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Abstract36

Understanding and accurately estimating epidemiological delay distribu-37

tions is important for public health policy. These estimates directly influence38

epidemic situational awareness, control strategies, and resource allocation. In39

this study, we explore challenges in estimating these distributions, including40

truncation, interval censoring, and dynamical biases. Despite their impor-41

tance, these issues are frequently overlooked in the current literature, often42

resulting in biased conclusions. This study aims to shed light on these chal-43

lenges, providing valuable insights for epidemiologists and infectious disease44

modellers.45

Our work motivates comprehensive approaches for accounting for these is-46

sues based on the underlying theoretical concepts. We also discuss simpler47

methods that are widely used, which do not fully account for known biases.48

We evaluate the statistical performance of these methods using simulated ex-49

ponential growth and epidemic scenarios informed by data from the 2014-201650

Sierra Leone Ebola virus disease epidemic.51

Our findings highlight that using simpler methods can lead to biased es-52

timates of vital epidemiological parameters. An approximate-latent-variable53

method emerges as the best overall performer, while an efficient, widely im-54

plemented interval-reduced-censoring-and-truncation method was only slightly55

worse. Other methods, such as a joint-primary-incidence-and-delay method56

and a dynamic-correction method, demonstrated good performance under cer-57

tain conditions, although they have inherent limitations and may not be the58

best choice for more complex problems.59

Despite presenting a range of methods that performed well in the contexts60

we evaluated, residual biases persisted, predominantly due to the simplifying61

assumption that the distribution of event time within the censoring inter-62

val follows a uniform distribution; instead, this distribution should depend63

on epidemic dynamics. However, in realistic scenarios with daily censoring,64

these biases appeared minimal. This study underscores the need for caution65

when estimating epidemiological delay distributions in real-time, provides an66

overview of the theory that practitioners need to keep in mind when doing so67

with useful tools to avoid common methodological errors, and points towards68

areas for future research.69
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Summary105

What was known prior to this paper106

• Importance of accurate estimates: Estimating epidemiological delay dis-107

tributions accurately is critical for model development, epidemic forecasts, and108

analytic decision support.109

• Right truncation: Right truncation describes the incomplete observation of110

delays, for which the primary event already occurred but the secondary event111

has not been observed (e.g. infections that have not yet become symptomatic112

and therefore not been observed). Failing to account for the right truncation113

can lead to underestimation of the mean delay during real-time data analysis.114

• Interval censoring: Interval censoring arises when epidemiological events115

occurring in continuous time are binned into time intervals (e.g., days or weeks).116

Double censoring of both primary and secondary events needs to be considered117

when estimating delay distributions from epidemiological data. Accounting for118

censoring in only one event can lead to additional biases.119

• Dynamical bias: Dynamical biases describe the effects of an epidemic’s cur-120

rent growth or decay rate on the observed delay distributions. Consider an anal-121

ogy from demography: a growing population will contain an excess of young122

people, while a shrinking population will contain an excess of older people,123

compared to what would be expected from mortality profiles alone. Dynami-124

cal biases have been identified as significant issues in real-time epidemiological125

studies.126

• Existing methods: Methods and software to adjust for censoring, truncation,127

and dynamic biases exist. However, many of these methods have not been128

systematically compared, validated, or tested outside the context in which they129

were originally developed. Furthermore, some of these methods do not adjust130

for the full range of biases.131

What this paper adds132

• Theory overview: An overview of the theory required to estimate distribu-133

tions is provided, helping practitioners understand the underlying principles134

of the methods and the connections between right truncation, dynamical bias,135

and interval censoring.136

• Review of methods: This paper presents a review of methods accounting137

for truncation, interval censoring, and dynamical biases in estimating epidemi-138

ological delay distributions in the context of the underlying theory.139
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• Evaluation of methods: Methods were evaluated using simulations as well140

as data from the 2014-2016 Sierra Leone Ebola virus disease epidemic.141

• Cautionary guidance: This work underscores the need for caution when142

estimating epidemiological delay distributions, provides clear signposting for143

which methods to use when, and points out areas for future research.144

• Practical guidance: Guidance is also provided for those making use of delay145

distributions in routine practice.146

Key findings147

• Impact of neglecting biases: Neglecting truncation and censoring biases can148

lead to flawed estimates of important epidemiological parameters, especially in149

real-time epidemic settings.150

• Equivalence of dynamical bias and right truncation: In the context151

of a growing epidemic, right truncation has an essentially equivalent effect as152

dynamical bias. Typically, we recommend correcting for one or the other, but153

not both.154

• Bias in common censoring adjustment: Taking the common approach to155

censoring adjustment of naively discretising observed delay into daily intervals156

and fitting continuous-time distributions can result in biased estimates.157

• Performance of methods: We identified an approximate-latent-variable158

method as the best overall performer, while an interval-reduced-censoring-and-159

truncation method was resource-efficient, widely implemented, and performed160

only slightly worse.161

• Inherent limitations of some methods: Other methods, such as jointly162

estimating primary incidence and the forward delay, and dynamic bias correc-163

tion, demonstrated good performance under certain conditions, but they also164

had inherent limitations depending on the setting.165

• Persistence of residual biases: Residual biases persisted across all methods166

we investigated, largely due to the simplifying assumption that the distribution167

of event time within the primary censoring interval follows a uniform distribu-168

tion rather than one influenced by the growth rate. These are minimal if the169

censoring interval is small compared to other relevant time scales, as is the case170

for daily censoring with most human diseases.171

Key limitations172
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• Differences between right censoring and truncation: We primarily173

focus on right truncation, which is most relevant when the secondary events174

are easier to observe than primary events (e.g., symptom onset vs. infection)—175

in this case, we can’t observe the delay until the secondary event has occurred.176

In other cases, we can directly observe the primary event and wait for the177

secondary event to occur (e.g., eventual recovery or death of a hospitalized178

individual)—in this case, it would be more appropriate to use right censoring179

to model the unresolved delays. For simplicity, we did not cover the right180

censoring in this paper.181

• Daily censoring process: Our work considered only a daily interval censoring182

process for primary and secondary events. To mitigate this, we investigated183

scenarios with short delays and high growth rates, mimicking longer censoring184

intervals with extended delays and slower growth rates.185

• Deviation from uniform distribution assumption: We show that the186

empirical distribution of event times within the primary censoring interval de-187

viated from the common assumption of a uniform distribution due to epidemic188

dynamics. This discrepancy introduced a small absolute bias based on the189

length of the primary censoring window to all methods and was a particular190

issue when delay distributions were short relative to the censoring window’s191

length. In practice, other biological factors, such as circadian rhythms, are192

likely to have a stronger effect than the growth rate at a daily resolution.193

Nonetheless, our work lays out a theoretical ground for linking epidemic dy-194

namics to a censoring process. Further work is needed to develop robust meth-195

ods for wider censoring intervals.196

• Temporal changes in delay distributions: The Ebola case study show-197

cased considerable variation in reporting delays across the epidemic timeline,198

far greater than any bias due to censoring or truncation. Further work is needed199

to extend our methods to address such issues.200

• Lack of other bias consideration: The idealized simulated scenarios we201

used did not account for observation error for either primary or secondary202

events, possibly favouring methods that do not account for real-world sources203

of biases.204

• Limited distributions and methods considered: We only considered log-205

normal distributions in this study, though our findings are generalizable to206

other distributions. Mixture distributions and non-parametric or hazard-based207

methods were not included in our assessment.208

• Exclusion of fitting discrete-time distributions: We focused on fitting209

continuous-time distributions throughout the paper. However, fitting discrete-210

time distributions can be a viable option in practice, especially at a daily211
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resolution. More work is needed to compare inferences based on discrete-time212

distributions vs continuous-time distributions with daily censoring.213

• Exclusion of transmission interval distributions: Our work primarily214

focused on inferring distributions of non-transmission intervals, leaving out215

potential complications related to dependent events. Additional considerations216

such as shared source cases, identifying intermediate hosts, and the possibility217

of multiple source cases for a single infectee were not factored into our analysis.218
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1 Introduction219

Characterizing the distribution of time between two epidemiological events is essen-220

tial to understanding the course of an infectious disease epidemic and making clinical221

and public health decisions. For example, some intervals, such as the incubation pe-222

riod (i.e., the time between infection and symptom onset), provide useful means of223

summarizing aspects of the course of infection of each infected person (Lauer et al.,224

2020; Linton et al., 2020; Verity et al., 2020a). Other intervals, such as the generation225

interval (i.e., the time between infection and transmission) and serial interval (i.e.,226

the time between symptom onsets in a transmission pair), describe the transmission227

pattern across multiple individuals (Madewell et al., 2023) and can provide informa-228

tion about how infectiousness varies over the course of an infection (Sender et al.,229

2022). Combining these intervals can further help determine the controllability of230

epidemics (e.g., potential for pre-symptomatic or asymptomatic transmission (Fraser231

et al., 2004)) and inform guidelines for intervention measures, such as isolation of232

cases (Hellewell et al., 2020), and travel screening (Gostic et al., 2020). Other in-233

tervals, such as reporting delays (e.g., the time from symptom onset until a case is234

reported), are needed for real-time data interpretation, analysis, and for epidemic235

forecasting (Marinović et al., 2015; Overton et al., 2022; Abbott et al., 2020; Beesley236

et al., 2022). Biases in delay distribution estimates can therefore translate to biases237

in the chain of evidence used to inform decisions (Lipsitch et al., 2020).238

There are multiple sources of bias that can affect the estimation of epidemiological239

delay distributions. Some of these pertain to data reliability issues, such as recall240

bias, whereas others are intrinsically linked to the structure of the data collection241

process. In this paper, we primarily focus on the latter type of bias.242

First, event observations are very often censored, meaning that we don’t know243

when the event happened exactly but we do know it occurred. Instead, epidemiolog-244

ical events are typically reported using an interval (e.g. a date, a week, or a range245

of dates) rather than the exact time at which an individual experienced an event246

(Lindsey and Ryan, 1998). This is known as interval censoring as we only know247

the interval in which the event occurred. Only on rare occasions, the time of the248

event known is known more precisely (i.e. to the hour, minute, or very rarely to the249

second), such as the time of death recorded on a death certificate, but even in these250

cases uncertainty often remains.251

Interval censoring can be particularly problematic if the reporting interval is252

relatively wide compared to the typical length of a delay. This is a common problem253

for short delays: for example, influenza has short generation intervals (2–3 days) and254

incubation periods (1–2 days) (Fraser et al., 2009), meaning that even daily censoring255

is expected to be problematic. Even when the delays are extremely long (e.g., the256

incubation periods for TB or HIV/AIDS), interval censoring can be problematic257

because the widths of censoring intervals are also just as wide.258

Even when interval censoring is taken into account, many studies only adjust259

for the censoring of a single event, rather than both primary and secondary events.260
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Examples of this include accounting for censoring of the date of exposure but not the261

date of symptom onset when estimating the incubation period (Backer et al., 2020,262

2022). In addition to interval censoring, data can be either left- or right-censored,263

where only the upper or lower bounds, respectively, of the event times are known.264

In the case of left censoring, we can always put a realistic lower bound, such as the265

beginning of an epidemic, meaning that standard methods for interval censoring can266

be readily applied. On the other hand, right censoring typically corresponds to the267

case where we have already observed the primary event but failed to observe the268

secondary event, typically due to a dropout of a patient from a study and failure269

to follow up. Multiple methods have been developed for modelling right-censoring270

(Ghani et al., 2005).271

Second, epidemic data often suffer from right truncation, meaning that we only272

observe events that have already happened and been reported (Brookmeyer and273

Damiano, 1989; Kalbfleisch and Lawless, 1989; Gelman et al., 2013). In contrast274

to right censoring, for which we have a partial observation of the lower bound of275

the secondary event, we do not have any information in the case of truncation. For276

example, incubation periods are often truncated because we are unable to observe277

the primary event (infection) directly until the secondary event (symptom onset) is278

reported. Failure to correct for right truncation can bias the data toward observation279

of shorter intervals (e.g. if only individuals with symptoms that resolved before the280

end of a study are included in the analysis). Moreover, only a limited number of281

studies consider the interaction between censoring and truncation (Linton et al.,282

2020; Ward and Johnsen, 2021).283

Finally, recent studies have highlighted the role of dynamical biases: during the284

growth phase of an epidemic, we are more likely to observe shorter delays because285

a disproportionately large number of individuals have been infected more recently;286

this effect is reversed during epidemic decay (Britton and Scalia Tomba, 2019; Park287

et al., 2022). The effects of dynamical biases on the observed delay distributions are288

quantitatively equivalent to truncation biases during the exponential growth phase,289

but their equivalence has not always been clear, leading to attempts to address both290

biases simultaneously (Linton et al., 2020; Guo et al., 2023b; Verity et al., 2020c).291

