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Abstract 37 
 38 
Background: Malaria remains a major cause of morbidity in sub-Saharan Africa. Undetected 39 
asymptomatic falciparum malaria results in a large transmission reservoir and there is evidence of 40 
increasing non-falciparum malaria as malaria is controlled in Africa, both resulting in challenges for 41 
malaria control programs. 42 
 43 
Methods: We performed quantitative real time PCR for 4 malaria species in 4,596 individuals from the 44 
2014-2015 Rwanda Demographic Health Survey. Bivariate models were used to determine species-45 
specific associations with risk factors. 46 
 47 
Results: Asymptomatic falciparum malaria, P. ovale spp., and P. malariae infection had broad spatial 48 
distribution across Rwanda. P. vivax infection was rare.  Overall infection prevalence was 23.6% (95%CI 49 
[21.7%, 26.0%]), with falciparum and non-falciparum at 17.6% [15.9%, 19.0%] and 8.3% [7.0%, 10.0%], 50 
respectively. Parasitemias tended to be low and mixed species infections were common, especially 51 
where malaria transmission was the highest. Falciparum infection was associated with socio-econiomic 52 
status, rural residence and low altitude. Few risk factors were associated with non-falciparum malaria. 53 
 54 
Conclusions: Asymptomatic falciparum malaria and non-falciparum malaria are common and widely 55 
distributed across Rwanda. Continued molecular monitoring of Plasmodium spp. is needed to monitor 56 
these threats to malaria control in Africa. 57 
  58 
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Introduction 59 
Malaria remains a major global health challenge, with 249 million malaria cases in 85 malaria endemic 60 
countries in 2022. This was an increase from 233 million in 2021, with most of this increase coming from 61 
countries in the WHO African Region.[1] Malaria infection is caused by five species in the Plasmodium 62 
genus, with most cases and morbidity attributed to Plasmodium falciparum. Diagnosis of malaria in 63 
Africa relies principally on rapid diagnostic tests (RDTs). RDTs primarily detect the antigen P. falciparum 64 
histidine rich protein 2 (HRP2), specific to falciparum malaria, often with a second less sensitive band for 65 
pan-species lactate dehydrogenase (LDH).[2] Unfortunately, these tests often miss low density 66 
falciparum infection and species other than falciparum malaria, leading to a reservoir of asymptomatic 67 
and non-falciparum malaria which contribute to continued transmission.  68 
 69 
Molecular detection, including real time PCR, can detect lower levels of parasitemia than RDTs, which 70 
increases the number of falciparum malaria infections detected, particularly among asymptomatic 71 
community surveys.[3] Characterization of asymptomatic infections is vitally important. These infections 72 
are major reservoir of infection, contributing to the persistence of malaria.[4] It has also been argued 73 
that these infections have significant associated morbidity.[5] Additionally, asymptomatic malaria often 74 
is often followed by symptomatic infection.[6] Thus, characterizing the distribution of asymptomatic 75 
malaria is important for malaria control and prevention. 76 
 77 
Molecular detection can also help us better understand the distribution of non-falciparum malaria, P. 78 
malariae, P. ovale curtisii, P. ovale walkieri, and P. vivax. Non-falciparum malaria species will complicate 79 
the challenge of malaria elimination in Africa. There is growing evidence that P. ovale spp. and P. 80 
malariae malaria become more common in Africa as P. falciparum is controlled and prevalence 81 
decreases.[7] In addition, P. vivax is being reported more frequently due to wider implementation of 82 
molecular diagnostics.[8–10] In contrast with falciparum infection, vivax and ovale contribute to malaria 83 
by causing relapse through the persistence of hypnozoites (dormant liver stage parasites).[11] 84 
Hypnozoites do not respond to blood-stage treatment, like artemisinin-combination therapies (ACTs), 85 
the primary treatment for severe malaria in most countries, and require radical cure. Thus, their 86 
presence may require national malaria control programs to alter therapeutic options in the country. 87 
 88 
Rwanda has historically had strong malaria control, leveraging effective antimalarials, insecticide treated 89 
bed nets, and indoor residual spraying.[12] However, malaria cases in Rwanda increased from 48 cases 90 
per 1,000 in 2012 to 403 per 1,000 in 2016, while mortality increased 41% over the same time.[13] 91 
