Ag #	Ag Class	Protein	MW (kDa)	Source	Cell Line	Cat#
1	SCV2 Structural	RBD	30	GenScript	HEK293	Z03483-1
2	SCV2 Structural	Spike S1	76.9	Acro Biosystems	HEK293	S1N-C52H3
3	SCV2 Structural	Spike S2	60	Acro Biosystems	HEK293	S2N-C52H5
4	SCV2 Structural	NP (ORF9a)	47	RayBioTech	HEK293	230-30164-100
5	SCV2 Structural	E (ORF4)	50.2	Chempartner	HEK293	
6	SCV2 Structural	M (ORF5)	66.9	Chempartner	HEK293	
7	SCV2 Nonstructural	ORF3a	34.4	Chempartner	HEK293	
8	SCV2 Nonstructural	ORF3b	48.3	Chempartner	HEK293	
9	SCV2 Nonstructural	ORF8	15.4	Chempartner	HEK293	
10	SCV2 Nonstructural	ORF9b	14.2	Chempartner	HEK293	
11	SCV2 Nonstructural	NSP1	23.2	Chempartner	HEK293	
12	SCV2 Nonstructural	NSP2	74	Chempartner	HEK293	
13	SCV2 Nonstructural	NSP7	12.812	Chempartner	HEK293	
14	SCV2 Nonstructural	NSP8	25.453	Chempartner	HEK293	
15	SCV2 Nonstructural	NSP12	110.03	Chempartner	HEK293	
16	Autoreactive	IFNomega	19.9	Sigma Aldrich	E. Coli	SRP3061
17	Autoreactive	IFNa2a	19.2	Miltenyi	E. Coli	130-093-874
18	Autoreactive	9G4	150	Sanz Lab	N/A	
19	Internal Control	BSA	66	Sigma-Aldrich	N/A	B6917
20	VOC Structural	BA.4/5 NP	47.1	Acro Biosystems	HEK293	NUN-C52Hx
21	VOC Structural	BA.4/5 RBD	28.3	Acro Biosystems	HEK293	SPD-C82Ew
22	VOC Structural	Delta RBD	26.6	Sino Biological	HEK293	40592-V08H90

Table S1: FlowBEAT antigens

List of all 22 flowBEAT antigens, including SARS-CoV-2 structural and non-structural viral antigens, internal controls, human autoantigens and SARS-CoV-2 variant antigens.

Fig. S1: FlowBEAT validation and reproducibility

(A) FlowBEAT gating strategy for 19 fluorescent + 3 scatter-discriminated bead species (22 bead species). (B) Leftmost plot: determination of bead-antigen saturation point by serial dilution (X-axis) of biotin-conjugated spike S2 antigen in the presence of a constant amount of beads in constant volume. Reveal signal generated by monoclonal mouse anti-S2 antibody with a secondary goat anti-mouse fluorescence. Rightmost plot: determination of sensitivity by serial dilution of monoclonal mouse anti-S2 antibody, serially diluted (X-axis) and staining S2-saturated beads, revealed by a secondary goat anti-mouse fluorescence. (C) Single-color stains reveal isotype specificity of flowBEAT assay. (D) Antigen-specificity demonstrated by antigen-specific monoclonal mouse anti-IFN- ω , anti-IFN- α 2a, and anti-spike RBD, S1, S2 revealed by PE goat anti-mouse (Y-axis). (E) Bar plot of IgG1 anti-SARS-CoV-2 and autoantigens between pre-pandemic (grey) and USA SARS-CoV-2 serology standard (red). (Sunburst plot demonstrates total antigen reactivity in three independent replicates of USA SARS-CoV-2 serology standard.

Fig. S2: Serial dilution of anti-IFN-α2a positive samples to validate anti-IFN-α2a and anti-IFN-ω signals

(A) Serial dilution of mild-infected blood anti-IFN IgG1 signals from one donor, and triplicate dilutions of blood anti-IFN signals from the USA serology standard. (B) Serial dilution of mild-infected nasal anti-IFN IgA1 signals.

Fig. S3: Antibody isotype response to COVID-19 infection +/- vaccination in airway mucosa and blood

(A) Box plots (binned by weeks post-onset) and trendlines (drawn from non-binned data) for mild- and moderate-infected airway and systemic anti-RBD and anti-Nucleocapsid signals, with IgA1 and IgG1 or IgE and IgM values plotted, as indicated.

Fig. S4: Anti-NSP nasal-specific programs and additional induced isotypes of anti-IFN-α2a

(A) Anti-NSP7, NSP8 and ORF9a signals comprise a nasal-specific anti-NSP antibody response rarely detected in the blood of mild and moderate COVID-19 donors. (B) Additional longitudinal plots of anti-IFN- α 2a-specific isotypes of nasal and systemic autoantibodies depict isotypes not displayed in Fig. 3A and 3C. Longitudinal samples of individual donors are linked by solid lines. Loess regressions plotted as solid black lines with shaded standard error. (C) Longitudinal plots of anti-IFN- ω -specific isotypes of nasal and systemic autoantibodies depicts of anti-IFN- ω -specific isotypes of nasal and systemic autoantibodies are linked by solid lines. Loess regressions plotted as solid black lines with shaded standard error. (C) Longitudinal plots of anti-IFN- ω -specific isotypes of nasal and systemic autoantibodies.

Fig. S5: Signals of inflammation and viral load in mild and moderate COVID-19 anti-IFN-α2a producers

(A) Systemic IFN- α 2a cytokine levels and corresponding systemic anti-IFN- α 2a from the same samples. Points binned by days post-onset, as indicated in X-axis. (B) Longitudinal plots of nasal IFN- α 2a cytokine (nasal, left) and systemic CRP (systemic, right), divided by nasal IgA1 anti-IFN- α 2a-positive (left, red) and nasal IgA1 anti-IFN- α 2a-negative (left, gray) or nasal IgA1 anti-IFN- α 2a-positive (right, red) and systemic IgG1 anti-IFN- α 2a-positive (right, green). Gates for relevant populations (red, green, gray color-coded) depicted in Fig. 3C.

2 4 6 ETA IFN-α2a

0

Α

2 4 6 ETA IFN-α2a

0

Fig. S6: Additional isotypes of autoreactive antibody response in mild, moderate, and severe COVID-19

(**A**) Bar plot of systemic VH4-34 antibody detection (Y-axis) divided by isotype (color) and COVID-19 severity (pattern). Signal depicted is maximum signal detected over acute COVID-19 infection. Wilcoxon rank-sum test, p < 0.01, p < 0.001 as indicated. (**B**) Bar plot of systemic and airway anti-IFN- α 2a (Y-axis) divided by isotype (color) and COVID-19 severity (pattern). Signal depicted is maximum signal detected over acute COVID-19 infection of COVID-19 severity (pattern). Signal depicted is maximum signal detected over acute COVID-19 infection. (**C**) Correlation plots of ETA anti-IFN- α 2a and ETA IFN- α 2a cytokine levels in critical COVID-19 patients. Pearson product moment correlation coefficient, p < 0.01.