These approaches further highlight that clearer guidance, and more robust methods292

that take account of this guidance, are needed to handle biases found in different293

epidemiological contexts, which can depend on the data-collection method, type294

of data (e.g., single-individual delays such as incubation periods vs pair-dependent295

delays such as generation or serial interval), and underlying epidemic dynamics.296

Several methods and software packages accounting for censoring and truncation297

corrections in epidemiological data already exist. The recent COVID-19 and mpox298

epidemics have seen a marked increase in the development of both methods and299

software implementations (Backer et al., 2020; Linton et al., 2020; Tindale et al.,300

2020; Verity et al., 2020a; Hart et al., 2021). However, many of these methods were301

developed for a particular context, have not been validated sufficiently, or do not302

cover the full range of potential biases. Developed in 2009, CoarseDataTools is303

9
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widely used (Thompson et al., 2019; Madewell et al., 2023). It provides methods304

that can account for double censoring (censoring of both primary and secondary305

events) (Reich et al., 2009, 2010). However, it does not account for truncation bias,306

and was not implemented to be readily extensible. Part of its popularity is driven by307

its implementation in the popular effective-reproduction-number-estimation package308

EpiEstim for serial-interval estimation (Cori et al., 2013; Thompson et al., 2019).309

Unfortunately, naively relying on this implementation may lead to biased effective310

reproduction number estimates.311

Other widely used examples include the method of Backer et al. (2020), which312

allows for uniform censoring in the primary event using latent variables but does not313

account for right truncation. Similarly, the method of Linton et al. (2020) allows314

for double censoring as well as right truncation adjustment. The method of Ward315

et al. (2022) also accounts for double censoring and right truncation. However, so316

far, these approaches have not been validated against simulations.317

Tools exist for analyzing non-domain-specific interval-censored data (see Pan318

et al. (2020) for a detailed review and comparison), but only a few of them ac-319

count for right truncation and these methods are rarely used within the infectious320

disease modelling community. The lack of ready-to-use software implementations, or321

standardised methods, that can adjust for both censoring and right truncation means322

that many of the estimated delay distributions present in the literature are likely bi-323

ased. An additional issue is the predominance of methods developed specifically for324

the application in which they were used (Backer et al., 2020; Linton et al., 2020;325

Guo et al., 2023b), which means that even when known biases appear to have been326

accounted for this can often be hard to verify due to the lack of robust evaluation.327

Estimates from early in epidemics are likely particularly biased due to unaccounted-328

for right-truncation, while retrospective estimates, though likely less biased, may still329

be problematic when censoring is not properly taken care of.330

In this work, we aim to provide clear methodological and practical guidance331

for researchers tasked with estimating epidemiological delay distributions. We also332

aim to provide robust and flexible tools and methods, both rederivations of those333

presented elsewhere and novel, for them to apply this guidance in practice. We do334

this by first introducing some general theories for characterizing epidemiological delay335

distributions justified by grouping individuals into cohorts based on their observation336

time. We then introduce in detail the biases that are common when estimating337

epidemiological delay distributions. Based on this understanding, we then introduce338

an exact method for accounting for common biases. We also introduce a range339

of other commonly used and novel methods that represent simplifications of this340

approach. We then evaluate these methods, both on simulated scenarios and on341

data from the 2014-2016 Sierra Leone Ebola Virus disease epidemic. Finally, we342

consider areas that require further development. Whilst the details of each section343

are important, we also provide a summary for each that contains the main points in344

order to aid understanding. In addition, we have summarised what was known prior345

to this paper, what this paper adds, key findings, and key limitations.346
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2 Methods347

2.1 General theory for measuring epidemiological delay dis-348

tributions349

Here we give a conceptual, visual, and mathematical overview of the general theory350

for measuring epidemiological delay distributions and the specific theory relating to351

dynamic bias. This theory is then used in later sections to relate to other forms of352

bias and to justify and develop inference methods. We first give a summary of the353

key points.354

Summary355

• The intrinsic distribution is the theoretical distribution that characterises the356

underlying epidemiological process of interest. It describes the probability of357

waiting a certain amount of time between a primary and a secondary event358

(e.g. between infection and symptom onset) under constant conditions in the359

population.360

• Realised epidemiological delays can be measured both forward, starting from361

the primary event toward the secondary event, or backward, starting from362

the secondary event back to the primary event. For any given individual, the363

direction of measurement does not affect the length of the delay. Intrinsic and364

realized transmission intervals (e.g., generation interval and serial interval) can365

differ systematically due to changes in transmission conditions (e.g., susceptible366

pool in the population).367

• The forward distribution is measured from a cohort of individuals who expe-368

rienced the primary event at the same time and is expected to give a good369

estimate of the intrinsic distribution when conditions remain constant. For370

modelling purposes, the forward distribution is often preferred over the back-371

ward distribution as it better approximates the intrinsic distribution.372

• The backward distribution is measured from a cohort of individuals who experi-373

enced the secondary event at the same time. For a given intrinsic distribution,374

the backward distribution can systematically vary over time and differ from the375

forward distribution. This is due to the interaction between the observation376

process and the temporal change in the incidence of the primary event.377

Conceptual overview For any epidemiological process, there is an underlying in-378

trinsic distribution that describes the time difference between events in the process.379

In the context of epidemiological delays, the intrinsic distribution is a theoretical380

distribution that describes the probability of waiting a certain amount of time be-381

tween a primary and a secondary event (e.g. between infection and symptom onset)382
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under constant conditions in the population (Champredon and Dushoff, 2015). This383

distribution can be calculated by averaging across individuals: for example, the in-384

trinsic generation-interval distribution only depends on the average infectiousness of385

infected individuals at a given time and does not depend on other factors, such as386

intervention measures or the proportion susceptible (Park et al., 2021). As the in-387

trinsic distribution characterises the underlying infection characteristic, it is used for388

modeling, and is therefore often the distribution that we want to estimate. However,389

the intrinsic distribution is generally not directly observable, as it may differ from390

the realised distributions that are measured from the actual primary and secondary391

events observed during an epidemic. In particular, realised distributions can change392

over the course of an epidemic: for example, changes in realised generation intervals393

can reflect changes in transmission dynamics, including susceptible depletion. For394

practitioners, characterizing both the intrinsic and realised distribution is important.395

In most cases, the primary event always occurs before the secondary event (e.g.,396

infection followed by symptom onset). However, there are exceptions: for example,397

an infectee may develop symptoms before their infector (Svensson, 2007). Negative398

delays can also happen for single-individual events: an infected individual may test399

positive before or after symptom onset (Singanayagam et al., 2020). Here we focus on400

non-negative, single-individual delays, i.e. where the secondary event always happens401

after the primary event. We also focus on the case where forward distributions do not402

change over the course of an epidemic—later in the Ebola virus disease example, we403

show that this is not always the case. Many of the lessons in this paper will however404

carry over to more complicated cases involving negative delays and/or delays between405

epidemiological events from two individuals.406

We take the reporting delay—defined as the time from symptom onset (the pri-407

mary event) to confirmation (the secondary event)—as an example. There are two408

different approaches to measuring this interval. If we group individuals based on409

their time of symptom onset and follow them until confirmation we are measuring410

forward delay. If we instead group individuals based on when they tested positive411

and ask when they developed symptoms, we are measuring backward delays. For412

any individual realisation of a delay as a paired primary and secondary events, the413

length of forward and backward delays are identical. However, in a cohort of indi-414

viduals that experienced the primary (forward) or secondary (backward) events at415

the same time, the resulting forward and backward distributions can systematically416

differ when incidence is changing over time. Taking the cohort approach also allows417

us to ask how the forward and backward distributions change over the course of an418

epidemic.419

As an example, consider a population where the incidence of infection is growing420

exponentially (Fig. 1A). If we take a cohort of individuals who developed symptoms421

on day 25, then we observe Fig. 1B, which corresponds to a forward distribution.422

In this case, we see that the forward distribution in Fig. 1B matches the intrinsic423

distribution that we used to simulate Fig. 1A. In general, we expect the forward424

distribution to approximate the intrinsic distribution reasonably well, in particular425
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under relatively stable external conditions (Park et al., 2021). This means that426

the forward distribution (rather than the backward distribution) is most useful for427

downstream analysis, modeling, and decision support.428

Some delay distributions are observed when the secondary event is reported, and429

the timing of the primary event is then recalled or inferred (e.g. in a reporting delay,430

typically the confirmation is first observed and the date of symptom onset recalled431

by the patient). Since at this point, both primary and secondary events have already432

happened, backward-looking cohorts, and hence backward distributions, typically do433

not have truncation. For example, if we take a cohort of individuals who tested pos-434

itive on day 25, we observe Fig. 1C which corresponds to a backward distribution.435

In this case, we see that the backward distribution has a shorter mean than both436

the intrinsic and forward distributions. This is because the backward-looking cohort437

contains a mixture of individuals who developed symptoms recently (shorter report-438

ing delays) and individuals who developed symptoms further in the past (longer439

reporting delays). In the case of a growing epidemic, individuals who developed440

symptoms recently are more abundant, and so the backward distribution is shifted441

toward shorter intervals. Similarly, when the epidemic is declining, individuals who442

developed symptoms recently are rare, and so the backward distribution is shifted443

toward longer intervals (and has a longer mean than the intrinsic distribution) (Xin444

et al., 2021). More generally, the backward distribution always depends on the time-445

varying incidence of primary events. We refer to this dependence as dynamical bias446

because it biases the backward distribution in comparison to the forward distribution447

(Park et al., 2021).448

Additionally, the realized forward and backward distributions are both susceptible449

to a range of biases. Both can depend on events that are censored and both may450

be truncated. In the case of forward-looking cohorts, the most common bias is right451

truncation as the data set may be finalized for analysis before all individuals are452

observed. Similarly, the backward distribution suffers from left truncation when453

data on primary events are not available before some time point (Cain et al., 2011).454

In particular, we note that, in the exponential growth case, there is a theoretical455

equivalence between backward and truncated forward cohorts. This can be seen in456

Fig. 1D, which can be calculated by taking all individuals who were infected and457

developed symptoms before day 25 (therefore truncating all events that happened458

after day 25). This results from an equivalence of the backward and truncated cohorts459

in exponential growth settings. In the following section, we describe the effects of460

truncation (including its similarities and differences with the dynamical bias) and461

censoring in detail.462

Mathematical definition To sharpen our discussion of forward and backward463

distributions, we define them mathematically. As in the conceptual overview and464

Fig. 1, we often define cohorts based on time intervals (e.g., a group of individu-465

als who were infected on the same day, same week, or since the start of an epi-466

demic). Mathematically, we can instead define incidence, and therefore cohorts, at467
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Figure 1: Schematic diagrams showing forward and backward distributions
with the impact of truncation and censoring biases. (A) The density plot of
exponentially increasing cumulative cases of primary events (orange) and the corre-
sponding secondary events (purple). Case IDs (y-axis) are ordered by the primary
event time. The dashed vertical line indicates day 25. Panels B–E show four different
delay distributions using day 25 as a reference day. The left panels show a sample
data set with circles representing the timing of primary events and triangles repre-
senting the timing of secondary events. The right panels show the corresponding
distributions (filled areas) against the intrinsic distribution (transparent areas, solid
lines). (B) The empirical forward distribution measured from a cohort of individuals
who experienced the primary event on day 25. (C) The empirical backward distri-
bution measured from a cohort of individuals who experienced the secondary event
on day 25. (D) The truncated distribution measured from all individuals who expe-
rienced both the primary and secondary events before day 25 (i.e., those with solid
lines connecting their events). (E) The observed distribution under daily reporting
from all individuals who experienced the primary event before day 25 (without trun-
cation). Empty circles and triangles represent the event dates under daily reporting.
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any given, infinitely precise, time point : for example, in the standard continuous-468

time Susceptible-Infected-Recovered (SIR) model, the incidence of infection at time469

t corresponds to βS(t)I(t), where β represents the transmission rate, S represents470

the number of susceptible individuals, and I represents the number of infected indi-471

viduals.472

Here, we write fp(τ) to represent the conditional probability density of observing473

a forward delay of length τ given that the primary event occurred at time p. Whilst474

the forward distribution can vary, for example over time or by risk or age groups,475

we primarily focus on cases where the forward distribution remains stable over the476

course of an epidemic (i.e., fp(τ) = f(τ) for all p in this paper), and is thus identical477

to the intrinsic distribution. We also write P(p) to denote the incidence of primary478

events (i.e., the rate at which individuals experience the primary event at time p).479

Likewise, we write bs(τ) to represent the conditional probability density of observing480

a backward delay of length τ given that the secondary event occurred at time s.481