Emerging insecticide resistance, an increase in irrigated agriculture, and insufficient insecticide-treated 92 
mosquito net coverage, among other factors, have been attributed to these increases.[13] Malaria 93 
transmission in Rwanda is a constant occurrence, with peaks from April to May and November to 94 
December.[12] Transmission also varies with the geography of the country; northern and western 95 
Rwanda are prone to epidemics, while the south and east are considered endemic areas of stable 96 
transmission.[14] Areas of lower transmission (endemic areas) may have more instances of 97 
asymptomatic infection, which may result in under-reporting and lower prevalence estimates in these 98 
areas.  99 
 100 
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While transmission is variable across the country, the entire population of Rwanda is considered at risk 101 
for malaria.[15] In order to have a better picture of national malaria trends, large population based 102 
surveys are needed. Demographic Health Survey (DHS) studies in multiple countries have been used to 103 
understand the distribution of both falciparum and non-falciparum malaria by using molecular testing of 104 
malaria from residual blood spots collected for HIV testing.[9,16–18] Given there is currently limited 105 
data on non-falciparum malaria in Rwanda, and a need for better understanding of falciparum infections 106 
among asymptomatic individuals, leveraging DHS samples would provide a more robust picture of 107 
malaria in the country.  108 
 109 
The 2014-15 Rwanda DHS occurred during the beginning of increased malaria rates in Rwanda and 110 
reported a 2% malaria prevalence among children age 6-59 months and 0.6% among women age 15-49, 111 
based primarily on microscopy.[19] Previous studies used this data to show that malaria was associated 112 
with lower socio-economic status, not using a insecticide treated bed net, and residing at lower 113 
altitude.[20,21] However, given the reliance on non-molecular diagnostics, these results likely do not 114 
reflect the full burden of malaria. For example, a study of school children in Huye District, that also 115 
occurred in 2014, showed a 22% prevalence of any malaria (19% P. falciparum prevalence) using a 116 
combined microscopy and PCR diagnostic.[22]  117 
 118 
Data concerning non-falciparum malaria in Rwanda is sparse. A recent household survey estimated that 119 
P. falciparum is responsible for 97% of malaria infections in Rwanda, with P. malariae and P. ovale spp. 120 
each responsible for 1%–2% of total infections [16]. Reports of vivax malaria in Rwanda are few; a single 121 
case of P. vivax infection (previously misclassified as falciparum infection) was reported in 2018. [23] 122 
More recently, a cluster of P. vivax was reported in the Huye District. [24] An accurate estimate of 123 
malaria prevalence in Rwanda requires the use of molecular diagnostics in a nationally representative 124 
survey. 125 
 126 
This paper presents data on the spatial distribution of asymptomatic falciparum and non-falciparum 127 
infection in Rwanda from the 2014-15 Rwanda DHS, determined by quantitative real time PCR. We also 128 
identified attributes associated with different species to inform targeted interventions. The results 129 
provide a broader understanding of the distribution of all malaria species at that time, illuminating the 130 
role of non-falciparum malaria in the country and providing a baseline for further comparisons in future 131 
surveys. 132 
  133 
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Methods 134 
Study design and population 135 
The 2014-2015 Rwanda DHS studied 12,699 households from 492 GPS-located clusters from all 30 136 
recognized districts. In 50% of households, dried blood spot (DBS) specimens were collected for HIV 137 
testing from men aged 15-59 years and women aged 15-49 years, and a subsample of children 0-14 138 
years; in the other 50% of households, rapid malaria diagnostic testing was completed on children aged 139 
6-59 months.[25] Previously, we used these data to estimate clusters that would represent high and low 140 
malaria transmission areas.[26] High prevalence clusters had a RDT or microscopy positivity rate of 141 
>15%. We included 1,434 samples from these 55 high prevalence clusters in 3 regions. In addition to 142 
samples from high prevalence areas, a random subset of 3,161 samples from 402 low prevalence 143 
clusters were selected. A total of 4,595 samples from 457 out of 492 DHS clusters were analyzed for four 144 
species of malaria infection by real time PCR. (Figure 1). 145 
 146 

