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Abstract: 25 

Background: To create an opportunistic screening strategy by multitask deep learning methods to stratify 26 

prediction for coronary artery calcium (CAC) and associated cardiovascular risk with frontal chest x-rays 27 

(CXR) and minimal data from electronic health records (EHR). 28 

Methods: In this retrospective study, 2,121 patients with available computed tomography (CT) scans and 29 

corresponding CXR images were collected internally (Mayo Enterprise) with calculated CAC scores 30 

binned into 3 categories (0, 1-99, and 100+) as ground truths for model training. Results from the internal 31 

training were tested on multiple external datasets (domestic (EUH) and foreign (VGHTPE)) with 32 

significant racial and ethnic differences and classification performance was compared. 33 

Findings: Classification performance between 0, 1-99, and 100+ CAC scores performed moderately on 34 

both the internal test and external datasets, reaching average f1-score of 0.66 for Mayo, 0.62 for EUH and 35 

0.61 for VGHTPE. For the clinically relevant binary task of 0 vs 400+ CAC classification, the 36 

performance of our model on the internal test and external datasets reached an average AUCROC of 0.84. 37 

Interpretation: The fusion model trained on CXR performed better (0.84 average AUROC on internal 38 

and external dataset) than existing state-of-the-art models on predicting CAC scores only on internal (0.73 39 

AUROC), with robust performance on external datasets. Thus, our proposed model may be used as a 40 

robust, first-pass opportunistic screening method for cardiovascular risk from regular chest radiographs. 41 

For community use, trained model and the inference code can be downloaded with an academic open-42 

source license from https://github.com/jeong-jasonji/MTL_CAC_classification. 43 

Funding: The study was partially supported by National Institute of Health 1R01HL155410-01A1 award.  44 
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Introduction 47 

 48 

Coronary artery disease (CAD) remains a significant global health concern, contributing to substantial 49 

morbidity and mortality rates (1). As such, effective risk assessment and early intervention strategies are 50 

essential for reducing the burden of coronary artery calcification (CAC) (2). Computational tomography 51 

(CT) imaging has revolutionized the field through the use of CAC score (3). CAC score has been proven 52 

to be valuable for accurate risk stratification and guiding preventive interventions, such as statin therapy 53 

and aspirin administration, especially in asymptomatic individuals (4). 54 

 55 

Despite the advantages of CT imaging in assessing CAC scores, certain inherent drawbacks limit its 56 

widespread application. Factors such as electrocardiogram (ECG)-gating requirements and the presence 57 

of arrhythmias pose challenges to obtaining reliable and accurate measurements until the development 58 

of qualitative ungated CAC score estimation (5). Moreover, conducting these CT exams often require 59 

significant technical, equipment, and clinical resources, which may not be operationally feasible at small 60 

healthcare facilities. While the practice is moving toward using non-gated CT scanning, a high-quality 61 

CAC study still requires multi-slice CT scanners and additional image processing and analysis by trained 62 

specialists for the quantification and interpretation of CAC score (6). Furthermore, CAC testing is not 63 

universally covered by insurance plans (7). While there is some evidence that CAC might be cost 64 

effective in patients with a family history of coronary disease (8), generally the measurement of CAC 65 

testing is not cost-effective for screening large populations to detect CAD in asymptomatic individuals.  66 

 67 

In light of these limitations, there is growing clinical interest in exploring alternative methods that can 68 

simplify the assessment of CAC scores or detection of the potential plaque deposition on routine imaging 69 

modalities using opportunistic screening (9). One potential solution lies in the combination of regular 70 

chest radiographs/X-rays (CXR) and artificial intelligence (AI) technology. While CXR is not 71 

conventionally considered the primary modality for directly assessing coronary artery conditions, recent 72 

advancements in deep learning techniques have opened new possibilities. By leveraging AI algorithms, it 73 

becomes feasible to extract the calcification features present in CXR images, allowing for the 74 

opportunistic estimation of CAC scores. Compared to CT imaging, a CXR-based AI approach could offer 75 

several distinct advantages. Firstly, it significantly decreased ionizing radiation exposure (0.1 mSv versus 76 