We also write S(s) to denote the incidence of secondary events (i.e., the rate at482

which individuals experience the secondary event at time s). Then, the total density483

of individuals T (p, s) who experienced the primary event at time p and secondary484

event at time s can be equivalently expressed in terms of the forward distribution:485

T (p, s) = P(p)fp(s− p), (1)

and the backward distribution:486

T (p, s) = S(s)bs(s− p). (2)

We can then write down a relationship between the forward and backward dis-487

tributions using the above relationship:488

P(p)fp(s− p) = S(s)bs(s− p). (3)

By substituting p = s − τ and rearranging, we see that the backward distribution489

is given by the incidence of primary events normalized by the size of the relevant490

cohort:491

bs(τ) =
P(s− τ)fs−τ (τ)

S(s)
=

P(s− τ)fs−τ (τ)∫∞
0

P(s− x)fs−x(x) dx
. (4)

Here, the denominator S(s) =
∫∞
0

P(s − x)fs−x(x) dx represents the normalization492

constant such that the probability distribution integrates to 1. In particular, when493

the incidence of primary events is growing exponentially at rate r and the forward494

distribution is static (i.e. fp(τ) = f(τ)), the backward distribution is also static, and495

given by:496

bexp(τ) =
exp(−rτ)f(τ)∫∞

0
exp(−rx)f(x) dx

. (5)

This simplified relationship has been used extensively in the literature (Britton and497

Scalia Tomba, 2019; Verity et al., 2020b; Park et al., 2022). When r > 0, the498
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backward distribution will have a shorter mean than the corresponding forward dis-499

tribution because we are more likely to observe individuals who experienced the500

primary event recently. This dependence on the incidence of the primary event leads501

to dynamical bias when the backward distribution is used as an estimate of the in-502

trinsic distribution (Park et al., 2022). As can be seen from Eq. (5), the forward and503

backward distributions will be equivalent when incidence is stable (r = 0).504

2.2 Biases in estimating forward distributions505

In this section, we lay out mathematical foundations for understanding truncation506

and censoring biases. The framework described in this section will provide a basis for507

deriving likelihoods for inference in the following section. We first give a summary508

of the key points.509

Summary510

• Right truncation occurs because we cannot observe event pairs whose secondary511

event lies in the future. We do not know how much of the data is truncated512

until all event pairs have been fully observed. This effect biases us toward513

observing shorter delays when working in real time.514

• The amount of right truncation increases as the epidemic grows faster because515

the amount of recent primary events becomes relatively more common.516

• When incidence is growing exponentially, the effect of right truncation on the517

forward distribution is quantitatively equivalent to the effect of dynamical bias518

on the backward distribution. When incidence is shrinking, this is not the519

case: there will be minimal right truncation but the dynamical bias causes the520

backward distribution to have a longer mean.521

• Censoring occurs when the precise time of an event is unknown but we know522

an event has occurred. Here, we focus on fitting continuous-time distribu-523

tions. This means that the recording of the exact date of an event is implicitly524

censored because the exact time of an event (within a given date) is still un-525

known. Alternatively, it would be possible to model this using discrete-time526

distributions—we do not explore this approach in this paper.527

• When we estimate delay distributions, we have to account for censoring in both528

primary and secondary events. Typically, many researchers rely on a single-day529

censoring window, which can give biased inferences.530

• Assumptions about event time distributions within a censoring interval can bias531

the estimation of continuous-time distributions from the observed discrete-time532

delays as well as the discretisation of continuous-time distributions. Modeling533

choices for fitting continuous- vs discrete-time distributions need to be carefully534

considered.535
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Right truncation Right truncation arises from the inability to observe secondary536

events that happen after the observation time T (see Fig. 1D). For example, during537

an ongoing epidemic, we tend to underestimate the infection fatality risk because538

we cannot observe all of the outcomes for infected individuals in real time due to539

the delay between infection and death (or recovery) and because we typically base540

observation on individuals having died (or recovered) (Ghani et al., 2005; Lipsitch541

et al., 2015). In general, we don’t know how much of the data is truncated until542

all outcomes have been fully observed (Gelman et al., 2013, p. 227). Since right543

truncation limits our ability to observe long intervals (i.e. those in the right tail of a544

distribution), it will generally bias us towards observing shorter delays (and therefore545

to underestimate the mean).546

To define this mathematically, we introduce random variables P and S represent-
ing primary and secondary events. Then, the conditional probability of observing
a forward delay of length τ (i.e., S = P + τ) given primary event time P = p and
observation time T (i.e., S < T ) can be written as:

P(S = P + τ |P = p, S < T ) =
P(P = p, S = P + τ)

P(P = p, S < T )
(6)

=
P(S = P + τ |P = p)P(P = p)

P(S = P + τ < T |P = p)P(P = p)
=

P(S = P + τ |P = p)

P(S = P + τ < T |P = p)
(7)

=
fp(τ)∫ T−p

0
fp(x) dx

(8)

=
fp(τ)

Fp(T − p)
, (9)

where fp is the forward distribution and Fp is the forward cumulative probability547

distribution. Conceptually, Eq. (9) is saying that the probability of observing a548

given delay from a truncated distribution is equal to the probability of observing549

that delay from the untruncated forward distribution normalised by the probability550

of observing any delay before the end of observation. From a cohort perspective,551

when we measure forward delays from individuals who experienced primary events552

at time p < T , we can only observe delays that are shorter than T − p. This means553

that the amount of truncation is higher in a cohort of individuals who experienced554

their primary events more recently.555

The population-level effect of right truncation will be exaggerated when an epi-556

demic is growing because there will be more individuals who experienced primary557

events recently, meaning their secondary events may not have happened yet. When558

growth is exponential, the effect of right truncation is quantitatively equivalent to559

dynamical bias, as shown in Fig. 1C–D. In contrast, when the epidemic is declining560

quickly, fewer individuals experienced primary events recently, and the effect of right561

truncation can become negligible as few delays are unobserved. On the other hand,562

dynamical bias will still be an issue because a cohort of individuals who experienced563

secondary events during the decay phase will include a relatively large proportion of564
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those who had their primary events further in the past, causing the backward dis-565

tribution to have a longer mean than the forward distribution. As dynamical biases566

specifically refer to the dependence of backward distribution on epidemic dynamics,567

they need not be taken into account when analyzing the forward distribution as long568

as biases due to truncation are considered.569

Interval censoring Censoring occurs when the exact event time is unknown. In570

contrast to truncation, we know that the focal event happened in the case of inter-571

val censoring; we just do not know precisely when. For example, we know that a572

symptomatic individual was infected sometime before symptom onset but we usually573

don’t know when. Even if the exact date of the event is known, implicit censoring574

remains because the event could have theoretically occurred at any time within a575

24-hour time window. This implicit censoring discretises the observed delay distri-576

bution (Fig. 1E). To define censoring of both primary and secondary events, which is577

known as double censoring (Reich et al., 2009), we start by first defining the simple578

single censoring case. Here the secondary event is censored between time SL and SR,579

and the primary event (p) is known. Then, we have the following relationship,580

P(SL < S < SR|P = p) =

∫ SR

SL

fp(y − p)dy. (10)

Integrating this leaves581

P(SL < S < SR|P = p) = FP (SR − P )− FP (SL − P ). (11)

This relationship is commonly used in practice to discretise delay distributions, par-582

ticularly into daily intervals (Flaxman et al., 2020; Abbott et al., 2020). However,583

as we have conditioned on the primary event being known, this approach is not ap-584

propriate for the common case where P is also censored, for example, if only a date585

is known. The degree of bias this will introduce depends on event probability within586

the primary censoring interval.587

For the more common setting where the primary event is also censored between
time PL and PR the conditional probability that the secondary event occurs between
time SL and SR can be written as:

P(SL < S < SR|PL < P < PR) =
P(PL < P < PR, SL < S < SR)

P(PL < P < PR)
(12)

=

∫ PR

PL

∫ SR

SL
gP (x)fx(y − x) dy dx∫ PR

PL
gP (x) dx

(13)

=

∫ PR

PL

∫ SR

SL

gP (x|PL, PR)fx(y − x) dy dx (14)

Here, gP (x) is the probability distribution of the primary event time, and gP (x|PL, PR)588

is the conditional probability distribution of the primary event time given its lower589
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and upper bounds,590

gP (x|PL, PR) =
gP (x)∫ PR

PL
gP (z) dz

. (15)

As gP (x) depends on the incidence of primary events, and therefore epidemic dy-591

namics, this can be rewritten as,592

gP (x|PL, PR) =
P(x)∫ PR

PL
P(z) dz

, (16)

where P (x) is a continuous-time incidence, as explained earlier; in practice, account-593

ing for this factor will require estimating continuous-time incidence from discrete-594

time incidence. Making the simplifying assumption of a fixed epidemic growth rate595

r, the conditional probability can then be rewritten as,596

P(SL < S < SR|PL < P < PR) =

∫ PR

PL

∫ SR

SL
exp(rx)fx(y − x) dy dx∫ PR

PL
exp(rx) dx

(17)

The shape of the conditional probability distribution gP (x|PL, PR) is shown in Fig. 2597

for different epidemic growth rates.598

Censoring and truncation Finally, to understand the joint effects of right trun-
cation and interval censoring on the forward distribution, we can quantify the con-
ditional probability of the secondary event occurring between time SL and SR given
the primary event occurring between PL and PR and the observation time T :

P(SL < S < SR|PL < P < PR, S < T ) =
P(PL < P < PR, SL < S < SR)

P(PL < P < PR, S < T )
(18)

=

∫ PR

PL

∫ SR

SL
gP (x)fx(y − x) dy dx∫ PR

PL

∫ T

x
gP (x)fx(y − x) dy dx

(19)

=

∫ PR

PL

∫ SR

SL
gP (x)fx(y − x) dy dx∫ PR

PL
gP (x)Fx(T − x) dx

(20)

By dividing both the numerator and denominator by
∫ PR

PL
P(z) dz, we have:

P(SL < S < SR|PL < P < PR, S < T )

=

∫ PR

PL

∫ SR

SL
gP (x|PL, PR)fx(y − x) dy dx∫ PR

PL
gP (x|PL, PR)Fx(T − x) dx

(21)

Here, expressing the probability distribution of primary events gP (x) in terms of the599

conditional probability distribution gP (x|PL, PR) allows for a more flexible inferential600
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framework later on. We also see that the truncation problem also depends on the601

censoring problem: uncertainties in the primary event time further affect the amount602

of truncation. This framework generalises the work of Seaman et al. (2022) who603

reviewed various methods for dealing with right truncation bias but did not account604

for interval censoring.605

2.3 Methods for estimating forward delay distributions from606

observed data607

In this section, we describe a method for estimating delay distributions from the608

observed data based on the theory for censoring and truncation. We then introduce609

a series of approximations in order to motivate commonly used methods from the610

literature in order of least to most approximate (with a corresponding decrease in611

their ability to account for right truncation and censoring biases).612

Summary613

• There is an exact solution for modelling delays that are double censored and614

right truncated. In practice, this method is not generally practical or stable in615

real-time settings, and for this reason, we discuss a series of approximations in616

use.617

• Many of the more commonly used approximations do not fully account for618

censoring, truncation, or both forms of bias. There are also a range of trade-619

offs that need consideration.620

• Methods that use a latent variable censoring approach and adjust for the obser-621

vation time are expected to be the most robust currently available for real-time622

estimation.623

2.3.1 Simplifying assumptions for the following methods624

We only consider single-individual delays, where we have independent observations625

of event times across different individuals. This means that in this work, we do not626

consider methods that account for non-independence in generation or serial intervals.627

These pair delays also introduce additional biases due to uncertainties about who628

infected whom—we do not address these issues here. Nonetheless, the methods we629

present here can still be applied to adjust for truncation, censoring, and dynamical630

biases in estimating generation- and serial-interval distributions. Finally, we also as-631

sume that the forward distribution stays constant over time (i.e., fp(τ) = fforward(τ)).632

All of the methods we consider can be generalised to delays that vary in discrete633

time using our implementations.634
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2.3.2 Exact censoring and truncation method635

Under daily reporting, the exact timing of the primary and secondary event times
are unknown. Instead, the corresponding observed event times are PL = ⌊P ⌋ and
SL = ⌊S⌋, respectively. Likewise, the corresponding upper bounds for the censoring
interval are PR = PL+1 and SR = SL+1, respectively. Following Eq. (21), the joint
likelihood can be written as:

