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Depressive disorders are highly prevalent but demand nuanced per-
sonalized treatment that traditional approaches in psychiatry cannot
address. This gap has prompted a surge of interest in leveraging dig-
ital technology, particularly smartphones, for remote monitoring to
enhance outpatient care. This study utilizes the BRIGHTEN dataset
to construct interpretable prediction models for overall depression
severity, measured by PHQ-9, and various depression dimensions
using a factor modelling approach.

Our factor model unveils a three-factor solution encompassing
mood, somatic, and concentration/psychomotor-related factors.
Machine learning models effectively predict both the PHQ-9 scores
and individual factors, with feature importance methods analyses
underscoring the influence of the PHQ-2 scale and communication-
related features. These findings are corroborated by models trained
on data subsets.

Through nested multi-level models, we identify between-subject
effects for the PHQ-2 and select communication-related features,
along with within-subject effects for these features. In summary,
this study underscores the robust predictive capacity of ecological
momentary assessments and highlights features of potential rele-
vance for future investigations, such as communication-related fea-
tures. We advocate for future studies to assess the cost-effectiveness
and intervention potential of these models.
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Introduction

Depression, a pervasive psychiatric disorder, imposes a sub-
stantial global burden, affecting millions with an estimated
lifetime prevalence of 20.6% [1]. Projections indicate that by
2030, it will eclipse other contributors, becoming the primary
worldwide disease burden [2]. As healthcare systems grapple
with the escalating impact of depression, there is a growing
demand for advanced monitoring and predictive tools to en-
hance management and enable timely interventions. More-
over, the need for remote monitoring, potentially decreas-
ing visit frequency, has become imperative in response to the
challenges posed by the condition.

Acknowledging the limitations of human judgment, both in
terms of costliness and biases, recent focus has shifted to-
wards leveraging computational techniques for quantitative
behavior assessment [3, 4].

One avenue gaining significant attention in this pursuit is the
utilization of digital devices, often termed digital phenotyp-
ing or mobile health. Enabled by the ubiquitous use of smart-

phones and mobile technologies, it offers novel opportunities
for remote monitoring and insightful data collection, provid-
ing a nuanced understanding of the daily experiences of indi-
viduals contending with depression [5, 6]. A particular focus
in this field is the precise prediction of mood states or symp-
toms among individuals with various psychiatric conditions,
offering the potential for timely interventions, targeted care,
and increased outpatient management flexibility.

In exploring the heterogeneity of depression, past research
has delved into the relationship between different phone-
derived features and the construction of prediction models
for symptoms and overall depression severity [7]. Signifi-
cant associations have been identified, such as the link be-
tween location data and depression severity, especially in
terms of homestay time. Lower phone-derived sociabil-
ity/communication has been correlated with lower mood,
alongside changes in daytime and nighttime activity [8—11].
However, the use of varied measures for these behaviors has
resulted in considerable heterogeneity in the signals mea-
sured. In addition to passive measures, active methods like
Ecological Momentary Assessments (EMAs) have demon-
strated a significant relationship with composite depression
scores, such as the PHQ-9 [12, 13]). These, too, exhibit het-
erogeneity in the concepts measured and the questions asked
across studies.

Moving beyond univariate association testing, research has
ventured into the multivariate prediction of depression status,
severity, and specific symptoms. Successful classification of
depressed individuals and healthy controls has been achieved
with accuracies ranging from 0.60 to above 0.85 and AUC
values of approximately 0.8 [14—17]. Predicting individual
symptoms has shown varying degrees of success for different
symptoms [18, 19]. While attempts to predict overall sever-
ity often used composite scores of depression symptoms as
targets, reliance on passive measures, without incorporating
active measures like EMAs, has been a common trend [8, 20—
22].

