007	80 (4.6)	12 (11.7)	0.001
Gynecologic	171 (1.9)	139 (2.0)	4 (1.0)	0.141	27 (1.6)	1 (1.0)	1.000
Urologic	1550 (16.9)	1185 (17.1)	54 (13.1)	0.037	307 (17.7)	4 (3.9)	< 0.001
Ophthalmology	767 (8.4)	603 (8.7)		< 0.001	162 (9.4)	1 (1.0)	0.001
Vascular	1113 (12.1)	835 (12.1)	87 (21.2)	< 0.001	169 (9.8)	22 (21.4)	< 0.001
Aortic	113 (1.2)	76 (1.1)	16 (3.9)	< 0.001	17 (1.0)	4 (3.9)	0.027
Non-aortic	1000 (10.9)	759 (11.0)	71 (17.3)	< 0.001	152 (8.8)	18 (17.5)	0.003
Dental	153 (1.7)	120 (1.7)	3 (0.7)	0.124	29 (1.7)	1 (1.0)	1.000
DOS (min)	87 (50, 147)	84 (49, 141)	140 (80, 211)	< 0.001	87 (50, 144)	139(79, 234)	< 0.001

Notes: Results presented as median (IQR), or n (%).

Abbreviations:COPD, chronic obstructive pulmonary disease; PTCA, percutaneous transluminal coronary angioplasty; CABG, coronary artery bypass graft; eGFR, estimated glomerular filtration rate; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT,

gamma-glutamyl transferase; ALP, alkaline phosphatase; LDL-C, low density lipoprotein cholesterol; PT, prothrombin time; APTT, activated partial thromboplastin time; AQW, abnormal Q waves; ST-Ta, ST-T wave abnormalities; AO, aorta diameter; IVSd, interventricular septum thickness at end diastole; LVDd, left ventricular end diastolic dimension; FS, fractional shortening; LA, left atrial anteroposterior dimension; LVPWd, left ventricular posterior wall thickness at end diastole; LVDd, left ventricular posterior wall thickness at end diastole; LVDd, left ventricular posterior wall thickness at end diastole; LVDd, left ventricular posterior wall thickness at end diastole; LVDd, left ventricular end systolic dimension; LVEF, left ventricular ejection fraction; RWMA, regional wall motion abnormality; PH, pulmonary hypertension; LVDD, left ventricle diastolic dysfunction; ASA, American Society of Anesthesiologists; ENT, ear, nose, and throat; DOS, duration of surgery.

Models	Methods	AUROC(95%CI)	AUPRC(95%CI)	Accuracy	Specificity	Sensitivity	Youden Index
LR	-	0.879(+/-0.024)	0.451(+/-0.126)	0.879	0.991	0.270	0.261
RF	-	0.864(+/-0.036)	0.414(+/-0.095)	0.944	1.000	0.000	0.000
XGBoost	-	0.862(+/-0.047)	0.403(+/-0.055)	0.946	1.000	0.034	0.034
LR	SMOTE	0.867(+/-0.036)	0.412(+/-0.121)	0.824	0.828	0.757	0.585
RF	SMOTE	0.870(+/-0.047)	0.386(+/-0.105)	0.943	0.979	0.343	0.322
XGBoost	SMOTE	0.875(+/-0.041)	0.427(+/-0.137)	0.942	0.976	0.372	0.348
LR	ANSYN	0.864(+/-0.041)	0.408(+/-0.134)	0.806	0.809	0.764	0.573
RF	ANSYN	0.871(+/-0.044)	0.388(+/-0.104)	0.941	0.973	0.399	0.372
XGBoost	ANSYN	0.877(+/-0.035)	0.415(+/-0.137)	0.947	0.982	0.348	0.330
LR	SMOTE+ENN	0.868(+/-0.036)	0.396(+/-0.105)	0.726	0.719	0.842	0.561
RF	SMOTE+ENN	0.863(+/-0.053)	0.360(+/-0.096)	0.864	0.691	0.874	0.565
XGBoost	SMOTE+ENN	0.872(+/-0.037)	0.397(+/-0.105)	0.894	0.907	0.672	0.579

Table 2. The internal verification results of models trained were obtained by using different balanced class methods combined with cross-validation using all features.

Table 3. The predictive performance in the test set of the 9 models. LR: logistic regression; SVM: support vector machine; GNB: Gaussian Naive Bayes; RF: random forest; GBDT: gradient boosting decision tree; XGBoost: extreme gradient boosting; LightGBM: light gradient boosting machine; CatBoost: categorical boosting; AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision recall curve.

Models	AUROC (95%CI)	AUPRC (95%CI)	Accuracy	Specificity	Precision	Recall (Sensitivity)	F1 score	Youden Index
Baseline-RCRI	0.716(+/-0.045)	0.185(+/-0.078)	0.679	0.680	0.109	0.662	0.187	0.342
LR	0.896(+/-0.033)	0.438(+/-0.106)	0.732	0.722	0.160	0.895	0.271	0.617
SVM	0.892(+/-0.034)	0.431(+/-0.103)	0.780	0.777	0.181	0.837	0.298	0.613
GNB	0.880(+/-0.034)	0.392(+/-0.081)	0.879	0.887	0.279	0.740	0.404	0.627
RF	0.892(+/-0.035)	0.454(+/-0.099)	0.777	0.773	0.181	0.845	0.297	0.618
GBDT	0.895(+/-0.032)	0.460(+/-0.103)	0.901	0.916	0.314	0.652	0.423	0.568
XGBoost	0.898(+/-0.034)	0.479(+/-0.101)	0.874	0.881	0.271	0.748	0.397	0.629
LightGBM	0.897(+/-0.033)	0.445(+/-0.102)	0.845	0.850	0.230	0.758	0.353	0.608
CatBoost	0.890(+/-0.034)	0.448(+/-0.102)	0.804	0.803	0.199	0.826	0.320	0.630