Lexact(Y |θ) =
∏
i

[∫ pR,i

pL,i

∫ sR,i

sL,i
gP (x|pL,i, pR,i)fforward(y − x) dy dx∫ pR,i

pL,i
gP (z|pL,i, pR,i)Fforward(T − z) dz

]
, (22)

where θ represents the parameter vector, and Y represents the data vector.636

From a practical standpoint, it is difficult to use this likelihood for inference, es-
pecially in real-time epidemic monitoring applications where estimation must be fast
and robust. Solving double integrals analytically may be impossible, and calculating
them numerically can be computationally costly and numerically unstable. Instead,
we can implement this model using an equivalent Bayesian latent variable approach.
Here we can treat the primary and secondary event times as latent variables (de-
noted xi and yi, respectively), conditional on the known upper and lower bound of
these events for each individual, and then integrate across the uncertainty. Then, by
taking away both integrals in the numerator, Eq. (22) can be re-written as:

xi ∼ gP (x|pL,i, pR,i) (23)

yi ∼ Uniform(sL,i, sR,i) (24)

Lexact(Y |θ) =
∏
i

[
fforward(yi − xi)∫ pR,i

pL,i
gP (z|pL,i, pR,i)Fforward(T − z) dz

]
(25)

Here, we use the uniform distribution for the secondary event time yi, so that yi637

does not affect the likelihood, which allows Eq. (25) to be equivalent to Eq. (22).638

Using any other distribution for yi will cause Eq. (25) to deviate from Eq. (22) and639

therefore will be incorrect.640

In practice, modeling the conditional distribution of primary event time gP (x|pL,i, pR,i)
is expected to be a difficult problem as it depends on the changes in the incidence of
primary events (Eq. (16)). However, if we assume that the incidence of the primary
event is changing at a fixed growth rate r within the censoring interval we can further
simplify the problem:

gP (x|pL,i, pR,i) =
exp(rx)∫ pR,i

pL,i
exp(rz) dx

(26)

=
r exp(rx)

exp(rpR,i)− exp(rpL,i)
(27)

Generalizing the problem beyond stable exponential growth within the interval re-641

quires a way of modeling realistic changes in incidence. Even with this simplifying642
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assumption in most real-world settings this would require joint estimation of the643

growth rate of the primary events in order to properly propagate uncertainty; how-644

ever, such a model is likely to be computationally more costly.645

The exponential scenario provides insights for understanding the method intro-646

duced by Linton et al. (2020) during the beginning of the SARS-CoV-2 pandemic.647

Under Eq. (27), our likelihood is similar in form to the likelihood presented in648

Linton et al. (2020) with one major distinction (among several other minor dif-649

ferences). The conditional probability gP (x|pL,i, pR,i) we present here converges to a650

uniform distribution as r → 0 as expected when incidence is stable (Fig. 2A). On651

the other hand, the corresponding component in Linton et al. (2020) is modeled as652

r exp(−ru)/(1− exp(−ru)), where u is a variable of integration; this term does not653

converge as r → 0.654

2.3.3 Approximate latent variable censoring and truncation method655

When the primary event time is assumed to be uniformly distributed and censoring
interval is narrow, the integral in the denominator of Eq. (25) (

∫ pR,i

pL,i
gP (z|pL,i, pR,i)Fforward(T−

z) dz) can be approximated by Fforward(T −xi) for some pL,i < xi < pR,i. Under these
conditions, the exact method can be rewritten as (Ward et al., 2022):

xi ∼ Uniform(pL,i, pR,i) (28)

yi ∼ Uniform(sL,i, sR,i) (29)

Llatent(Yi|θ) =
fforward(yi − xi)

Fforward(T − xi)
(30)

The likelihood for this method corresponds to the conditional probability under656

right truncation (Eq. (9)). This is a convenient approximation as it does not require657

additional integration. While it would be possible to extend this method to account658

for more complex prior distributions that capture epidemic growth or daily activities659

(e.g., circadian rhythms), the exact method (Eq. (25)) should be considered to avoid660

potential biases arising from the approximations.661

2.3.4 Interval-reduced censoring and truncation methods662

Without using latent variables, we can equivalently write down the approximate
latent variable model as follows:

Llatent(Yi|θ) =
∫ pR,i

pL,i

∫ sR,i

sL,i

gP (xi|pL,i, pR,i)gS(yi|sL,i, sR,i)
fforward(yi − xi)

Fforward(T − xi)
dyi dxi,

(31)

where gS(yi|sL,i, sR,i) corresponds to the uniform distribution between sL,i and sR,i.
When we rewrite in terms of the delay, di = yi − xi, we know that di should range
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Figure 2: Schematic diagrams showing different assumptions about interval
censoring. (A) The distribution of primary event times within a one-day censoring
interval across different growth rates. Note that a sudden decrease in probability
densities around 0 and 1 are numerical artifacts from plotting. (B) The corresponding
distribution of weights for the interval-reduced censoring, which is a convolution
between the distribution of event times of primary and secondary events within each
censoring interval. (C) The distribution of weights for the interval-reduced censoring
for different approximations.

between sL,i−pR,i and sR,i−pL,i. Further assuming Fforward(T−xi) ≈ Fforward(T−pR,i),
we can write the above likelihood using a single integral:

Llatent(Yi|θ) =
∫ sR,i−pL,i

sL,i−pR,i

w(di)
fforward(di)

Fforward(T − pR,i)
ddi. (32)

Here, w(di) is a convolution between gP (xi|pL,i, pR,i) and gS(yi|sL,i, sR,i):663

w(di) =

∫ pR,i

pL,i

gP (xi|pL,i, pR,i)gS(di − xi|sL,i, sR,i) dxi. (33)

When both gP (xi|pL,i, pR,i) and gS(di − xi|sL,i, sR,i) are assumed to follow uniform664

distributions, w(di) will have a trapezoid shape (Fig. 2C), as discussed in Reich et al.665

(2009).666

In Fig. 2B–C, we show how the shape of the weight function w(di) changes for667

different epidemic growth rates (B) and for different assumptions (C). In particular,668

assuming a uniform distribution for both events censoring intervals approximates the669

interval-reduced censoring window well when the growth rate is small compared to670

the width of the censoring window and less well when this is not the case. In Fig. 8,671

we present the consequences of different assumptions about w(di) on the resulting672

continuous-time distributions.673

We can further simplify the likelihood by assuming a uniform distribution for674

w(di) (Fig. 2C):675

Lcens+trunc(Y |θ) =
∏
i

[
Fforward(sR,i − pL,i)− Fforward(sL,i − pR,i)

Fforward(T − pR,i)

]
. (34)
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This method is simple to implement as well as being computationally convenient and676

supported by many software packages, such as the brms package (Bürkner, 2018) in677

the R programming language (R Core Team, 2019).678

However, it does not fully account for the censoring bias as the uniform assump-679

tion across the combined interval is not a good match for the prior that results from680

combining two uniforms or in more complex settings a growth-mediated prior and a681

uniform (Fig. 2B–C) or the impact of censoring on the amount of truncation due to682

the simplified denominator. This means that, depending on the amount of censoring683

and the shape of the delay distribution, this method will have a residual bias in both684

the mean and standard deviation of the estimated distribution (Fig. 8). In the spe-685

cial case when the primary event time is exactly known (therefore, pL,i = pi = pR,i),686

this method would be accurate, and also equivalent to the latent variable method.687

In the daily reporting setting, we consider in the rest of this paper, the likelihood688

can be reformulated in terms of the observed, discrete-time delay (di = SL,i − PL,i):689

Lcens+trunc(Y |θ) =
∏
i

[
Fforward(di + 1)− Fforward(di − 1)

Fforward(T − pR,i)

]
. (35)

Rephrasing the likelihood in this way highlights that the correct censoring interval690

for this approach is [di − 1, di + 1]. Instead, many researchers tend to rely on the691

[di, di + 1] interval (Flaxman et al., 2020; Abbott et al., 2020), which in effect only692

accounts for the censoring of a single event and hence induces additional bias beyond693

that introduced by assuming a uniform distribution. Other potential approximations694

are [di−0.5, di+0.5], which assumes the primary event is known to have taken place695

at the midpoint of the interval, and that all primary and secondary event times are696

known (He et al., 2020). The implications of these approximations are also explored697

in Fig. 8.698

2.3.5 Interval-reduced censoring method699

If we ignore the presence of right truncation, then Eq. (35) reduces to:

Lcens(Y |θ) =
∏
i

[Fforward(dO,i + 1)− Fforward(dO,i − 1)] , (36)

which, again, assumes a uniform distribution for w(di). Reich et al. (2009) tested700

the consequences of this approximation and showed that assuming w(di) is uniform701

results in low coverage probabilities (defined as the proportion of confidence inter-702

vals that contain the true value across multiple simulations). However, the uniform703

assumption remains in regular use in the applied literature.704

2.3.6 Truncation method705

If we ignore the presence of censoring, Eq. (31) reduces to706

Ltrunc(Y |θ) =
∏
i

fforward(sL,i − pL,i)

Fforward(T − pL,i)
, (37)
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which can also be derived directly from Eq. (9) (Sun, 1995). Here, we use the lower707

bound for the primary event time to estimate the amount of truncation T −pL,i as it708

represents the maximum degree of truncation. Other choices include using the upper709

bound T − pR,i or the midpoint T − (pL,i + pR,i)/2. The use of an upper bound may710

be numerically less stable because the upper bound of primary event time can be711

equal to the observation time, in which case the denominator becomes zero.712

2.3.7 Filtering method713

A simple solution to mitigate truncation bias is to drop (or filter out) the most recent714

data (as these data will be most impacted by truncation) and then fit a probability715

distribution on the remaining observations. Given a filtering time tfilter, the likelihood716

can be written as:717

Lfilter(Y |θ) =
∏

PL,i<tfilter

ffilter(SL,i − PL,i|θ), (38)

This approach can be readily extended to include double censoring as the filtering718

and distribution fitting steps are independent.719

Unfortunately, whilst the filtering method may be convenient, it is sensitive to720

our choices of filtering time tfilter. If tfilter is too early, we might not have enough data721

to estimate the focal delay distribution with certainty. If tfilter is too late, truncation722

bias might be introduced. More broadly, dropping existing data is often not a good723

practice and at the very least is likely to increase the uncertainty of any estimated724

distribution. This can be a particular issue during epidemics when data can be725

sparse and as accurate as possible estimates are needed to inform decision-making.726

For simplicity, we assume tfilter = 10 days throughout the paper.727

2.3.8 Naive method728

A simple approach to estimating a delay distribution is to directly fit a probability729

distribution fnaive to the observed discrete delays. In this case, the likelihood is given730

by:731

Lnaive(Y |θ) =
∏
i

fnaive(SL,i − PL,i|θ), (39)

where θ represents the parameter vector and Y represents the data vector. This732

method does not account for truncation or censoring biases but was historically used733

in practice due to convenience and lack of awareness of its limitations. An even more734

basic form of this approach is to simply report the empirically observed summary735

statistics such as the mean, standard deviation, or range —this approach is common736

in practice (Nolen et al., 2016; Gostic et al., 2020; Miura et al., 2022). The no interval737

method in Fig. 2 highlights that this approach does not approximate the underlying738

generative process well in the presence of censoring.739
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2.3.9 Discrete time methods for accounting for censoring and right trun-740

cation741

So far, we have focused on fitting probability distributions to continuous forward742

delays directly by accounting for right truncation and censoring, presenting meth-743

ods in order from more exact to most approximate. In this section, we outline744

discrete-time approaches to estimating epidemiological delay distributions whilst ac-745

counting for right truncation and censoring. These methods make the further sim-746

plifying assumption that censoring is daily for both primary and secondary events.747

To counterbalance this they both have a range of advantages to other methods in748

certain settings. In Fig. 9, we also present how different assumptions about the prior749

distributions within censoring intervals affect the discretisation of continuous-time750

distributions.751

Dynamical correction method In some cases, it may be favourable to exploit752

the relationship between backward and forward distributions to estimate the forward753

distribution. We refer to this method as the dynamical correction method because754

we explicitly take into account the biases in the backward distribution caused by755

epidemic dynamics. This approach may be particularly attractive when the backward756

epidemiological distribution has been reported without correction and the underlying757

data are not available or data on the time from primary event to observation time758

is not available. This is still common for incubation periods which are typically759

calculated by identifying symptomatic individuals and asking when they became760

infected.761

Previously, we considered the distribution of the primary event time to account
for the censoring problem in the forward distribution. Analogously, we now have to
consider the distribution of the secondary event time to account for the censoring
problem in the backward distribution. The probability that the primary event occurs
between time PL and PR given that the secondary event occurred between time SL

and SR can be then written as:

P(PL < P < PR|SL < S < SR) =
P(PL < P < PR, SL < S < SR)

P(SL < S < SR)
(40)

=

∫ SR

SL

∫ PR

PL

gS(y|SL, SR)by(y − x) dx dy (41)

where gS(y|SL, SR) is the conditional probability distribution of the secondary event762

time given its lower SL and upper SR bounds. By substituting Eq. (4), we have:763