Given the heterogeneity in passive data across these studies,
a pivotal question arises: How can we identify the most rel-
evant features for future digital phenotyping studies? It is
crucial to explore whether different aspects of depression are
better predicted by specific sensor signals or active measures.
Previous studies examining feature importance found robust
predictive power for phone usage, internet usage, EMAs, and,
to a lesser degree, GPS-derived features in predicting de-
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pression severity [19, 22]. Diurnal usage patterns emerged
as relevant predictors in the prediction of depression status
[23]. However, given the diverse underlying apps used in
these studies, significant heterogeneity exists in the sensors
and signals collected.

This study addresses these gaps by examining the predictabil-
ity of different dimensions of depression, utilizing a factor
modeling approach to discern the severity of specific domains
of depressive symptoms. We also explore feature importance
through multiple methods, guiding the selection of features
for future studies. Finally, employing a multi-level model for
within- and between-subject variance, we assess the utility
of different features for modeling approaches. We anticipate
that the outcomes of this study will significantly contribute to
shaping the landscape of future research in the field of digital
phenotyping for depression.

Methods

Study Data. For our analysis, we used the BRIGHTEN
(Bridging Research Innovations for Greater Health in Tech-
nology, Emotion and Neuroscience) study data, a publicly
available dataset consisting of two studies: BRIGHTEN-V1
and BRIGHTEN-V2 [24]. Both studies were randomized
controlled trials evaluating the effectiveness of digital health
apps in improving mood. Eligibility criteria included speak-
ing English or Spanish, being above 18 years of age, owning
an iPhone or Android and an Apple iPad 2.0 or newer. A
score of >5 on the PHQ-9 or >2 on PHQ-9 item 10 was re-
quired for inclusion.

Participants received a baseline screening where the PHQ-
9, GAD-7, AUDIT-C and IMPACT Mania and Depression
screening were administered. Furthermore, demographic in-
formation including age, gender, income, race, education and
device type were elicited. Afterwards, participants received
weekly PHQ-9 surveys for 4 weeks and then every two weeks
along with other scales. PHQ-2 was administered daily and
passive data was constantly collected for the study duration
of 12 weeks. For further information, we refer to Pratap et al
[24].

For our analyses, we used the baseline assessment data
with completed questionnaires and demographic informa-
tion, while for all other modelling, we used study data from
each participant with more than 4 weeks of data. The data
was averaged over one week to reduce dimensionality and
provide data relevant to the corresponding PHQ-9 adminis-
tration. Detailed demographic information can be found in
the supplementary materials.

Data availability. The data is publicly available and can be
accessed via the study portal (www.synapse.org/brighten).
Users need to request access, as described under the "Ac-
cessing the Brighten Study data" page.

Factor Analysis. For discovering the factor structure of the
PHQ-9 scale the baseline PHQ-9 assessment was used. This
provided a set of PHQ-9 scales across individuals that were
not used in subsequent analyses.
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First, we examined the skewness of the various items. It was
decided to not remove any items.

To maximize the between-group similarity in the exploratory
and confirmatory factor analyses, we employed the anticlus-
tering function from the anticlust package for a similar data
split [25].

To conduct parallel analyses on the correlation matrices, we
utilized the fa.parallel function within the psych package to
identify a potential range of factors to retain [26]. All subse-
quent analyses were conducted in this range.

Following parallel analysis, we employed the lavaan package
to fit all the models, subsequently comparing them based on
various model fit statistics [27]. Our metrics for comparison
encompassed the Tucker-Lewis index (TLI), comparative fit
index (CFI), root mean squared error of approximation (RM-
SEA), information criteria as well as a comprehensive evalu-
ation of the conceptual solutions.

According to the literature, a robust model fit is suggested by
CFI values greater than 0.95 and RMSEA values below 0.05
[28, 29]. Furthermore, an acceptable fit is indicated by a CFI
higher than 0.90 and an RMSEA ranging from 0.05 to 0.08.