 147 
Figure 1. Distribution of 2014-2015 Rwanda Demographic Health Survey Clusters. Clusters are color coded based upon malaria 148 
transmission intensity based on DHS malaria testing results (high represents >15% positive by RDT or microscopy). Shape fill is 149 

based on the cluster’s inclusion in this analysis.  150 
 151 
 152 
Species-specific real time PCR 153 
DNA from each sample was extracted from three 6 mm DBS punches using Chelex and screened for four 154 
species of malaria infection using real-time PCR assays.[27] These assays (Supplementary Table 1) 155 
targeted the 18s genes for P. malariae, P. ovale, and P. vivax, and the varATS repeat in P. 156 
falciparum.[9,17,28,29] To allow for quantification of falciparum, mock DBS were created using whole 157 
blood and cultured 3d7 parasites (MRA-102, BEI Resources, Manasas, VA) and extracted with the same 158 
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assay used for samples. Controls for non-falciparum species used serial dilutions of plasmid DNA (MRA-159 
180, MRA-179, MRA-178; BEI Resources, Manassas VA), with estimates for parasitemia based on an 160 
estimated six 18s rRNA gene copies per parasite.[30] All assays were run for 45 cycles to enable 161 
detection of lower density infections. The high cycle number approach has been previously evaluated 162 
for P. ovale and P. vivax, where assays were tested against 390 negative controls (human DNA) with no 163 
false positives.[16] We had no false positive results in our non-template controls for this study. All 164 
positive samples were confirmed by manually reviewing the amplification curves in the machine 165 
software. Standard curves had a minimum r-squared value of 0.95 across all runs. A positive result for 166 
each species was determined using a 45-cycle cutoff, unless otherwise stated. 167 
 168 
Spatial & ecological variables 169 
Deidentified survey and geospatial data from the 2014-2015 Rwanda DHS were matched to PCR data 170 
using DBS sample barcodes. Clusters with individuals positive for any species of malaria infection were 171 
mapped using DHS geospatial coordinates. Individual level covariates assessed for association included 172 
sex, age group, wealth quintile, education level, livestock ownership, source of drinking water, bed net 173 
ownership, whether the household bed net has been treated with long-lasting insecticide (LLIN = long-174 
lasting insecticide-treated net) and sleeping under a LLIN the night prior to the survey. Cluster level 175 
covariates included region, urban/rural status of place of residence, elevation, month of data collection, 176 
proportion of a given cluster living in a household with a bed net, proportion of the cluster that slept 177 
under an LLIN, land cover, average daily maximum temperature for the current month and precipitation 178 
for the prior month. Land cover estimates were taken from the Regional Center for Mapping Resources 179 
for Development and SERVIR-Eastern and Southern Africa and temperature and precipitation values 180 
were obtained from the Climate Hazards Center at the University of California, Santa Barbara.[31,32]  181 
Survey clusters were assigned GPS coordinate values within buffers as described previously in 182 
accordance with DHS specifications.[16,33] 183 
 184 
Statistical analysis 185 
We estimated species-specific prevalence, non-falciparum prevalence, and overall Plasmodium sp. 186 
prevalence, applying HIV sampling weights, inverse propensity for selection weights, and weights to 187 
account for selection by cluster transmission intensity and the skewed selection of samples from low 188 
and high transmission clusters. [34,35] We estimated bivariate associations between each Plasmodium 189 
species and a variety of covariates available in the DHS and investigated in other contexts,[16,36] using 190 
the same combination of weights. We report prevalence differences and 95% confidence intervals to 191 
assess precision. We analyzed data using the survey (4.2.1), srvyr (v1.2.0), and sf (v1.0-8) packages using 192 
R 4.2.1 (R Foundation for Statistical Computing). Shapefiles of Rwanda district boundaries taken from 193 
the OCHA Regional Office for Southern and Eastern Africa database.[37]  194 
 195 
  196 
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Results 197 
Study population characteristics 198 
The study population was 40% female, 14% aged 15-24 years, 76% lived in rural areas, and 80% had a 199 
primary school education or no education (60% reported primary education, 20% reported 200 
preschool/none). Overall, most (83%) individuals reported a household bed net and 68% reported 201 
sleeping under a long-lasting insecticide treated net the night before the survey. However, 41% of the 202 
study population lived in a household that did not meet the World Health organization’s criteria of at 203 
least 1 net per 1.8 household members. 204 
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Table 1. Study Population Characteristics and Distribution of PCR Positives by Species. Weighted counts and percentages for all individuals positive for each species of malaria. 205 
Weights applied are DHS sampling weights, propensity score weights, and weights to correct for over-selection of high transmission intensity clusters (transmission intensity 206 

weights). Characteristics of the included study population are also shown. 207 

  Pf positive Pm positive Po positive Pv positive 
Included study 

population  
 Unweighted counts 1231 168 246 7 4595 
 Weighted counts 813 152 237 7.5 4616 
Individual level covariates            
  n % n % n % n % n % 