P(PL < P < PR|SL < S < SR) =

∫ SR

SL

∫ PR

PL

gS(y|SL, SR)P(x)f(y − x)∫∞
0

P(y − τ)f(τ) dτ
dx dy (42)

A special case of this framework is when the event times are exactly known and the764

incidence of primary events is changing exponentially at rate r. This special case was765
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used by Verity et al. (2020a) to estimate the symptom-onset-to-death distribution766

of COVID-19 and has been previously introduced in several other contexts (Britton767

and Scalia Tomba, 2019; Park et al., 2021).768

The general case presented in Eq. (42) depends on a continuous-time incidence769

pattern (Eq. (4)), but these incidence data usually only exist in discrete time. There-770

fore, given patterns of incidence of primary events reported on a daily basis Pd(t),771

we approximate the continuous-time incidence as follows:772

P(t) ≈ Pd(⌊t⌋), (43)

meaning that the primary incidence follows a step function, changing every day.773

This approximation is convenient because it allows us to write the denominator of
Eq. (42) in terms of a sum of integrals, which can be further simplified. In particular,
setting y = SL (i.e., the reported time of secondary event), we have:∫ ∞

0

P(SL − τ)f(τ) dτ ≈
∫ ∞

0

Pd(⌊SL − τ⌋)f(τ) dτ (44)

≈
n−1∑
k=1

Pd(SL − k)

∫ k

k−1

f(τ) dτ (45)

=
n−1∑
k=1

Pd(SL − k)(F (k)− F (k − 1)), (46)

where n represents the length of the incidence time series. Likewise, the integral in
the denominator can be further simplified:∫ SR

SL

∫ PR

PL

gS(y|SL, SR)P(x)f(y − x) dx dy (47)

≈ Pd(PL)

∫ SR

SL

∫ PR

PL

gS(y|SL, SR)f(y − x) dx dy (48)

≈ Pd(PL)(F (SR − PL)− F (SL − PR)), (49)

where the last line follows from the interval-reduced censoring approximation used774

previously (i.e., assuming a uniform censoring across the censoring window of the775

delay, rather than each event). Putting everything together, we have:776

P(PL < P < PR|SL < S < SR) ≈
Pd(PL)(F (SR − PL)− F (SL − PR))∑n−1

k=1 Pd(SL − k)(F (k)− F (k − 1))
(50)

Finally, the likelihood for the model can be written as a product of the above prob-777

ability:778

Ldynamical+cens(Y |θ) =
∞∏
i=1

[
Pd(pi,L)(F (si,R − pi,L)− F (si,L − pi,R))∑n−1

k=1 Pd(si,L − k)(F (k)− F (k − 1))

]
(51)
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We note that these derivations rely on approximations that are specific to daily779

censoring and therefore will not necessarily hold for the general censoring case.780

Unfortunately, this method requires a complete time series, or some approxima-781

tion of it such as an estimate of the growth rate, in order to properly account for right782

truncation. In the following sections where we evaluate this approach, we first use783

a partially reported (i.e., truncated) time series of primary event incidence (directly784

aggregated from individual-level data) to evaluate the worst-case performance of this785

method for real-time usage. We also consider the best case where the complete inci-786

dence time series is known at the time of estimation. Approximations, such as using787

an estimate of the real-time growth rate or nowcast of primary incidence, would then788

perform intermediately between these two approaches depending on the accuracy of789

the approximation (i.e. the accuracy of the growth rate estimate or nowcast) and the790

propagation of uncertainty. Line lists may also not accurately reflect the incidence791

pattern when there are changes in surveillance and reporting and so the ability of this792

method to use potentially independent time series of incidence may be attractive.793

Jointly modelling incidence and the forward distribution. Another alter-794

native approach is to jointly model the discrete-time incidence of primary events795

and the forward delay from primary to secondary events as a count process. This796

method is more flexible than the previous dynamical approach as it does not require797

a complete time series to be available. It also allows for an error model to be applied798

to the primary incidence and can be naturally extended to include hazard effects and799

non-parametric delay distributions (Abbott et al., 2021) which may be desirable for800

complex, real-world, settings. This approach is routinely used in the nowcasting lit-801

erature to reconstruct right truncated primary incidence curves (Abbott et al., 2021;802

Höhle and an der Heiden, 2014; Günther et al., 2021). A downside of this approach803

is that on top of specifying the reporting delay model, we must also define a model804

for the evolution of the expectation of primary incidence over time. Here we use a805

linear model for the exponential growth rate, though the package provides a large806

range of alternatives, to allow some flexibility in the primary event incidence time807

series.808

As this method derives from the nowcasting literature it is commonly framed809

in terms of the ”reporting triangle” (pt,d) (Höhle and an der Heiden, 2014). The810

reporting triangle defines the observed data as a matrix with the date of the primary811

event as the rows (t), and the date of the linked secondary event as the columns812

(d, relative to the time of the primary event). In contrast to previous methods, this813

frames the data as counts rather than as individual linked events. Primary event814

incidence Pd(⌊t⌋) can then be recovered from this reporting triangle using815

Pd(⌊t⌋) =
D∑

d=0

nt,d, (52)

whereD represents the maximum delay between the primary event and the secondary
event which in theory could be infinite. However, in practice, we set it to a finite
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value in order to make the model identifiable and computationally feasible. For each
t, events are assumed to be drawn from a multinomial distribution with Pd(⌊t⌋)
trials and a probability vector (st,d) of length D indicating the probability of a
secondary event after a given delay. We model this by estimating the components
of this probability vector jointly with the expected number of primary events (λt =
E[Pd(⌊t⌋)]) at time t. Here, we model the expected number of primary events (λt)
using an instantaneous daily growth rate model as follows,

λt ∼ LogNormal
(
µl
t, σ

l
t

)
, tw ≤ 1 (53)

λt = λt−1exp(r0 + βtw), tw > 1 (54)

r0 ∼ Normal (0, 1) (55)

β ∼ Normal (0, 1) (56)

where the instantaneous growth rate (r0 + βtw) is defined using a linear model with816

r0 as the initial growth rate and β as the linear rate of change in the growth rate817

by week (tw). Note that this is an arbitrary model and that the precise specification818

should be appropriate to the modelled setting to avoid bias towards T (Lison et al.,819

2023). We assume that the delay distribution follows a daily discretised lognormal820

pt,d =
F µd,υd(d+ 1)− F µd,υd(d− 1)

F µd,υd(D + 1) + F µd,υd(D)
(57)

µd ∼ Normal (0, 1) (58)

σd ∼ Half-Normal (0, 1) , (59)

where F µd,υd is the cumulative density function of the lognormal distribution, µd821

is the log mean, and υd is the log standard deviation. Note that this approach to822

calculating a probability mass function is equivalent to the interval-reduced method823

introduced above and discussed in Section 2.3.4 and Fig. 9.824

Expected primary events (nt,d) by the time of primary event (t) and the time825

of the secondary event (d, relative to the time of the primary event) can now be826

calculated by multiplying expected primary events for each t with the probability of827

the secondary event occurring at a given date (st,d). We assume a negative binomial828

observation model to account for potential overdispersion (with a standard half nor-829

mal prior on 1 over the square root of the overdispersion (Stan Development Team,830

2020)).831

nt,d | λt, pt,d ∼ NB (λt × pt,d, ϕ) , t = 1, ..., T. (60)

1√
ϕ
∼ Half-Normal(0, 1) (61)

2.3.10 Overview table832
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Method Details Truncation Censoring Assumptions Risk of bias

Exact latent vari-
able censoring
and truncation
correction

Bayesian approach with the ex-
act primary and secondary event
times modeled as latent vari-
ables (using priors on their distri-
bution over the censoring inter-
val), and with a truncation like-
lihood integrating over the cen-
soring uncertainty.

Yes Yes Exponential growth at a fixed
rate within censoring interval.

Potential bias if growth rate
changes quickly within the cen-
soring interval.

Approximate la-
tent variable cen-
soring and trun-
cation correction

Approximation of exact latent
variable approach that results
in a simpler likelihood identi-
cal to the plain right truncation
case (no integration over primary
event times required). Censor-
ing uncertainty is only expressed
via priors on the latent even time
variables.

Yes Yes Primary event time is uniformly
distributed between the lower
and upper bound, and censoring
interval of primary events is suffi-
ciently narrow for the cumulative
delay distribution to be approx-
imately constant within its win-
dow.

Biased if the primary event times
are not uniformly distributed.
Small bias from the constant ap-
proximation of cumulative delay
distribution within the censoring
interval.

Interval-reduced
censoring and
truncation cor-
rection

Reformulation of the censoring
and truncation likelihood that
integrates over the delay (which
is a convolution of the primary
and secondary event time condi-
tional distributions). Additional
assumptions lead to an approx-
imation, which does not require
any integration.

Yes Yes Delay between primary and sec-
ondary events is uniformly dis-
tributed within its lower and up-
per bounds, and censoring in-
terval of primary events is suffi-
ciently narrow for the cumulative
delay distribution to be approx-
imately constant within its win-
dow.

The assumption of uniformly
distributed delays within their
bounds is likely unrealistic and
deviates from the delay distribu-
tion that would result from uni-
formly distributed event times.
Small bias from the constant ap-
proximation of cumulative delay
distribution within a censoring
interval.

Interval-reduced
censoring correc-
tion

Same likelihood as interval-
reduced censoring and trunca-
tion, but without conditioning
on observation up to present.

No Yes Same as interval-reduced censor-
ing and truncation, but addition-
ally assuming no right trunca-
tion, i.e. all relevant event pairs
have been observed.

Right truncation bias (leading
to underestimation of mean) in
addition to the biases described
above.
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Method Details Truncation Censoring Assumptions Risk of bias

Truncation cor-
rection

Likelihood for delay distribution
that uses lower bounds of event
times (or different point in cen-
soring interval, e.g. midpoint),
conditioned on observation up to
present.

Yes No Assumes no censoring, i.e. that
true event times match the as-
sumed event times within censor-
ing interval.

Censoring bias (leading to over-
estimation of standard devia-
tion)

Filtering Exclusion from the likelihood of
observations with primary event
after some chosen filtering time,
and likelihood for delay distribu-
tion that uses lower bounds of
event times (or different point
in censoring interval, e.g. mid-
point).

Yes No Assumes no censoring, i.e. that
true event times match the as-
sumed event times within censor-
ing interval.

Truncation bias if filtering time
is too late, censoring bias.

Filtering + cen-
soring correction

Same as filtering, but with a like-
lihood that accounts for interval-
reduced censoring.

Yes Yes Assuming interval-reduced
censoring (i.e., uniformly dis-
tributed delay within the upper
and lower bounds).

Truncation bias if filtering time
is too late and biases from
interval-reduced censoring.

Näıve estimation Likelihood for delay distribution
that uses lower bounds of event
times (or different point in cen-
soring interval, e.g. midpoint),
not conditioned on observation
up to present.

No No Assumes no right truncation, i.e.
all relevant event pairs have been
observed, and no censoring, i.e.
that true event times match the
assumed event times within cen-
soring interval.

Both right truncation bias and
censoring bias.
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Method Details Truncation Censoring Assumptions Risk of bias

Dynamical cen-
soring correction
(discrete)

Likelihood motivated from mod-
eling the backward delay distri-
bution under epidemic dynamics,
tailored to the case of a discrete
incidence time series.

Partially
(depending
on assumed
incidence
time series)

Yes Discretisation of continuous in-
cidence to dates (step function),
centered on the lower bounds of
primary and secondary events,
respectively, and delay between
primary and secondary event is
uniformly distributed.

The assumption of uniformly dis-
tributed delays is likely unreal-
istic and deviates from the de-
lay distribution that would result
from uniformly distributed cen-
soring times. Biased if the esti-
mate of incidence time series is
biased. Can also have a small
discretisation bias.

Joint incidence
and forward
delay estimation
(discrete)

Latent-variable nowcasting
model, using a count likelihood
for case counts by primary
event and delay, with an epi-
demiological prior on the case
counts by primary event (e.g.
exponential growth model), and
interval-reduced censoring of the
delays.

Yes Yes Assumes that case counts in the
cells of the reporting triangle
have a certain count distribution,
that incidence follows a certain
time series model, and that delay
between primary and secondary
event is uniformly distributed.