Predictive Modelling. All predictive models were imple-
mented in the PHOTONAI Python package [30]. Standard
machine learning estimators available in scikit-learn (Linear
Regression, Automatic Relevance Determination (ARD) Re-
gression, Support Vector Regressor, Random Forest Regres-
sor, Gradient Boosting Regressor) are already integrated into
the PHOTONALI package [31]. The Mixed Effects Random
Forest (MERF) was integrated using custom data wrappers
in PHOTONALI and is based on the MERF Python package
(https://github.com/manifoldai/merf) [32].

To encode missingness additional indicator columns were
generated encoding the missingness of the averaged values
as either O (not missing) or 1 (missing). Missing values in the
regular columns were then set to zero. This was done to allow
models to use information about missing data information in
their prediction.

Each pipeline, consisting of a Standard Scaler (removing
the mean and scaling to unit variance) and an estimator was
trained in a 10x10 nested cross-validation. Models were se-
lected on mean absolute error using grid search as an opti-
mization strategy. Additionally mean squared error, Spear-
man correlation and Pearson correlation were calculated, to
provide further insight into model performance.

Each pipeline was evaluated in a user-split and random-split
scenario, where the stratified folds in the K-Fold split were ei-
ther based on the user or based on a random shuffling of data
points where data points from most subjects were present in
the different folds. As baseline estimation is a strong driver
of effects we performed both split scenarios to evaluate gen-
eralizability with data points present and generalizability to
new users.

Each pipeline was compared against a dummy regressor, a
model which predicts the mean of the training set in each
test set. Furthermore we also compared models to a baseline
dummy that predicted the average for each individual present
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Fig. 1. Analysis Overview. A) For all analyses the publicly available BRIGHTEN dataset was used which consists of two studies V1 and V2. Each study ran for 12 weeks,
with daily collection of PHQ-2, continuous collection of passive measures and weekly administration of PHQ-9 for 4 weeks and bi-weekly afterwards. B) This dataset was
used to build prediction models from multiple estimators which were evaluated in user-split and random-split scenarios. C) The best-performing pipelines were selected for

further evaluation with SHAP scores and subset models.

in the training data set and the average across the group for
individuals not present in the data set. Average model per-
formance was compared to the dummy models. We also per-
formed permutation tests for each model, to assess whether
these models predicted the target variable significantly above
chance.

Feature Importance. To investigate feature importance and
how it relates to the model’s decision-making, the best-
performing model for each target was selected and Shapley
additive Explanation (SHAP) scores were generated for each
feature. The kernel explainer from the shap package was used
for calculating SHAP scores [33]. These scores help explain
individual model predictions giving researchers the opportu-
nity to understand how different features contribute to model
predictions.

Subset Models. Further investigating the importance of
subgroups of data we trained predictive models on defined
subsets of data, containing data measuring one type of con-
cept. For V1 we subset data to EMA data, communication
data and mobility data. For V2 subset data to EMA data,
communication data, activity data and mobility data. Each
data subset was combined with demographic data and pre-
diction models were trained on these subsets in a user and
random split using either an ARD regression or a MERF. A
table of the different subsets can be found in the appendix

Inferential Modelling. The study utilized inferential mod-
els to analyze the statistical relationships between partic-
ipants’ symptoms and various digital measures. Control-
ling for participant gender, the models incorporated mul-
tilevel regression techniques, considering both between-
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person and within-person components. The varying ef-
fects were estimated, allowing for different intercepts and
slopes among participants. The results were interpreted based
on population-level effects, with standardized slopes calcu-
lated for interpretability and comparability. To accommodate
skewed outcome variable distributions, the study employed
the skew-normal distribution, parameterized to allow for non-
zero skewness.