Sex of respondent Male 453.4 56% 89.0 59% 128.1 54% 6.0 80% 2755.4 60% 
 Female 359.5 44% 62.9 41% 108.8 46% 1.5 20% 1860.6 40% 

Age group (years) 0-15 24.9 3% 1.5 1% 29.5 12% 0.0 0% 121.4 3% 
 15-24 114.4 14% 14.2 9% 3.0 1% 0.8 11% 657.8 14% 
 25-34 234.3 29% 43.2 28% 42.8 18% 2.8 37% 1450.1 31% 
 35-44 167.3 21% 34.6 23% 72.8 31% 0.0 0% 929.9 20% 
 45-54 150.3 16% 42.4 24% 50.3 20% 2.4 32% 842.5 18% 
 55+ 121.5 15% 16.1 11% 38.5 16% 1.5 20% 614.4 13% 

Wealth Quintile Poorest 200.3 25% 24.1 0.16 36.7 16% 2.4 33% 694.4 15% 
 Poorer 163.4 20% 32.4 0.21 34.3 14% 0.3 4% 820.4 18% 
 Middle 161.4 20% 29.5 0.19 34.8 15% 0.0 0% 828.3 18% 
 Richer 166.7 21% 35.8 0.24 53.0 22% 4.7 63% 1027.5 22% 
 Richest 121.0 15% 30.1 0.20 78.0 33% 0.0 0% 1245.5 27% 

Education None/preschool 190.0 23% 39.0 26% 40.1 17% 5.1 68% 907.2 20% 
 Primary 520.7 64% 92.4 61% 140.4 59% 2.4 32% 2779.0 60% 
 Secondary 72.5 9% 11.6 8% 45.2 19% 0.0 0% 723.7 16% 
 Higher 29.5 4% 8.9 6% 11.2 5% 0.0 0% 205.1 4% 

Owns livestock, herds, or farm animals No 354.3 44% 71.7 47% 102.6 43% 4.8 64% 2067.7 45% 
 Yes 458.6 56% 80.2 53% 134.3 57% 2.7 36% 2548.3 55% 

Source of drinking water Unpiped 756.6 93% 138.5 91% 193.1 82% 7.5 100% 3911.7 85% 
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 Piped 55.3 7% 13.4 9% 43.8 18% 0.0 0% 701.8 15% 
Household bed net No 134.6 17% 31.9 21% 36.5 15% 3.3 44% 797.7 17% 

 Yes 678.3 83% 120.0 79% 200.4 85% 4.2 56% 3818.3 83% 
Slept under LLIN last night No 257.2 32% 59.1 39% 63.5 27% 3.3 44% 1457.8 32% 

 Yes 555.6 68% 92.8 61% 173.4 73% 4.2 56% 3158.2 68% 
Insecticide-treated household net No 0.9 0% 0.0 0% 2.6 1% 0.0 0% 6.7 0% 

 Yes 616.7 76% 115.8 76% 180.4 76% 4.2 56% 3527.0 76% 
 Missing data 195.2 24% 36.1 24% 53.9 23% 3.3 44% 1082.3 23% 

1 bed net per 1.8 household members No 291.2 36% 61.0 41% 101.8 43% 3.3 44% 1905.0 41% 
 Yes 520.9 64% 88.6 59% 135.1 57% 4.2 56% 2699.2 59% 
Cluster level covariates            

Region Kigali City 70.5 9% 14.3 9% 33.2 14% 1.2 16% 699.4 15% 
 South 332.8 41% 32.5 21% 75.5 32% 1.2 16% 1176.2 25% 
 West 74.7 9% 37.9 25% 33.2 14% 3.0 40% 1026.3 22% 
 North 42.3 5% 29.4 19% 19.1 8% 0.0 0% 776.0 17% 
 East 292.6 36% 37.9 25% 75.9 32% 2.1 28% 938.1 20% 