The assumption of uniformly dis-
tributed delays is likely unreal-
istic and deviates from the de-
lay distribution that would result
from uniformly distributed cen-
soring times. Potential bias if
the epidemiological model for in-
cidence is inappropriate.
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2.4 Simulation study833

In order to understand the impact of different biases and the performance of the834

various methods that we have outlined, we conducted a series of simulation studies835

designed to replicate different real-world scenarios.836

Summary837

• We evaluated the methods discussed above across a range of simulated expo-838

nential growth and epidemic wave scenarios.839

• To simulate exponential growth settings, we used a continuous-time individual-840

based exponential growth model and to simulate epidemic wave settings, we841

used a stochastic Susceptible-Infected-Recovered model.842

• As this study was initially inspired by the analysis of COVID-19 outbreaks,843

we considered settings with a range of delay distributions to assess the impact844

of common biases across a range of common scenarios for COVID-19. These845

delays had the following means (and standard deviations) on the natural scale:846

3.6 (1.5) days, 5.9 (3.9) days, and 8.3 (7.9) days. We refer to these in the text847

as “short”, “medium”, and “long” delays.848

Simulating infections We explored both fixed growth rate and epidemic scenar-849

ios. For all scenarios, we explored 3 lognormal distributions representing “short” (log850

mean of 1.2 and log standard deviation of 0.4), “medium” (log mean of 1.6 and log851

standard deviation of 0.6), and “long” (log mean of 1.8 and log standard deviation of852

0.8) time delays. These assumptions correspond to distributions with the following853

means (and standard deviations) on the natural scale: 3.6 (1.5) days, 5.9 (3.9) days,854

and 8.3 (7.9) days (Fig. 4B).855

To simulate settings with a fixed growth rate, we used continuous-time stochas-856

tic simulations of exponential growth with a range of daily growth rate assump-857

tions (assuming 10,000 individuals): “fast decay” (-0.2), “decay” (-0.1), “stable” (0),858

“growth” (0.1), and “fast growth” (0.2).859

To simulate epidemic scenarios, we used a stochastic Susceptible-Infected-Recovered860

(SIR) model implemented using a Gillespie algorithm assuming an early exponential861

growth rate of 0.2 per day and a recovery rate of 1/7 per day (corresponding to a862

mean of 7 days) with 50 initial cases and a total population of 10,000.863

For all scenarios, we took the primary event time to be the time of infection,864

and we simulated secondary events by drawing delays from the assumed continuous865

lognormal distribution for that scenario for each individual and then adding this866

delay to their primary event time. This simulation approach assumes no observation867

error for the primary event or secondary events beyond daily censoring and thus868

represents an idealised system.869
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Scenarios investigated For the simulations with fixed growth rates, we assumed870

a sample size of 200 randomly drawn pairs of primary and secondary events with871

observation cut-off 30 days after the start of the simulation. We repeated each872

sampling step 20 times independently so that we ended up with 20 replicates of each873

simulated growth rate scenario.874

For the epidemic wave simulation, we explored a range of sample sizes (10, 100,875

200, and 400 samples) and observation time scenarios (including all observations up876

to 15 days, 30 days, 45 days, and 60 days from the start of the simulation).877

2.5 Case study: 2014-2016 Sierra Leone Ebola virus disease878

epidemic879

In order to explore the performance of each method in a real-world setting, we used880

publicly available data from the 2014-2016 Sierra Leone Ebola virus disease epidemic.881

Summary882

• We studied the evolution over time of the empirically observed backward and883

forward delay distributions of the time from symptom onset to positive test, and884

the proportion of positive tests that were unobserved for a cohort of symptom885

onsets over a rolling 60-day observation period.886

• We used multiple observation times and compared retrospective estimates to887

real-time estimates for each approach.888

Data We downloaded line list data from Fang et al. (2016) which contained age,889

sex, symptom onset date, sample test date, the district of the case, and the Chiefdom890

of the case for Ebola virus disease (EVD) cases in Sierra Leone from May 2014891

through September 2015. We then processed these data to keep only the date of892

symptom onset and the date of the sample test. We assumed that censoring for each893

of these dates was daily with a day defined as being from 12:00 AM to 11:59 PM.894

Empirical context We calculated various summary statistics using the available895

line list data, which we used to provide a context for comparisons of different infer-896

ence methods. These statistics included changes in the mean forward and backward897

distributions, the empirical forward distribution at each observation cut-off date, as898

outlined in the ’Scenarios Investigated’ section, in both real-time and retrospective899

settings; and, the proportion of secondary events that were unobserved for a cohort900

of individuals whose primary events took place within a rolling 60-day window.901

Scenarios investigated We estimated the delay from symptom onset to sample902

test using each method across four different observation windows of 60 days each903

(0–60 days, 60–120 days, 120–180 days, and 180–240 days after the first symptom904
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onset). In particular, for each window, we only considered individuals who developed905

symptoms and also got tested within the time period to match a real-time analysis906

setting. Note that in this case study we do not account for additional potential907

delays from the sample test date to the reporting of these tests as these data were908

not available in Fang et al. (2016). However, our methods could naturally account for909

these additional delays if data were available. As a comparison, we then re-estimated910

the delay using each method for each observation period by including all individuals911

who developed symptoms within the observation period (regardless of when they912

got tested) and estimated the delay distribution. These retrospective estimates were913

then used to represent the ”true” distribution when calculating the relative difference914

between estimates using data available in real-time and data available retrospectively915

for each method. Note that in this setting the ”true” distribution may still be biased916

relative to the underlying forward distribution (e.g. methods that do not account917

for censoring may still be biased in both real-time and retrospective settings).918

2.6 Evaluation919

We evaluated the recovery of the mean and standard deviation of the lognormal920

distribution in our simulated scenarios visually using the posterior density normalised921

with known synthetic values, where these were available, and quantitatively using the922

Continuous Ranked Probability Score (CRPS, Gneiting and Raftery, 2007), which923

is a generalisation of absolute error. The CRPS measures the distance between a924

distribution and data as follows925

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1(x ≥ y))2 dx, (62)

where y is the true observed value and F is the cumulative distribution function926

(CDF) of the predictive distribution, and 1(x ≥ y) is the indicator function such927

that for x ≥ y its value is 1 and otherwise it is 0. The CRPS is a strictly proper928

scoring rule, meaning that only a probabilistic estimate that exactly reflects the true929

distribution of y minimises the expected score.930

To allow for comparisons across simulated scenarios, we normalised predictions931

by the known true value, took the natural log, and then calculated the CRPS. In932

effect, this transforms the CRPS into a relative, rather than an absolute, score whilst933

maintaining its propriety (Bosse et al., 2023). We then averaged across all obser-934

vations, and then averaged across observation stratified by growth rate, parameter,935

and delay distribution.936

As a comparison, we also compute relative bias, root mean squared error (RMSE),937

and coverage probabilities. The relative bias and RMSE were calculated using the938

log of relative errors (i.e., the ratio between the estimated and true values) in the939

same way as the CRPS. The coverage probability was calculated from the proportion940

of 90% credible intervals that contain the true value.941
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2.7 Implementation942

All models were implemented using the brms (Bürkner, 2018) R package and the
stan probabilistic programming language (Stan Development Team, 2021) (Gabry
and Češnovar, 2021) in R version 4.2.2 (R Core Team, 2019). As such they are
readily extensible to model formulations covered by the GAM framework. Where
not otherwise specified, we use the following priors for all methods,

µd ∼ Student’s t (3, 0, 2.5) (63)

υd ∼ Student’s t (3, 0, 2.5) , (64)

where µd is the log mean, and υd is the log standard deviation of the lognormal943

distribution. Here, the student’s t distribution has the following three parameters:944

degrees of freedom, mean, and standard deviations.945

The No-U-Turn Sampler (NUTS), which is an adaptive variant of Hamiltonian946

Monte Carlo (HMC) was used for model fitting via cmdstanr. We used four Markov947

chain Monte Carlo (MCMC) chains with each having 1000 warm-up and 1000 sam-948

pling steps (Gabry and Češnovar, 2021); we did not consider any other sampling949

schemes or settings for simplicity. We set adapt delta, which represents the tar-950

get average acceptance probability, to 0.95 due to the expected complexity of the951

posterior distribution (Betancourt, 2017).952

We assessed convergence using the Rhat diagnostic, where an R-hat close to 1953

indicates that the MCMC chains have converged (we used 1.05 as a threshold for954

further investigation) (Gelman and Rubin, 1992), and recorded run-time, the number955

of divergent transitions, the exceedance of the maximum tree depth (which was 10,956

its default setting), and the effective sample size (Gabry and Češnovar, 2021; Stan957

Development Team, 2021). We did not assess the sensitivity of our inference to these958

settings. Divergent transitions are useful as a model diagnostic when using HMC959

since they indicate issues exploring the posterior, and when present, can mean that960

estimates are unreliable (Betancourt, 2017).961

The scoringutils R package (1.1.0) (Bosse et al., 2022) was used to calculate962

the CRPS, RMSE, and to assess bias. We also evaluated the sampling performance963

details of each method, including the run-time of inference and the distribution of964

divergent transitions.965

All core functionalities and inference approaches were implemented in the epidist966

R package to facilitate reuse and user extension. Our simulation, scenario, and model967

fitting pipeline was implemented in a targets workflow (Landau, 2021) and we pro-968

vide an archive of our results to aid reuse. Our post-processing pipeline was also969

implemented as a targets workflow.970

To enhance the reproducibility of this analysis, we managed dependencies using971

the renv R package (Ushey, 2021). In addition, we provide a versioned Dockerfile972

and a prebuilt archived image (Boettiger, 2015). The code for this analysis can973

be found here: https://github.com/parksw3/epidist-paper. The code for the974

epidist R package can be found here: https://github.com/epinowcast/epidist.975
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3 Results976

3.1 Simulation study977

Summary978

• Not accounting for the truncation bias led to an underestimation of the mean.979

The degree of bias increased with the underlying growth rate of an epidemic.980

• Not accounting for the censoring bias generally led to over-estimation of the981

standard deviation. For daily reporting, assuming uniform censoring for each982

event gave reasonable answers (i.e., the interval-reduced approach).983

• Among methods that explicitly account for the censoring and truncation bias in984

the forward distribution, the approximate-latent-variable approach performed985

the best overall, followed by the interval-reduced-censoring-and-truncation ap-986

proach.987

• The joint modeling and dynamical correction methods had nearly compara-988

ble performance. However, the joint modeling approach had wider uncertainty989

than comparable approaches whilst the dynamical correction method was un-990

reliable during negative growth periods and required a retrospective time series991

to perform well.992

3.1.1 Exponential growth simulation993

The joint modelling approach performed best overall when evaluated using relative994

CRPS (Fig. 3C), followed by the approximate-latent-variable model, the interval-995

reduced censoring method, and the retrospective dynamical correction approach.996

All of these approaches successfully recovered the simulated parameters to a rea-997

sonable degree both visually (Fig. 3C), based on both probabilistic and point scores998

(Fig. 10A), and based on coverage of the 90% credible interval (Fig. 10C). These999

methods performed worse for long delays with both an increase in uncertainty and1000

in underestimation of both the mean and standard deviation. These biases were1001

a particular issue for higher growth rates. The approximate-latent-variable model1002

appeared most robust to this bias visually, though this was not conclusively demon-1003

strated by any of the evaluation metrics used. The dynamical correction method us-1004

ing retrospective incidence data was the least robust of the methods that performed1005

well when growth rates were negative with biased estimates of the standard deviation1006

across all delay distributions explored. Unlike other well-performing methods, the1007

joint modelling approach had less variance in its relative CRPRs scores without the1008

very low scores for large growth rates and small delays scenarios but also without1009

reduced performance for scenarios with longer delays for the mean (though not the1010

standard deviation).1011
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The dynamical correction method with real-time incidence performed better than1012

other methods that do not fully account for censoring and truncation. However,1013

it performed worse than all other methods that account for these biases. In the1014

real-time setting, the dynamical correction method had similar characteristics as1015

when used with retrospective data, but showed more under- (when growth rates1016

were positive) and over- (when growth rates were negative) estimation of the mean1017

due to the use of truncated real-time incidence. Real-world performance for this1018

approach would be somewhere between the real-time and retrospective approaches,1019

depending on the availability of robust estimates for primary incidence that correct1020

for truncation (or alternatively a robust estimate of the growth rate in stable growth1021

settings).1022

All other models perform considerably worse than these methods with methods1023

that only accounted for either truncation or censoring performing the worst. The1024

naive method that accounts for no biases outperformed these methods as censoring1025

and truncation biases partially cancelled each other when growth was fast (as the di-1026

rection of these mechanisms bias estimates in different directions). Out of the poorly1027

performing methods, the filtering methods performed the best with the potential to1028

perform even better if the filtering horizon were optimised to the length of the delay1029

(though at the cost of increased uncertainty). All of these methods under-covered, in-1030

dicating that their credible intervals were too narrow, and produced biased estimates1031

(Fig. 10).1032

Methods that did not adjust for right truncation produced increasingly under-1033

estimated means and standard deviations as the exponential growth rate increased1034