We established prior distributions for our model parameters,
aiming to eliminate unreasonable values while allowing for
reasonable ones [34]. The six main types of parameters in our
skew-normal multilevel regression models included slopes,
intercepts, varying effects’ standard deviations, correlations
between varying effects, residuals’ standard deviation, and
the skewness parameter. To ensure stable estimates and pre-
vent overfitting, we used more conservative normal priors
centred on zero for the slope parameters. For the intercept
parameters, we employed less conservative Student’s t pri-
ors. Nonnegative Student’s t priors centred on zero were uti-
lized for the varying effects’ standard deviations, while the
correlations between varying effects followed the approach
of Lewandowski et al. to assign equal prior probabilities to
all valid correlation matrices [35]. The standard deviation of
the residuals adhered to Student’s t priors centred on zero.
Additionally, normal priors centred on zero were applied to
the skewness parameter.

To interpret our inferential models, we determined each
slope’s magnitude using the posterior median and its preci-
sion using the 89% highest density interval (HDI). The pos-
terior median minimizes the expected absolute error, while
the 89% HDI, chosen for its stability, represents the narrow-
est continuous interval encompassing 89% of the posterior
density [36].
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All inferential analyses were conducted using the brms R
package utilizing Markov chain Monte Carlo sampling via
the No-U-Turn Sampler algorithm [34, 37, 38].

Code Availability. The code wused for this anal-
ysis is  publicly available on  GitHub under
https://github.com/VHolstein/brighten_dimensions.

Results

Factor Analysis. Our parallel analysis showed observed
eigenvalues exceeding the simulated eigenvalues for 2 to 4
factors. In accordance with these results, we developed mod-
els for 2 to 4-factor solutions, where only the 2 and 3-factor
solutions converged. Comparing model performance both 2
and 3-factor solutions showed a good model fit during EFA
(2-factor model: CFI 0.953, RMSEA 0.082, BIC 22228.870;
3-factor model: CFI 0.992, RMSEA 0.041, BIC 22168.222).
We estimated a CFA with thresholding of factor loadings
(>0.4 and >0.5) again showed a strong performance for the 3-
factor model (3-factor 0.5 threshold model: CFI 0.995, RM-
SEA 0.060, BIC 10261.572).

Due to the strong model performance, We examined the fac-
tor loadings for the 3-factor solution, with the first factor
reflecting mood-related contents, the second factor reflect-
ing somatic symptoms and the third factor reflecting con-
centration/psychomotor symptoms. Due to strong model per-
formance and well-aligned factor loadings, we chose the 3-
factor model to model factor scores. We calculated factor
scores both in the baseline sample used for modelling as well
as the study sample used for predictive and inferential mod-
elling.

Predictive Modelling. To predict the PHQO9 sum score from
all available measures, we trained 6 different estimator
pipelines on both the V1 (3007 datapoints, 37 features, 541
subjects) and V2 dataset (1159 datapoints, 111 features, 276
subjects) respectively. For more information on missing dat-
apoints per subject, please see the supplementary materials.
These pipelines were run under random and user-split condi-
tions described in the methods section.

PHQ9 was best predicted by an ARD Regression model in the
user-split scenario both in V1 (Mean absolute error (MAE):
3.041; Pearson correlation: 0.698) and V2 (MAE: 3.625;
Pearson correlation: 0.648). In the random split scenario the
mixed effects random forest was the best-performing model
both in V1 (MAE: 2.216; Pearson correlation: 0.840) and
V2 (MAE: 2.386; Pearson correlation: 0.838). The Baseline
Dummy performed worse than the MERF in both random-
and user-split in V1 (Random-Split MAE: 2.508 User-Split
MAE: 4.341) and V2 (Random-Split MAE: 2.409; User-Split
MAE: 4.971) These results can be observed in figure 2.
When predicting mood factor scores the Gradient Boosting
model performed best in the user-split scenario for V1 (Mean
absolute error: 0.548; Pearson correlation: 0.657) while the
ARD regression performed best for V2 (Mean absolute error:
0.656; Pearson correlation: 0.589). For the random split, the
MERF again was the best-performing model in V1 (Mean
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absolute error: 0.455; Pearson correlation: 0.764) and V2
(Mean absolute error: 0.498; Pearson correlation: 0.765).
The baseline dummy performed worse than the MERF in V1
(Random-Split MAE: 0.505; User-Split MAE: 0.702) and V2
(Random-Split MAE: 0.472; User-Split MAE: 0.863).