0.8-10.5 mSv), therefore reducing the associated health risks (10,11). This attribute is particularly crucial 77 

for repeated or serial screenings, enabling longitudinal monitoring of CAC scores without increasing 78 

patients' radiation exposure, roughly nine CXR doses equaling one CT dose (12). Additionally, CXR is a 79 

widely available and cost-effective imaging modality, making it nearly universally accessible across 80 

various healthcare settings (13). 81 

 82 

This study aims to investigate the potential of utilizing CXR and AI technologies to identify and stratify 83 

patients with coronary atherosclerosis, offering a low-radiation and cost-effective alternative for risk 84 

assessment. We hypothesize that by applying deep learning algorithms to CXR images, it is possible to 85 

extract the necessary calcification features and accurately identify high CAC category which can provide 86 

an efficient way of detecting asymptomatic individuals. Through this approach, we anticipate providing 87 

clinicians with a simpler and more accessible tool for risk stratification, ultimately facilitating timely 88 

interventions and improving patient outcomes related to CAD with cost-efficient imaging modality. 89 

 90 

Materials and Methods 91 

 92 

Internal cohort 93 

We collected a retrospective internal cohort of 2,121 patients who had a coronary CT scan between 2012 - 94 

2022 and corresponding CXR imaging exam with frontal view within a ± 1 year period of the CT exam 95 

day at the Mayo Clinic. If a patient underwent multiple radiography or CT examinations, all were 96 

included in the data set, with radiographs linked to the temporally closest calcium scoring CT (Table 1). 97 
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Informed consent waiver and ethical approval was obtained from the Mayo Clinic Institutional Review 98 

Board (IRB protocol#22-006839). The 2/3 of the internal dataset was used for training and the 1/3 was 99 

split into validation and testing resulting in 1,424/356/341 patients, respectively. CAC scoring was 100 

performed on cardiac chest CT according to standard imaging acquisition and Agatston scoring methods 101 

(14). We extracted the CAC score from clinical radiology reports using simple regular expression 102 

(REGEX) and manually reviewed the extracted scores. After extraction, CAC scores were grouped into 103 

three bins based on accepted clinical cutoffs and literature defining prognosis by CAC category (15,16): 104 

‘no CAC’ - 0, 1-99, and 100+. Additionally, patients with CAC 400+ were also identified to test the 105 

models’ performance in differentiating high vs. low-risk cases and compare to available literature (9).  106 

 107 

Table 1. Demonstrate the patient characteristics for internal and two external institutions (domestic and 108 

foreign). MACE outcomes were not available on the external dataset. 109 

Characteristics Subtype Mayo Clinic 
Enterprise 

(n=2,306) 

EUH 

(n=386) 

VGHTPE 

(n=499) 

Age 58.38±9.65 60.48±9.95 59.28±11.68 

Gender Male 1416 (61%) 231 (60%) 313 (63%) 

Female 890 (39%) 155 (40%) 186 (37%) 

CAC distribution 0 1060 (46%) 137 (35%) 209 (42%) 

1-99 661 (29%) 104 (27%) 150 (30%) 

100+ 585 (25%) 145 (38%) 140 (28%) 

Race White 1714 (74%) 188 (49%) 0 (0%) 

Black or African 
American 

56 (2%) 33 (9%) 0 (0%) 

Native American 6 (0%) 0 (0%) 0 (0%) 

Asian 61 (3%) 6 (2%) 499 (100%) 

Other/unknown 469 (20%) 159 (41%) 0 (0%) 

Ethnicity Hispanic or Latino 92 (4%) 4 (1%) 0 (0%) 

Not Hispanic or Latino 1697 (74%) 276 (72%) 499 (100%) 

Unknown 517 (22%) 105 (27%) 0 (0%) 

CCI Comorbidities  

(at time of x-ray) 

Cerebrovascular 
Disease 

27 (1%) 4 (11%) 0 (0%) 

Congestive Heart 
Failure 

5 (0%) 2 (6%) 0 (0%) 

Myocardial Infarction 0 (0%) 0 (0%) 0 (0%) 

Peripheral Vascular 
Disease 

39 (2%) 1 (3%) 0 (0%) 

Renal Disease 7 (0%) 0 (0%) 0 (0%) 
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MACE 253 (8.5%) N/A N/A 

 110 

External cohort 111 

To test the model's robustness and generalization capabilities, we collected testing data from two external 112 

healthcare centers (domestic and foreign) - Emory University Healthcare (EUH), and Taipei Veterans 113 