(r > 0) with the degree of underestimation increasing with the length of the delay1035

distribution. Whilst methods that do explicitly account for the truncation bias gen-1036

erally give unbiased estimates of the mean (Fig. 3C) when the growth rate is high1037

and the delay is longer (i.e., when the degree of truncation is large), the truncation1038

method without censoring overestimated the mean and standard deviation. Better1039

performing methods also struggled in this extreme setting with larger credible inter-1040

vals for the standard deviation though the estimates were visually still close to the1041

true values.1042
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Figure 3: Simulation study with fixed growth rates. (A) Empirical distribution of
the delay between primary and secondary events stratified by distribution. Shade
indicates the exponential growth rate used in each simulated scenario. The black
line indicates the true distribution used for simulation. (B) Relative CRPS of each
method (smaller is better). Here black diamonds represent the global relative CRPS.
Coloured points represent the mean CRPS for each distribution scenario (short,
medium, and long) with the shape indicating if the score is for the mean (circle) or
standard deviation (SD, triangle). (C) Posterior distributions of mean and standard
deviation (Sd) relative to the values used when simulating. The vertical line at 1
indicates exact replication of the true value. Vertical lines represent the 5%, 35%,
65%, and 95% quantiles respectively. Models are ordered based on the order used in
the methods section.
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3.1.2 Epidemic wave simulation1043

For the epidemic wave simulation, the ordering of well-performing methods differed1044

from that of the exponential growth simulations but the performance difference be-1045

tween methods that did and did not account for both censoring and right truncation1046

remained. Here the approximate-latent-variable approach performed the best overall1047

(Fig. 4C) based on relative CRPS, followed by the dynamical approach using ret-1048

rospective incidence, the joint modeling approach, and finally the interval-reduced-1049

censoring-and-truncation approach.1050

Early in the epidemic, all of these methods perform worse when combined with1051

longer delays. This setting was particularly problematic for the approximate-latent-1052

variable and the interval-reduced-censoring-and-truncation approaches (Fig. 4D),1053

giving wider uncertainty intervals. Underestimation of the standard deviation was1054

more common in the epidemic wave simulations across observation windows than it1055

was in the exponential growth scenarios for these methods, with the approximate-1056

latent-variable method being the least impacted.1057

As in the exponential growth simulations, the dynamical correction approach with1058

real-time incidence performed less well than other methods that sought to account1059

for both right truncation and censoring due to the use of a truncated time series.1060

Methods that did not account for both censoring and truncation also give biased1061

estimates, especially at the beginning of the epidemic (i.e. when exponential growth1062

was highest).1063
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Figure 4: (A) Epidemic wave simulations across three distributions. Dashed bars
represent four observation days. Blue bars represent the observed incidence of pri-
mary events on each observation day. Red points represent the observed incidence of
secondary events on each observation day. On each observation day, we take 400 ran-
dom samples from simulated primary and secondary event pairs and fit lognormal
distributions while accounting for truncation and censoring biases. (B) Empirical
distribution of the delay between primary and secondary events stratified by distri-
bution. Shade indicates the day of observation. The black line indicates the true
distribution used for simulation. (C) Relative CRPS of each method (smaller is
better). Here black diamonds represent the global relative CRPS. Coloured points
represent the mean CRPS for each distribution scenario with the shape indicating if
the score is for the mean (circle) or standard deviation (Sd, triangle). (D) Posterior
distributions of mean and standard deviation (Sd) relative to the values used when
simulating. The vertical line at 1 indicates exact replication of the true value. Ver-
tical lines represent the 5%, 35%, 65%, and 95% quantiles respectively. Models are
ordered based on the order used in the methods section.
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3.2 Case study: 2014–2016 Sierra Leone Ebola virus disease1064

epidemic1065

Summary1066

• The epidemic had four distinct phases: sporadic cases in the first phase, rapid1067

growth in the second phase, plateau in the third phase, and decay in the fourth1068

phase.1069

• The delay in reporting cases (from symptom onset) increased as the number1070

of cases grew, reaching a maximum mean delay of around 7 days in the third1071

phase and then declining, potentially reflecting changes in testing capacity,1072

reporting, or other mechanisms linked to incidence.1073

• The forward and backward delay distributions exhibited similar trends, but1074

with differences in mean delay during the growth and decay periods. Right1075

truncation during the period of faster growth resulted in a difference of ap-1076

proximately 0.5 days in the mean delay between real-time and retrospective1077

observations. The degree of right truncation was relatively small due to the1078

growth rate of this epidemic also being relatively small even during the peak1079

growth period.1080

• Methods that considered right truncation and censoring performed well, pro-1081

ducing real-time estimates that closely matched retrospective estimates, similar1082

to the findings in the simulation studies.1083

• Differences between real-time and retrospective estimates were largest during1084

the period of exponential growth. All well-performing methods slightly overes-1085

timated the retrospective standard deviation in real-time during this period.1086

• The joint modeling approach had larger credible intervals compared to other1087

methods that accounted for right truncation and censoring and also slightly1088

overestimated the retrospective mean in real-time, this was observed to some1089

degree in other methods to a lesser extent, except for the dynamic correction1090

method using retrospective incidence data.1091

3.2.1 Empirical observations1092

During the first phase of the epidemic, cases were reported sporadically without1093

apparent growth (Fig. 5A). The epidemic then grew rapidly during the second phase,1094

followed by a plateau during the third phase and decay during the fourth phase. For1095

each phase, we used all available samples from the last 60 days which resulted in1096

real-time (and retrospective) sample sizes of 834 (1032) at 60 days, 3149 (3532) at1097

120 days, 2399 (2483) at 180 days, and 401 (428) at 240 days.1098
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The forward delay distribution (as observed retrospectively) changed over the1099

course of the epidemic (Fig. 5B), potentially reflecting changes in the reporting pro-1100

cess. During the initial phase, the delays were short with means around 5 days. As1101

the number of cases increased, the mean delay also started to increase, potentially1102

reflecting an overload in a testing capacity or another mechanism linked to incidence.1103

During the third phase, the mean delay reached its maximum of around 7 days and1104

started to decline along with incidence. Eventually, the mean delay decreased to1105

5.9 days by day 240. The backward distribution exhibited a similar trend, though1106

as explained earlier, it had a shorter mean than the forward distribution during the1107

growth period and a longer mean during the decay period.1108

The empirical distributions for each observation period, both as observed in real-1109

time and retrospectively, are presented in Fig. 5C. Delay distributions observed in1110

real-time (truncated) and retrospectively (untruncated) were broadly similar across1111

all observation windows, except for days 60–120 during the period of rapid growth1112

in incidence. During this period, the difference in the mean delay was around 0.51113

days with this difference reflecting large amounts of right truncation (Fig. 5D).1114
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Figure 5: (A) Reported number of Ebola virus disease cases between May 18, 2014
and September 13, 2015. Dashed lines represent four observation days. Blue bars
represent the daily incidence of primary events with different shades indicating the
observed incidence in each observation period. Red points represent the daily inci-
dence of secondary events with different shades indicating the observed incidence in
each observation period. (B) Mean forward (measured across a cohort of individu-
als who developed symptoms on the same day) and backward (measured across a
cohort of individuals who reported their infections on the same day) delays between
symptom onset and case reports and the corresponding 95% confidence intervals.
A Generalised Additive Model (GAM) with a default thin plate spline on the date
of the event has been used to smooth daily estimates. (C) Empirical distribution
of the delay between primary and secondary events both in real-time (green) and
retrospectively (orange) stratified by observation. The dotted lines indicate the ob-
served mean both in real-time (green) and retrospectively (orange). (D) Proportion
of unobserved secondary events (and therefore, delays) from primary events in the
last 60 days. A GAM with a default thin plate spline on the date of the primary
event has been used to smooth daily estimates with the point estimate and its 95%
confidence interval shown. 46
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3.2.2 Model results1115

The joint modelling approach, the approximate-latent-variable model, the interval-1116

reduced censoring method, and the retrospective dynamical correction approach1117

again performed well in real-time, producing estimates that were comparable to those1118

estimated using retrospective data (Fig. 6A, Fig. 12A). As expected, the largest dif-1119

ferences between retrospective and real-time estimates are observed during the period1120

of exponential growth (i.e., 60-120 days). During this period, all of these methods’1121

real-time estimates overestimated the retrospective estimates of the standard devia-1122

tion. The joint modeling approach had significantly wider credible intervals across all1123

observation periods compared to other well-performing methods. The joint modeling1124

approach also routinely overestimated the retrospective mean in real-time settings.1125

We note that the same overestimation occurred to some degree for all other methods1126

aside from the dynamical correction method using retrospective incidence data.1127

These well-performing methods also generally captured the retrospective empir-1128

ically observed mean well. However, the estimated standard deviations are con-1129

siderably lower than the empirical values (Fig. 6A). While these differences likely1130

reflect the bias in the empirical values caused by the censoring process, it is also1131

possible that the lognormal distribution may not be the best choice of distribution1132

for these data. The interval-reduced and dynamic correction methods particularly1133

underestimated the empirically observed standard deviation.1134

As in our simulation scenarios, not accounting for truncation gave real-time fits1135

with lower estimates of the mean and standard deviation than the corresponding1136

retrospective fit (Fig. 6A, Fig. 12A). As both retrospective and real-time fits are1137

liable to censoring bias, the impact of not properly accounting for censoring is not1138

highlighted by this case study. This also means that the estimates for the standard1139

deviation from the truncation-only adjusted model should best reflect the empirical1140

standard deviation, as both are biased upwards due to censoring when compared to1141

the standard deviation of the continuous distributions.1142

All methods were able to reasonably match the empirical mean of the data in1143

each observation period despite assuming a constant mean and standard deviation1144

within each period (Fig. 6B). Due to the relatively slow rate of exponential growth1145

for all observation periods, the absolute differences between the estimated means for1146

most methods were relatively small.1147
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Figure 6: (A) Posterior distributions of mean and standard deviation (Sd) normalised
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intervals. Points represent the observed mean values.
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3.2.3 Implementation considerations1148

Summary1149

• More complex methods for estimating epidemiological delay distributions have1150

increased computational requirements relative to simpler methods. In most1151

settings, these computational requirements are expected to still be feasible for1152

routine usage.1153

• The approximate-latent-variable method had exponential scaling in resource1154

requirements when the sample size increased.1155

• The interval-reduced-censoring-and-truncation method required the least com-1156

putational resources by an order of magnitude of the methods that accounted1157

for both censoring and truncation.1158

• The dynamical adjustment method is unstable for short delays with larger sam-1159

ple sizes both with and without a truncated time series, though the instability1160

increased when a truncated time series was used (i.e., a real-time one).1161

All the methods we considered are implementable with modest (i.e., laptop scale)1162

computational hardware at the time of writing, and we are able to run our full anal-1163

ysis pipeline of several thousand model fits within this resource budget at a practical1164

time scale (i.e, within several hours). However, more complex methods required1165

greater computational resources. For example, the approximate latent variable, dy-1166

namic correction, and joint modeling approaches required an order of magnitude1167

more resources for the same sample size than the interval-reduced-censoring-and-1168

truncation method (Fig. 7A). The resource requirements for all models scaled with1169

sample size, with the approximate latent variable model scaling the worst of the1170

methods we explored. The dynamical correction approach had the highest variance1171

in its computational requirements with some fits taking 10 to 100 times longer de-1172

spite having the data used having the same sample size across fits. This was likely1173

due to numerical instability from the integration step. It was a particular issue when1174

a real-time incidence time series was used.1175

In general, all the methods were numerically stable, excluding the dynamical cor-1176

rection approach in some settings, and converged. Methods that better captured the1177

data-generating process (i.e. that accounted for known biases) were the most stable1178

and had fewer diagnostic warnings. A notable exception to this was the dynamical1179

model which was the only model to cause sampling in stan to fail completely in six1180

instances and more generally had the highest proportion of fits with divergent tran-1181

sitions (Fig. 7B). These issues occurred most frequently in simulations with short1182

delays and during periods of epidemic decline. In the case study, both retrospective1183

and real-time fits failed at the 180-day observation point. Another driver of model1184

issues was low sample sizes with the majority of instances of divergent transitions1185

occurring in settings with a sample size of 10.1186
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4 Discussion1187

4.1 Findings1188

In this work, we provided methodological and practical guidance for researchers1189

tasked with estimating epidemiological delay distributions. We first introduced the1190

general theory of epidemiological delay distributions and the most common kinds of1191

biases (namely censoring, truncation, and dynamic) that can impact their inference.1192