When predicting somatic factor scores the ARD regression
performed best in the user-split scenario for V1 (MAE: 0.651;
Pearson correlation: 0.532) while the Support Vector regres-
sion (SVR) performed best for V2 (MAE: 0.689; Pearson
correlation: 0.425). The MERF performed best in the ran-
dom split scenario for V1 (MAE: 0.492; Pearson correlation:
0.744) and V2 (MAE: 0.484; Pearson correlation: 0.734).
The baseline dummy outperformed the MERF in V2 in a
random-split setting MAE: 0.472), and was beaten by models
in all other scenarios.

Concentration/Psychomotor factor scores were best predicted
by the ARD regression in the user-split scenario for V1
(MAE: 0.343; Pearson correlation: 0.627) and V2 (MAE:
0.415; Pearson correlation: 0.592). The MERF predicted
best in the random split scenario (V1: MAE: 0.249, Pear-
son correlation: 0.806; V2: MAE: 0.284, Pearson correla-
tion: 0.806). The baseline dummy outperformed the MERF
in V2 in a random-split scenario (MAE: 0.278) and was again
beaten in by the models in all other scenarios.

Feature Importances. SHAP scores were calculated based
on ARD Regression in a user split, and the MERF in the ran-
dom split scenario. The ten most important features from all
folds were investigated for predicting the PHQ-9 total score
and each of the factors in V1 and V2.

Using SHAP scores to estimate feature importance in V1 re-
vealed PHQ-2 sum score, mobility and missed interactions
along with demographic variables as the most important fea-
tures related to PHQ-9 prediction. Similar patterns were ob-
served for the mood factor, the somatic factor and the psy-
chomotor/concentration factor in the user split scenario. In a
random-split scenario, the most important variables were the
PHQ-2 sum score, PHQ-2 items 1 and 2, mobility, mobility
radius and interaction diversity as important features. Similar
patterns were evident for the three factor scores.

Using SHAP scores to investigate feature importance in V2
revealed PHQ-2 sum score, PHQ-2 item 1, cloud cover stan-
dard deviation, location variance, temperature mean and de-
mographic variables as the most important features related to
PHQ-9 prediction. For the mood factor, somatic factor and
psychomotor/concentration factor we observed similar pat-
terns regarding PHQ-2 with slight differences in the most im-
portant passive features. In a random-split scenario the PHQ-
2 scores emerged as the most important predictors along with
hours stationary, location variance, hours of sleep and demo-
graphic variables. As before PHQ-2 effects were consistently
present across factor scores with considerable variability re-
garding the most important passive features.

Subset Models. After examining feature importances we
also evaluated model performance for models trained on data
subsets based on different data types.
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Fig. 2. Predicting PHQ-9 Total and Factor Scores. Each quadrant shows the performance of pipelines predicting a specific score. Each plot evaluates the performance of
different models in terms of mean absolute error and Pearson correlation for different estimators. The best-performing estimator can be found in the lower right corner of

each plot.

In V1 models based on EMA outperformed Dummy models
in both user- () and random-split () scenarios, while MERF
models based on communication or mobility outperformed
Dummy models in the random split.

In V2 models based on EMA outperformed Dummy models
in both user and random split, while MERF models based
on communication, activity or weather data outperformed
Dummy models in the random split. ARD regression mod-
els performed slightly better or comparably to the Dummy
estimator.
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Inferential Modelling. For the PHQ9 total score and each
of the factor scores, we first tested for associations with the
different digital measures in both V1 and V2. The results
for PHQ9 total are depicted in Fig. 4. In V1 between-
person slopes were significant for all EMA responses, inter-
action diversity, missed interactions and unreturned calls: in-
creased use of PHQ2 sum score associated with higher PHQ9
(B=0.775, pd=100%), as did higher PHQ Item 1 (B=0.772,
pd=100.0%) and Item 2 response (B=0.0.767, pd=100.0%).
Increased interaction diversity (B=0.154, pd=98.3%), in-
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creased missed interactions (B=0.148, pd=98.5%) and in-
creased unreturned calls (B=0.162, pd=99.6%) all associated
with a higher PHQ-9. For EMA responses similar patterns
were observed across all factors, while for interaction di-
versity and missed interactions were significantly associated
with higher psychomotor/concentration factor scores only.
Unreturned calls were significantly associated with the mood
(B=0.129, pd=97.7%) and psychomotor/concentration factor
(B=0.151, pd=99.4%).