Place of residence Urban 95.9 12% 29.3 19% 55.9 24% 1.2 16% 1096.0 24% 
 Rural 717.0 88% 122.6 81% 181.0 76% 6.3 84% 3520.0 76% 

Elevation (m) 500 - 1000 3.3 0% 0.8 1% 0.0 0% 0.0 0% 15.4 0% 
2 1001 - 1500 352.2 43% 47.8 31% 77.3 33% 3.3 44% 1263.3 27% 
3 1501 - 2000 412.8 51% 67.2 44% 121.0 51% 1.2 16% 2449.8 53% 
4 2000 - 2500 41.2 5% 34.3 23% 38.6 16% 1.5 20% 821.5 18% 
5 > 2500 3.3 0% 1.9 1% 0.0 0% 1.5 20% 66.0 1% 

Month of data collection Jan-15 164.0 20% 28.3 19% 42.8 18% 0.0 0% 1066.8 23% 
 Feb-15 186.1 23% 26.3 17% 38.8 16% 2.0 27% 780.0 17% 
 Mar-15 228.2 28% 39.5 26% 76.0 32% 2.7 37% 1100.1 24% 
 Apr-15 5.5 1% 1.3 1% 1.5 1% 0.0 0% 32.3 1% 
 Nov-14 95.7 9% 21.0 11% 16.9 6% 1.2 12% 456.8 8% 
 Dec-14 133.4 16% 35.5 23% 60.9 26% 1.5 20% 1180.0 26% 

Landcover Moderate forest 5.8 0.01 6.4 4% 13.3 6% 0.0 0% 304.2 7% 
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 Sparse forest 239.6 0.29 2.3 2% 0.3 0% 0.0 0% 27.7 1% 
 Woodland 508.5 0.63 33.9 22% 59.2 25% 1.3 17% 774.8 17% 
 Closed grassland 33.7 0.04 100.4 66% 149.2 63% 6.2 83% 3099.2 67% 
 (Perennial) cropland 25.1 0.03 8.9 6% 15.0 6% 0.0 0% 410.1 9% 
Cluster level averages           

  Pf positive Pm positive Po positive Pv positive overall study 
  mean SE mean SE mean SE mean SE mean SE 

Proportion of cluster with household bed nets 0.853 0.011 0.787 0.023 0.855 0.018 0.680 0.073 0.827 0.008 
Proportion of cluster that slept under a net last night 0.697 0.014 0.631 0.027 0.741 0.024 0.560 0.064 0.684 0.010 
Current month's average daily max temp (degrees C) 27.16 0.1 26.40 0.2 26.84 0.2 25.96 1.0 26.39 0.05 

Prior month's precipitation (mm) 80.60 2.4 91.05 4.2 86.02 4.7 94.51 21.1 90.38 1.38 
 208 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2024. ; https://doi.org/10.1101/2024.01.09.24301054doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.09.24301054
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