General Hospital (VGHTPE approved by IRB: 2023-09-009CC) in Taipei, Taiwan, with significantly 114 

varying patient populations in terms of race and ethnicity. To match the internal data, we applied the same 115 

patient selection criteria - patients who had a coronary CT scan between 2012 - 2022 and a CXR exam 116 

with frontal view within a ±1 year period of the CT (Table 1). CAC scoring was performed using 117 

Agatston scoring methods (14). Only a limited number of randomly selected cases were used as testing 118 

due to legal regulation and the time-consuming de-identification process. 119 

   120 

Multi-channel image formation 121 

All the images were converted from Digital Imaging and Communications in Medicine (DICOM) file 122 

format to JPEG images using the open-source Niffler (https://github.com/Emory-HITI/Niffler) library 123 

(17). During conversion, images were kept in the original, native high-resolution image and kept in 16-bit 124 

gray-scale. During initial experiments, the CNN-based imaging models were noted to focus on the 125 

shoulder and neck regions for potentially determining the bone density and age to predict CAC scores. To 126 

reduce the learning of spurious correlation and allow the image model to focus on the coronary arteries, 127 

we first used a pre-trained lung segmentation model (18) to segment the lungs and computed a tight 128 

bounding box for cropping the center chest area. Then, we inverted the lung mask to obtain a rough 129 

segmentation of the heart and generate a lung masked image. An off-the-shelf bone suppression code (18) 130 

was used to suppress the ribs in the chest x-ray images to hide the bone density (19). Finally, we 131 

combined the original cropped chest centered image, lung masked image and rib bone suppressed image 132 

to generate a three-channel image from each frontal CXR image (see Fig 1).  133 

 134 

 135 

Figure 1. Multi-channel image formation – formed by stacking the original cropped chest centered 136 

image, lung masked image, and rib bone suppressed image. 137 

Multitask Image Classification Model 138 

 139 

Given the complexity of the CAC detection task, we designed a multitask learning (MTL) paradigm by 140 

combining the MACE (major adverse cardiovascular event) prediction task (20) which includes acute 141 

myocardial infarction, stroke, hospitalization due to cardiac event, and cardiovascular mortality and is 142 

ideally related with the CAC detection. This parallel task can help extract additional information to 143 

support the primary CAC prediction. Based on chart-review, we manually curated MACE events within 2 144 

years of the CXR study. We design the MTL paradigm with joint learning where both tasks are optimized 145 

with weighted loss: ������  �  �� ���	
  � �� �	�	  , where � is the weighting parameter and ���	
 , �	�	  146 

are the individual branch losses (Fig 2). We trained a ResNeXt101 (21) backbone with the MTL strategy 147 
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that uses shared CNN for both tasks and the backbone will be updated with the loss from both tasks. This 148 

strategy would have a synergistic effect on the backbone training (22).  149 

 150 

Figure 2. Multitask model. A ResNeXt101 backbone was used to classify MACE event and CAC category 151 

in parallel with weighted loss. 152 

 153 

Fusion Model 154 

 155 

To provide additional data about patient and acquisition protocol which is easy to obtain during the CXR 156 

imaging, we combined simple tabular data - patient demographics (age, gender) and X-ray manufacturer 157 

category with the CXR image using late fusion strategy (decision level fusion) (23). Addition of patient 158 

demographics and device information may also help to reduce the bias in the model and allow 159 

generalization. We trained an individual supervised model (random forest) for the tabular data and a meta 160 

learner model that takes input CAC task prediction probability from both the MTL image model and 161 

tabular model and creates an aggregated function of the probabilities. With optimal learnt weight by the 162 

meta-learner, theoretically, better or equal performance can be achieved compared to either of the 163 

individual modality models.  164 

 165 

Results 166 

 167 

We evaluated the MTL CAC fusion model on a hold-out test dataset from Mayo clinic (n=341) and 168 

independent dataset from EUH (n=386) and VGHTPE (n=499) using standard statistical metrics - 169 

precision, recall, and f1-score (Table 1). The optimal operating point was selected from the receiver 170 

operating characteristic curve (ROC) and in Fig. 3, we reported the class-wise area under the ROC 171 