Based on this theory, we derived an exact approach for accounting for these biases1193

when estimating epidemiological delay distributions. As this approach lacks stability1194

and practicality for real-time usage, we then presented a set of methods that approxi-1195

mate the exact solution, and compared their performance. We made use of simulated1196

scenarios and a case study using data from the 2014-2016 Sierra Leone Ebola virus1197

disease epidemic to compare these methods in applied usage, evaluating not only1198

their accuracy and calibration but also practical issues, such as their suitability for1199

real-time usage, their computational requirements, and their numerical stability.1200

We showed that naive methods that correct for none or only one form of bias1201

can severely misestimate the distribution mean, e.g. by up to 50% in the most ex-1202

treme cases we studied. Generally, we suggest using the approximate latent variable1203

model Ward et al. (2022), which explicitly adjusts for both censoring and trunca-1204

tion biases, and can produce much more accurate estimates both in real-time and1205

retrospectively. However, this method was not foolproof and could not estimate1206

the distribution mean or standard deviation with precision when the exponential1207

growth rate was very high and the true delay distribution was long. If this method is1208

computationally too costly or complex to implement, using the interval-reduced cen-1209

soring and truncation model (which assumes a 2-day censoring window around each1210

observed delay) gives only slightly more biased estimates. The joint modeling ap-1211

proach and dynamic correction methods also performed well (in the latter case only1212

when a retrospective time series was available) and may be sensible choices in some1213

settings. In the case of the joint model, these settings are likely to be those in which1214

a nowcast of the primary event is useful, where the primary event has observation1215

error, or when a hazard-based approach would allow additional complexities in the1216

reporting process to be modelled. However, this model’s requirement for a primary1217

incidence model to be specified may make it more complex to use more generally.1218

Similarly, the dynamical correction approach’s requirement for an untruncated time1219

series generally means another model would first need to be used to estimate the1220

incidence time series. This process is likely to introduce hard-to-quantify bias and1221

make propagating uncertainty difficult (in the absence of a similar joint approach we1222

have explored for the forward distribution). However, where an independent time1223

series is available that does not suffer from right truncation this approach would be1224

more practical. Finally, we provide all the methods we have evaluated as a stan-1225

dalone, and readily extensible, R package (epidist ), which additionally provides1226

functionality to fit distributions that are partially pooled and that vary in discrete1227
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time.1228

Right-truncation bias was most pronounced for growing epidemics and long de-1229

lays. Failing to account for this bias typically led to an underestimation of the mean.1230

This underestimation increased with higher degrees of truncation. We have discussed1231

several methods that can robustly adjust for right truncation, but when the degree of1232

right truncation was very large, even these well-performing methods overestimated1233

the mean. Though their credible intervals still covered the true mean in all cases,1234

performance could likely be improved by using a more informed prior distribution.1235

For this reason, it may be helpful for practitioners to track the degree of expected1236

right truncation in real time. Unfortunately, this was difficult to do, but one heuristic1237

approach is to plot the forward mean (Fig. 5B) as well as the proportion truncated1238

(Fig. 5D) over time and compare their changes. Comparing retrospective estimates1239

with real-time estimates is also helpful but not practical in real-time.1240

The effects of censoring bias were more subtle on a daily scale. In our simula-1241

tions, we found that failing to account for censoring typically led to biased estimates1242

of the standard deviation but unbiased estimates of the mean. When inappropriate1243

censoring adjustments were used the estimated mean was also biased. An example1244

common in the literature of an inappropriate censoring adjustment is to use a single-1245

day discretisation, which only accounts for censoring of a single event and induces1246

a bias of half the unaccounted-for censoring interval to the mean of the estimated1247

distribution. The approximate-latent-variable model, the interval-reduced-censoring-1248

and-truncation model, the dynamical-bias-correction method, and the joint-modeling1249

method gave relatively unbiased and precise estimates of underlying delay distribu-1250

tion parameters for the daily reporting scenario.1251

4.2 Limitations1252

While we have shown that accounting for both truncation and censoring biases is1253

critical to accurately estimating epidemiological delay distributions, some methods1254

can be more computationally costly than others. In particular, latent variable meth-1255

ods required nearly an order of magnitude more computational time in most cases1256

compared to non-latent variable methods. The dynamical bias correction method1257

and the joint model of primary incidence and the forward distribution had similar1258

computational requirements to the latent model. However, in most instances, these1259

requirements were manageable with typical research computing resources (i.e., laptop1260

scale). In settings with time-varying and partially pooled delay distributions, this1261

may no longer be the case and so non-latent approaches may be favoured despite the1262

slight increase in bias.1263

In terms of accounting for dynamical biases, previous studies (Verity et al., 2020a;1264

Britton and Scalia Tomba, 2019; Park et al., 2021) focused on the exponential growth1265

phase, simplifying the problem. This approach is acceptable as long as growth stays1266

roughly constant. However, propagating uncertainty appropriately is difficult with1267

this approach and stable growth rates are rare in practice. Here, we present a novel1268
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version of the growth rate correction method that accounts for flexible changes in1269

incidence patterns. Whilst this method performed well in retrospective settings, its1270

application to real-time epidemics is currently limited due to its dependence on un-1271

truncated incidence data. It was routinely outperformed for real-time usage by other1272

methods that directly accounted for truncation and censoring. These approaches are1273

also more readily implementable using existing software, can account for censoring1274

windows of varying sizes, and were more numerical stable.1275

Our case study of the Ebola virus disease epidemic revealed important gaps in1276

the methods we present here. First, the reporting delays show considerable variation1277

throughout the epidemic which is significantly larger than any bias due to censoring1278

or truncation; current methods are not able to fully account for temporal changes1279

in the delay distribution. While it may seem relatively straightforward to extend1280

the model to allow for time-varying parameters across primary cohorts, censoring1281

of the primary events complicates the problem by adding uncertainty to their co-1282

hort time. The dynamical correction method performed particularly poorly on the1283

Ebola virus disease data. This was due to left truncation which was caused by di-1284

viding the data into four observation periods. Properly accounting for this induced1285

left-truncation would require integrating the entire backward distribution, which is1286

currently computationally impractical.1287

A key limitation of our work is that we only consider an idealized daily censor-1288

ing process—in principle, our methodology and implementation support alternative1289

censoring periods, except for the dynamic adjustment model. However, we did ex-1290

plore short delays and high growth rates which has a similar impact to having longer1291

censoring intervals with long delays and slower growth rates. We found that exponen-1292

tial growth and truncation affect the distribution of event times within the censoring1293

window, particularly when delay distributions are short relative to the length of the1294

censoring window. These effects caused the empirical distribution of event times1295

within the censoring interval to deviate from the assumed uniform distribution and1296

we expect larger biases for wider censoring intervals. More work is needed to develop1297

robust methods for dealing with wider censoring intervals that account for the under-1298

lying generative process of primary events. More generally the simulated scenarios1299

we considered were idealised and did not include observation error for either the pri-1300

mary or secondary events. Testing our models against idealized scenarios allowed us1301

to identify the detailed sources of biases, but may have favoured methods that did1302

not try and account for observation error and other real-world sources of biases.1303

4.3 Generalisability1304

We only considered lognormal distributions in this paper for brevity and because1305

it is commonly used in the literature, but our findings generalise across other dis-1306

tributions. Our implementations are also readily extensible to other distributions.1307

We also did not consider mixtures of distributions, which can better describe some1308

epidemiological delay distributions that are generated using multiple transmission1309
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or disease progression states (Vink et al., 2014). In addition, we do not include1310

non-parametric or hazard-based methods in our assessment, although the joint in-1311

cidence and forward distribution we did consider has been generalised to support1312

these methods. However, again our key findings generalise to both these settings1313

and, since our models are implemented using the brms package, it would be rela-1314

tively easy to include these complexities with minimal additional work. Finally, the1315

dynamical correction method assumes that the incidence is known exactly—a joint1316

estimation of the incidence pattern and delay distribution, similar to that used in1317

the joint incidence and forward distribution model, may improve this method’s real-1318

time performance. Despite these limitations, our conclusions about the importance1319

of truncation and censoring biases should be carefully considered for any epidemic1320

analyses, especially when estimating delay distributions.1321

In this work, we have primarily focused on inferring distributions of non-transmission1322

intervals (i.e., excluding generation- and serial-interval distributions). Although it1323

would be possible to apply our methods to infer the mean and standard deviations1324

of the transmission intervals, there are additional complications that we did not con-1325

sider. In particular, transmission intervals may not be independent of each other if1326

they share the same source case. Other problems include identifying intermediate1327

hosts and the possibility of multiple potential source cases for an infectee. More work1328

is needed to validate methods for inferring transmission interval distributions.1329

Estimation of epidemiological delay distributions is a common task in infectious1330

disease modelling. In this work, we have given particular focus to daily censoring1331

and right truncation adjustment as these are the most common scenarios researchers1332

face when estimating delay distributions. When censoring is adjusted for, it is com-1333

monly assumed to be only censoring for the primary event and not the secondary1334

event (i.e in the daily setting only account for a day vs two days of censoring). For1335

example, researchers often account for the censoring in the infection time when esti-1336

mating incubation-period distributions, but not in the symptom onset time. Right1337

truncation is rarely adjusted for, and when it is, methods with limited theoretical1338

support are commonly used which do not, or only partially, account for this bias.1339

These methods are rarely validated against simulations (Backer et al., 2020; Linton1340

et al., 2020) but are nonetheless often reused. For example, there has been an in-1341

creased usage of methods that account for dynamical and right-truncation biases at1342

the same time (Guo et al., 2023b,a); however, these two biases each pertain to back-1343

ward and forward distributions, respectively and therefore should not be combined.1344

Approaches that combine both biases will overcompensate for missing observations1345

and overestimate the mean. As early estimates of epidemiological distributions are1346

rarely re-estimated after the initial phase of an epidemic, due to lack of resources1347

and the difficulty in collecting data, these biased estimates may remain the canonical1348

ones throughout an epidemic, and beyond, further biasing decision-making.1349

More work is needed to improve software support for estimating distributions.1350

Our code base from this work is now part of the epinowcast community, a group1351

of infectious disease researchers aiming to improve epidemic and surveillance tools,1352
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meaning that it will be further developed into a robust tool. New members and1353

support towards this aim are warmly welcomed. Further work is also needed to1354

understand optimal methods for modelling time-varying distributions and mixture1355

distributions with latent components where both may suffer from right truncation.1356

4.4 Conclusions1357

This study shows that care is required when estimating epidemiological distributions.1358

We provide theory, methods, and tools to enable practitioners to circumvent common1359

pitfalls that we have described and compare these methods in a range of simulated1360

and real-world scenarios. Future epidemic analyses should carefully consider the1361

different biases outlined in this study and make sure to use methods that can account1362

for them and that have been robustly validated.1363
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Figure 8: The impact of assumptions about prior distributions on converting discrete-
time distributions to continuous-time distributions. (A, D, G, J, M) The distribution
of primary event times within a one-day censoring interval across different growth
rates. (B, E, H, K, N) The corresponding distribution of weights for the interval-
reduced censoring (black lines) against different approximations (colored lines). (C,
F, I, L, O) The means and standard deviations of the resulting continuous-time
distributions across different assumptions (colored points) against the true mean
(vertical lines) and standard deviations (horizontal lines).
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Figure 9: The impact of assumptions about prior distributions on converting
continuous-time distributions to discrete-time probability mass functions. (A) Em-
pirically observed probability mass functions (PMFs) from an underlying continuous
lognormal distribution delay simulation (mean: 5.9 days, standard deviation: 3.9
days) with daily censoring. Observed PMFs for each interval-reduced censoring win-
dow approximation are shown using grey bars, PMFs under different growth rate
assumptions for the primary interval are shown using coloured points. The black
line indicates the underlying continuous probability density function used for sim-
ulation. (B) Empirically observed means and standard deviations from the same
simulation as (D). Growth rate-adjusted primary censoring intervals are shown with
coloured diamonds, and method-based censoring are indicated using grey shapes.
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Figure 10: Coloured points represent summary statistics for each distribution sce-
nario (short, medium, and long). (A) RMSE (root mean squared error) of each
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biased estimate. (C) Coverage probability of each method. Vertical dashed lines
represent the 90% coverage probability. Shaded regions represent the 95% binomial
confidence interval around 90% given number of simulations.
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Figure 11: (A) Relative CRPS of each method across all sample sizes investigated
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Figure 12: (A) Posterior distributions of mean and standard deviation (Sd). Verti-
cal lines represent the 5%, 35%, 65%, and 95% quantiles respectively. Models are
ordered based on the order used in the methods section. (B) Posterior predictions
of truncated mean overtime against the observed forward mean. Lines and shaded
regions represent posterior median and 95% credible intervals. Points represent the
observed mean values. Note that some models are over-plotted here and hence may
not be clearly distinguishable.
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