Prevalence of falciparum and non-falciparum infection by real time PCR 209 
A total of 1,231 P. falciparum, 246 P. ovale, 168 P. malariae and 7 P. vivax infections were identified. The 210 
overall weighted prevalence of any non-falciparum malaria infection was 8.3% (95% CI: [7.0%, 10.0%]) 211 
compared to 17.6% [15.9%, 19.0%] for falciparum and 23.6% [21.7%, 26.0%] overall malaria prevalence 212 
with HIV sampling, inverse propensity of selection, and transmission intensity correction weights 213 
applied. Species specific weighted prevalences were 3.3% [2.7%, 4.0%] and 5.1% [4.0%, 7.0%] for P. 214 
malariae and P. ovale spp. Unweighted prevalence for P. vivax was 0.15%, with a manually calculated 215 
95% CI [0.04%, 0.27%]. Using a more restrictive cut off of 40 cycles (requiring a higher parasitemia to be 216 
positive at approximately 1 parasite per microliter of template DNA), resulted in weighted overall 217 
prevalences of 4.3% [3.6%, 5.0%] for any non-falciparum malaria infection, compared to 14.3% [12.7%, 218 
16.0%] for falciparum and 17.4% for [15.8%, 19.0%] overall malaria. Species specific weighted 219 
prevalences at this cut off were 2.7% [2.2%, 3.0%) and 1.7% [1.2%, 2.0%], and for P. malariae, and P. 220 
ovale spp. Unweighted prevalence for P. vivax was 0.09% [0.002%, 0.17%]. The largest difference in 221 
estimated prevalence was for P. ovale spp. This is not surprising given the distribution of estimated 222 
parasitemia values (Figure 2), showing a lower median parasitemia in the non-falciparum species 223 
compared to falciparum malaria. District level weighted prevalences and their differences by PCR cut off 224 
are shown in Table 2 and Supplemental Table 3. Falciparum, ovale and malariae infections were 225 
distributed across the country, while vivax infections were more localized (Supplemental Figure 1). 226 
District level overall malaria prevalence is shown in Figure 3, while district level prevalences for each 227 
species are illustrated in Figure 4. Among P. ovale spp., P. malariae, and P. vivax infections, 45%, 45% 228 
and 57% (unweighted counts) were infected with at least one other species of malaria (Supplemental 229 
Table 4). 230 
 231 
Table 2. Differences in District Level Prevalence by PCR Cutoff. The difference in prevalence for malaria for each district 232 
between the 45 and 40 PCR cycle threshold is shown for overall malaria burden, as well as for each species. Darker shading 233 
denotes larger differences in prevalence estimates, and districts are ordered by the difference in overall malaria prevalence 234 
from highest to lowest difference in prevalence. Specific prevalence estimates are shown in Supplemental Table 3. 235 
 236 

District 
Difference in overall 
malaria prevalence 

Difference in Pf 
prevalence 

Difference in 
Pm prevalence 

Difference in 
Po prevalence 

Difference in 
Pv prevalence 

Nyarugenge 0.128 0.039 0.027 0.063 0.000 
Gatsibo 0.120 0.047 0.000 0.112 0.000 
Ngoma 0.102 0.054 0.002 0.091 0.002 
Burera 0.090 0.037 0.018 0.034 0.000 
Huye 0.089 0.073 0.002 0.033 0.000 
Rwamagana 0.088 0.052 0.015 0.071 0.000 
Kirehe 0.084 0.052 0.003 0.046 0.000 
Gasabo 0.080 0.037 0.000 0.043 0.000 
Nyamagabe 0.074 0.053 0.000 0.036 0.000 
Rubavu 0.068 0.029 0.000 0.040 0.000 
Kamonyi 0.063 0.024 0.007 0.047 0.000 
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Nyaruguru 0.063 0.049 0.000 0.039 0.000 
Kayonza 0.061 0.048 0.000 0.020 0.000 
Karongi 0.061 0.002 0.000 0.061 0.000 
Gakenke 0.061 0.027 0.034 0.000 0.000 
Gicumbi 0.060 0.017 0.009 0.033 0.000 
Ruhango 0.059 0.030 0.021 0.038 0.000 
Gisagara 0.058 0.052 0.003 0.068 0.000 
Nyabihu 0.057 0.022 0.007 0.018 0.010 
Muhanga 0.046 0.023 0.000 0.023 0.000 
Nyamasheke 0.043 0.043 0.000 0.000 0.000 
Nyanza 0.043 0.041 0.006 0.020 0.000 
Nyagatare 0.041 0.041 0.000 0.018 0.000 
Kicukiro 0.040 0.026 0.000 0.021 0.000 
Musanze 0.036 0.022 0.006 0.008 0.000 
Rutsiro 0.035 0.045 0.000 0.000 0.015 
Bugesera 0.034 0.014 0.002 0.025 0.008 
Ngororero 0.021 0.010 0.010 0.010 0.000 
Rusizi 0.018 0.010 0.008 0.000 0.000 
Rulindo 0.015 0.008 0.000 0.007 0.000 
 237 
 238 

Figure 2. Calculated Parasitemia Estimates for Falciparum and Non-falciparum Infections. Overall, falciparum had a higher 239 
parasite density with a median of 10.90 (IQR 0.96-101.41). The median parasitemia level for P. malariae, P. ovale spp., and P. 240 

vivax malaria were 0.35 (IQR: 0.07-1.83), 0.48 (IQR: 0.16-3.25) and 0.94 (IQR: 0.20-3.44), respectively. 241 