(AUROC) using a one-vs-all strategy to assess the model's probabilistic diagnostic accuracy. On the 172 

internal testset, the model achieved 0.72 and 0.66 AUROC for the ≥100 CAC category (clinically 173 

significant CAC) and 0 CAC category respectively. The performance was suboptimal for the intermediate 174 

0-99 CAC category (0.58 AUROC), with similar trend observed for the EUH and VGHTPE external 175 

datasets. For the overall three class CAC detection, the performance remained moderate with average f1-176 

score - 0.66 for Mayo, 0.62 for EUH and 0.61 for VGHTPE cohorts. Despite a wide racial and ethnic 177 

difference between the centers, the performance remained consistent across the external setting.   178 

 179 

Internal test set - Mayo External - EUH External - VGHTPE 
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Figure 3.  Top row: MTL fusion model Receiver Operating Characteristic (ROC) curve for discrimination180 

of CAC category on the Mayo Internal hold-out testset, external EUH, and external VGHTPE. Shaded 181 

regions display 95% confidence interval; bottom row: MTL fusion model Receiver Operating 182 

Characteristic (ROC) curve for discrimination of MACE on the Mayo Internal hold-out testset. 183 

 184 

MACE prediction was performed as a parallel auxiliary task within the MTL paradigm and only 185 

evaluated on the Mayo holdout test set since the MACE outcome was not available on the external EUH 186 

and VGTHPE datasets (Fig. 3). The model achieved 0.83 AUROC score, and 0.954±0.023 precision and 187 

0.828±0.019 recall for identifying the MACE category.  188 

 189 

Discrimination of ‘high’ and ‘low’ CAC group: Although detection of 100+ CAC score from cardiac CT 190 

is important for clinical intervention with a statin, opportunistic screening for the detection of higher risk 191 

CAC from regular low cost CXR imaging is also clinically useful to triage patients to further dedicated 192 

diagnostic evaluation. Thus, we evaluate the MTL fusion model performance for binary classification 193 

tasks to differentiate high CAC candidates (Fig 4) and we experimented with both ‘0 vs 100+’ and ‘0 vs 194 

400+’. The model demonstrated high performance (0.84 average AUROC) for differentiating high from 195 

low plaque deposits using only CXR imaging and achieved fair performance (0.75 average AUROC) for 196 

moderate plaque on both internal and external datasets. This suggests this MTL fusion model may 197 

identify the 400+ category with 84% confidence from the regular CXR imaging. 198 

 199 

Internal Mayo test EUH  VGHTPE 

0 vs 100+ classification 

on 

T 
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0 vs 400+ classification 

   

Figure 4.  MTL fusion model Receiver Operating Characteristic (ROC) curve for discrimination of ‘high’ 200 

and ‘low’ CAC group on the Mayo Internal hold-out testset and EUH and VGHTPE external datasets. 201 

Shaded regions display 95% confidence interval; 202 

 203 

Qualitative interpretation: 204 

To better understand the potential limitations of our model and to improve its interpretability, a visual 205 

analysis of the features extracted from CXR in misclassified cases was performed using GRADCAM++ 206 

(24) (red- more important, blue - less important). We found that common scenarios in misclassified cases 207 

were the presence of cardiac devices, pleuropulmonary diseases (including pulmonary nodules and 208 

pleural diseases), and aortopathy (including tortuosity and calcification of thoracic aorta) (see Figure 6). 209 

In several false positive cases (meaning cases classified as CAC score >0 by the model when true CAC 210 

score was 0) the presence of pulmonary nodules and external devices were evident in the CXR and 211 

seemed to capture the model’s attention. In panel A nodular opacities are evident in the CXR and seemed 212 

to be captured by the model mainly in the right lung; external electrodes and cables are also present in this213 

case. In the CXR depicted in panel B, numerous pulmonary nodules and tortuosity in the descending aorta 214 

seem to be captured by the model. Panel C provides additional evidence regarding how the model can 215 

recognize and capture external devices such as electrodes and cables.  For several false negative cases 216 