 242 
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 243 
Figure 3. District Level Weighted Overall Malaria Prevalence. Weighted prevalence of any malaria infection, using HIV 244 

sampling, inverse propensity for selection and transmission intensity weights (described above). 245 

 246 
 247 

Figure 4. District Level Weighted Prevalence Estimates for Malaria Species. The weighted prevalence estimate for each species 248 
is shown. Panel A, B, C and D represent falciparum, malariae, ovale spp. and vivax malaria, respectively. 249 

 250 
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 251 
Bivariate associations for infection 252 
Bivariate regression models using weighted (as previously described) survey data found multiple 253 
associations for infection with falciparum malaria, but few for non-falciparum malaria (Figure 5). Similar 254 
to previous work, a higher prevalence of falciparum malaria in our dataset was significantly (at a 0.05 255 
confidence level for all associations) associated with multiple study covariates related to socioeconomic 256 
status (e.g. lower wealth quintile, lower education status, and unpiped water). Secondary or higher 257 
education, access to piped drinking water, and higher altitude (>1,500m) were all associated with 258 
significantly lower prevalence of falciparum malaria. Clusters designated as perennial cropland, rural 259 
clusters compared to urban, lower wealth index (first and second quintiles compared to the upper 260 
three), and female participants were associated with higher falciparum prevalence. Few associations 261 
were found for non-falciparum malaria. Lower prevalence of P. malariae infection was significantly 262 
associated with piped water and secondary education, and both a 1-year increase in age and 263 
participants over 24 (compared to those 15-24 years old) were associated with higher P. malariae 264 
prevalence. No significant associations were found for P. ovale infection. Associations for P. vivax 265 
infection were not attempted due to the limited number of infections in the survey (n=7).  266 
  267 
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 268 
Figure 5. Bivariate associations and between demographic and environmental risk factors and Plasmodium spp. prevalence 269 

using weighted survey data. Models incorporate 2014-15 Rwanda Demographic and Health Survey weights, inverse probability 270 
of selection weights, and cluster transmission intensity weights (described in Table 1). Point estimates of prevalence difference 271 

are surrounded by confidence intervals. The reference is the second variable listed. 272 
 273 