(meaning cases misclassified 0 by the model when true CAC score was 100+), pleuropulmonary diseases 217 

were evident.  In panel E, and in panel D to a lesser extent, the model seems to focus on the prominent 218 

pulmonary vasculature of these cases. Additionally, in panel E mild calcification of thoracic aorta can be 219 

noticed. From a clinical perspective, it was difficult to identify definitive causes or imagining findings 220 

that could generate misclassifications by the model. However, after performing this qualitative 221 

interpretation, we could suggest that the model should be used with more caution in patients with 222 

h’ 

s 

d 
is 

rta 
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pleuropulmonary diseases, external devices and aortopathy. Further investigation in the explainable 223 

artificial intelligence field will be critical to confirm our findings and to secure that models involving 224 

cardiac imaging are more understandable to future users. 225 

 226 

False positive case samples 

 

A 

 

B 

 

C 

False negative case samples (True: 100+, predicted as 1-99) 

 

D 

False negative case samples (True: 100+, predicted as 0) 

 

E 

Fig.6 Model interpretation of false positive and negative case using GADCAM++. 227 

 228 

Discussion 229 

 230 

The major contribution of this study is the development and external validation of an CXR-based AI 231 

model for opportunistic CAC screening and identify patients with undiagnosed coronary atherosclerosis. 232 
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This approach utilizes a multitask fusion learning model to extract calcification features from routine 233 

CXRs and classify CAC scores, with external validation on datasets containing significantly different 234 

population representations (Mayo internal 74% white, EUH 50% African American, and VGTHPE 100% 235 

Asian). Additionally, incorporating clinical factors such as age, sex, and frailty score further enhanced the 236 

model performance in CAC classification. Although the model performance was moderate on the three 237 

CAC group classification (0 vs 1-99 vs 100+) with 0.65 AUROC on Mayo test and average 0.57 AUROC 238 

on VGTHPE and EUH, the model achieved high performance (0.84 average AUROC) for differentiating 239 

high (400+) from 0 CAC score which is the primary task of the opportunistic screening model. Trained 240 

model and the inference code can be downloaded with an academic open-source license from 241 

https://github.com/jeong-jasonji/MTL_CAC_classification. 242 

 243 

Enhancing model performance with clinical information. Patient age, sex, frailty score, and vendor 244 

information have been identified as significant contributors to the CXR-CAC model's predictive 245 

capabilities. This observation implied the correlations between CAC scores and these patient factors, 246 

which is in line with the recent recommendations on CAC score interpretation (25). The inclusion of 247 

some clinical information alongside the visual features extracted from CXR images enhances the model's 248 

ability to estimate CAC scores accurately and offers a more holistic approach to cardiovascular risk 249 

assessment. 250 

 251 

Multitask learning (MTL) paradigm with MACE prediction as auxiliary task. We addressed the 252 

complexity of the CAC prediction task from CXR by designing a multitask learning paradigm where 253 

MACE prediction is coded as an auxiliary task given the intuition that the CAC score should be highly 254 

correlated with MACE. The proposed model can simultaneously predict CAC category and MACE from 255 

the CXR, and the model achieved high performance for MACE prediction on the internal dataset. Using 256 

an ablation study, the details of which are given in the supplementary materials, we showed that the MTL 257 

model outperformed the single task learning model by a significant margin (0.58 to 0.65 AUROC). 258 

However, given complexity of the MACE outcome curation, we only validated the MACE branch on the 259 

internal dataset. 260 

 261 

Existing literature and comparative analysis. Recently, imaging modalities other than CT have been 262 

considered as potential alternatives for the assessment of CAC scores and its prognostic value with the 263 

assistance of AI models (9). Kamel et. al. (26) created a deep learning model to predict binary CAC 264 

classification (high versus low) from CXR images and reported 0.74 AUC (100+ CAC vs. 0 CAC) on 265 

frontal CXR and 0.7 (400+ CAC vs. 0 CAC) on lateral CXR images, however only validated on a single 266 

institutional data, so its generalizability and clinical impact remains unclear (27).  Interestingly, their 267 

model had worse performance in handling cases with more distinct CAC scores. Our AI-CXR model 268 

exhibited high discriminatory abilities (0.83-0.86 AUROC) in predicting zero CAC and 400+ CAC 269 

groups and the findings were confirmed on external datasets.  270 

 271 

Yuan et al. (9) reported a video-based artificial intelligence (AI) convolutional neural network which was 272 

trained to predict zero versus high (400+) CAC scores from parasternal echocardiography. While 273 

demonstrating good performance (0 CAC: 0.81 and 400+ CAC: 0.74), the study used a relatively clear 274 

cutoff and did not address patients with intermediate-risk (CAC score between 0 to 400), which is a group 275 