 274 
  275 
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Discussion 276 
Information on the prevalence and distribution of asymptomatic falciparum malaria and non-falciparum 277 
malaria in Rwanda is essentially absent in the literature. We report the largest survey for non-falciparum 278 
malaria and asymptomatic falciparum malaria infection using molecular methods to have been 279 
conducted in Rwanda by leveraging the 2014-15 DHS. Given the DHS represents individuals taking 280 
surveys at home, it primarily reflects asymptomatic infections with low parasite density (Figure 2).  281 
Overall, malaria was much more common than expected based on RDT and microscopy data in the DHS, 282 
reaching 23.6% nationally. As expected, overall malaria was higher in the South and East than the North 283 
and West (Figure 3). Asymptomatic falciparum prevalence was 17.6% nationally. The rates of malaria 284 
infection were highest in the South and East as expected, but asymptomatic infection remained 285 
common in other areas (Figure 4). Non-falciparum malaria was detected in 8.3% of individuals 286 
nationally, a prevalence not previously appreciated in the country. P. ovale spp. and P. malariae were 287 
both common in Rwanda (5.1% and 3.3% prevalence, respectively) and distributed in regions of both 288 
high and low transmission (Figure 4). P. vivax is present but remains relatively uncommon (0.15% 289 
unweighted prevalence) and sporadic (Figure 4). Asymptomatic falciparum malaria has been shown to 290 
increase risk of symptomatic disease in the future (at one month) and significant morbidity has been 291 
associated with malaria parasite carriage.[5,6] The impact of low density, asymptomatic, non-falciparum 292 
malaria infection on clinical disease and future symptomatic disease remains unclear and requires 293 
further study. In addition, the higher than expected prevalence of P. ovale spp. and occasional P. vivax 294 
infection raises control concerns around the use of radical cure for relapse to reach malaria elimination. 295 
 296 
Molecular diagnostics for malaria have higher sensitivity and detect lower density infections than RDTs 297 
or microscopy. However, there is increased concern about false positive detection with higher cycle cut 298 
offs in quantitative real time PCR. Our assays have been run extensively at 45 cycles with little to no 299 
evidence of false positives[16], but we also present prevalences with a lower cut off (40 cycles). Even 300 
with more conservative quantitative real time PCR cut-offs, national malaria prevalence is still high 301 
(17.4%). The largest change in prevalence occurred with P. ovale spp., where estimated prevalence 302 
dropped from 5.1% to 1.7% at different cycle cut offs, reflecting the high number of low density 303 
infections detected (Figure 2). The relative decrease in prevalence for each species was not always 304 
consistent, with some regions having no decline in falciparum prevalence with large declines in ovale 305 
malaria (e.g. Karongi near Lake Kivu) or the opposite with no decline in non-falciparum but lower 306 
falciparum prevalence estimates (e.g. Rutsiro and Nyamasheke) (Table 2). 307 
 308 
Not surprisingly, mixed species infections were common and widely distributed, but occurred more 309 
commonly in clusters in the south and east where malaria transmission was the highest (Supplemental 310 
Figure 1). Among P. ovale spp., P. malariae, and P. vivax infections, 44%, 45% and 57% (unweighted) 311 
were infected with at least one other species of malaria (Supplemental Table 4). Mixed infections are 312 
often underappreciated and may lead to severe disease complications. A recent meta-analysis suggested 313 
that patients with mixed infections have a higher proportion of pulmonary complications and multiple 314 
organ failure than patients with P. falciparum infection alone.[38] The impact of mixed species 315 
infections on clinical malaria outcomes in Rwanda is unknown and requires additional evaluation in 316 
symptomatic infections, which were not included in this study. 317 
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 318 
Bivariate associations found between survey covariates and falciparum prevalence matched previous 319 
reports for RDT and microscopy prevalence in the DHS.[20,21] Like similar studies, associations of 320 
covariates for non-falciparum malaria were few and traditional risk factors for falciparum malaria did 321 
not appear as important for non-falciparum malaria.[9,16,17,36] This raises concern for how the control 322 
program can target non-falciparum infections without better diagnostics in the community. The reasons 323 
for the relative lack of risk factors, especially for P. ovale spp., remains unclear. Relapsing malaria, 324 
caused by ovale and vivax, may not be associated with typical covariates due to the inability to discern 325 
between incident or relapse infections in the study. 326 
 327 
This is the first national survey in Rwanda to examine four species of human malaria infection using 328 
molecular methods. The use of existing samples and individual level data from a DHS is a highly 329 
informative method to gain insights into national malaria prevalence. However, these studies represent 330 
only a singular cross sectional time point. This analysis can be improved upon by the repeated use of 331 
multiple DHSs, with a new DHS completed in 2019-20, to assess trends in malaria as has been done in 332 
the DRC.[39]  Additionally, the relative lack of data for children under 15 makes this survey 333 
nonrepresentative of the true age distribution in Rwanda. School aged children are a particularly 334 
vulnerable group and often have the highest rate of malaria infection in Africa.[40] Because this was a 335 
single cross sectional survey, we also could not determine if P. ovale spp. and P. vivax infections were 336 
newly acquired or the result of relapse from hypnozoites. 337 
 338 
This study represents the first depiction of asymptomatic falciparum malaria and non-falciparum malaria 339 
infection nationally in Rwanda using molecular methods. The prevalence of asymptomatic falciparum 340 
malaria was significantly higher than estimates with RDT and microscopy.[41] P. ovale spp. and P. 341 
malariae were found across the country; however, few covariates were found to be significantly 342 
associated with non-falciparum infection. P. vivax was found, but infrequently. Most non-falciparum 343 
infections had low-density parasitemias and coinfection with P. falciparum was common, especially for 344 
P. ovale spp. and P. vivax. The high rate of P. ovale and P. malariae infection, with no discernable risk 345 
factors, indicates that the control program needs diagnostic plans for these species in communities 346 
where their prevalence is increasing. The data from this study is critical for national malaria control 347 
goals, given asymptomatic individuals comprise a large reservoir of falciparum infections and a high rate 348 
of relapsing malaria infection that requires radical cure. More up to date data, potentially from the 349 
2019-20 DHS is urgently needed to understand what these data mean for control. However, the utility of 350 
large, nationally representative, molecular surveys is clear, as they provide insights into malaria 351 
surveillance often missed by routine data collection. 352 
 353 
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