with more challenges in preventive intervention decisions. Our model had similar performance in 276 

differentiating cases of CAC 0 and CAC 100+ (Figure 4); we believe the superior performance relates to 277 

the fundamental difference of the 2 modalities, in which x-ray covers the whole heart while TTE only 278 

provides slices through specific cardiac axes; additional x-rays are superior for the detection of 279 

calcification compared to ultrasound. Furthermore, while TTE is a radiation-free modality, its cost-280 

effectiveness, turnaround time, and availability may not be as favorable as CXR in resource-limited 281 

practice scenarios.  Finally, risk stratification based on TTE-predicted CAC showed similar prognostic 282 

value to CT CAC scores in predicting significant differences in 1-year survival rates among high-CAC 283 
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patients. The Yuan et al. (9) study suggests that deep learning of TTEs holds promise for adjunctive 284 

coronary artery disease risk stratification and guiding preventive therapies.  285 

 286 

An AI-enabled opportunistic screening tool - broad impact. The CXR-CAC model has dual advantages 287 

that make it highly beneficial in the field of cardiovascular risk assessment. Firstly, CXR imaging is 288 

widely available and accessible across various healthcare settings, including primary care clinics, urgent 289 

care centers, hospitals, and even remote or resource-constrained areas (13,28). This widespread 290 

availability enables the model to facilitate opportunistic screenings, allowing for the identification of 291 

individuals at risk for cardiovascular disease without the need for specialized cardiac evaluations. This 292 

inclusive approach ensures that even patients who may not have access to cardiology specialists or 293 

awareness of cardiovascular screening can benefit from risk assessment using CXR imaging, particularly 294 

asymptomatic and young patients. Without any additional cost, we can also reuse the retrospective CXR 295 

images to stratify the wider population based on CAD risk.  296 

 297 

Secondly, the CXR-CAC model offers the advantage of low radiation dose, making it suitable for 298 

repetitive screenings. In comparison to CT scans used for coronary artery calcification (CAC) assessment, 299 

CXR-based screening involves significantly reduced radiation exposure. The low radiation dose 300 

associated with CXR allows for repeated screenings over time, facilitating longitudinal tracking of cardiac 301 

health and the timely detection of potential risk factors. Healthcare providers can implement more 302 

frequent screenings using CXR as part of preventive care strategies, enabling closer monitoring of 303 

changes in cardiac health status and supporting early interventions and preventive measures. 304 

 305 

The combination of CXR's wide availability and low radiation dose, coupled with the power of AI in the 306 

CXR-CAC model, provides a simple, cost-effective, and efficient screening tool. By leveraging existing 307 

infrastructure and the widespread availability of CXR imaging, the CXR-CAC model enables targeted 308 

interventions, public health initiatives, and timely risk stratification for individuals at risk of 309 

cardiovascular disease in underserved areas. This has the potential to improve patient outcomes and 310 

contribute to the early detection and prevention of cardiovascular conditions on a population scale. In 311 

areas where resources, infrastructure, or expertise for cardiac CT are scarce, this approach has the 312 

potential to broaden the availability of CVD screening and risk stratification, thereby enabling timely 313 

interventions and preventive measures for individuals in underserved areas. 314 

  315 

Limitations. The study only considers the frontal view of the CXR image due to wider availability. In 316 

future, lateral view can also be assessed as it may provide additional data to boost the model. The model 317 

only obtained moderate performance for the three class CAC detection task; however, given the 318 

opportunistic screening goal of the framework, the binary risk stratification model obtained an impressive 319 

0.84 average AUROC score on the internal and external validation cohort and should be capable in 320 

differential screening. Given training with the MTL paradigm with MACE, the model derived 321 

misclassification cases for pleuropulmonary conditions and aortic calcification. There was some bias of 322 

false negative rates across different subgroups (gender, race, and age) that we included in the 323 

supplementary materials that will need to be address in future studies. Additionally, we did not have BMI 324 

information at the time of the study to include in our bias analysis as a higher BMI is associated with 325 

higher risk of CAC (29). There was also some sampling bias in our dataset where we generally had a 326 

higher number of patients with pulmonary nodules with low CAC score. Further research and validation 327 

are warranted to optimize the model's performance and evaluate its real-world clinical utility. 328 
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