Within-person slopes were significant for all EMA responses,
missed interactions and unreturned calls: PHQ2 sum score
(B=0.503, pd=100.0%), PHQ2 item 1 (0.500, pd=100.0%)
and PHQ?2 item 2 (B=0.462, pd=100.0%) were associated
with higher PHQ-9 scores and each of the three factors. In-
creased unreturned calls (B=0.114, pd=99.6%) and missed
interactions (B=0.120, pd=99.3%) were associated with in-
creased psychomotor/concentration factor scores, but not
PHQ-9 or the other factors.

In V2 between-person slopes were significant for PHQ-2 sum
score, PHQ-2 item 1, PHQ2 item 2 as well as temperature
mean/median and dew point mean/median. Higher PHQ-2
sum score (B=0.868, pd=99.9%) is associated with higher
PHQ-9, as are PHQ-2 item 1 (B=0.983, pd=100.0%) and
item 2 (B=0.762, pd=99.9%). Similar patterns were ob-
served for factors 1 and 2. Lower temperature mean (B=-
0.497, pd=99.1%), lower temperature median (B=-0.485,
pd=99.1%), lower dew point mean (B=-0.485, pd=99.1%)
and lower dew point median (B=-0.494, pd=99.4%) were as-
sociated with higher factor 2. Within-person slopes in V2
were not significant in any of the predictors.

Discussion

In summarizing the results of our analysis, we examined var-
ious sub-factors of depression and their predictability using
phone data. We conducted an extensive examination, en-
compassing the relevance of different features through fea-
ture importance analysis and subset models. Additionally, we
explored the impact of different predictors using multi-level
models to discern between- and within-subject effects.
Examining the dimensions of depression severity, our initial
factor analysis suggested a 3-factor structure for the PHQ-9
scale, aligning with previous findings of a 3-factor structure
as part of a hierarchical factor solution [39]. Our three fac-
tors reflected mood-related content, somatic symptoms and
concentration/psychomotor symptoms, closely aligning with
the results by Guerra et al (somatic, cognitive/affective, con-
centration/motor). Ohter papers often reported a two-factor
structure, however these often did not evaluate a three-factor
solution [40—42]. Our findings underscore the nuanced na-
ture of depression, highlighting the importance of consider-
ing multiple dimensions in remote assessments.

Utilizing diverse machine learning estimators for the pre-
diction of depression severity measured by PHQ-9, we
achieved robust and consistent predictions across user- and
random-split scenarios. Each model demonstrated perfor-
mance significantly above chance, as confirmed by permu-
tation tests. In the random-split scenario, the mixed random
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forest emerged as the superior model in V1 and for overall
PHQ-9 and mood factor prediction in V2, aligning with find-
ings from Lewis et al. [21]. However, in V2, the MERF was
surpassed by the baseline dummy for somatic and psychomo-
tor/concentration scores, consistent with the weaker inferen-
tial significances for multiple features in V2. In the user-split
scenario, ARD regression predominantly outperformed other
methods, suggesting that baseline estimation via random ef-
fects strongly influenced MERF performance. Our model’s
observed performance aligns with previous studies predict-
ing PHQ-9 or other depression severity measures on a con-
tinuous scale [8, 20, 21]. Notably, our use of averaged data
to prevent overfitting distinguishes our approach from some
other machine learning studies that employed a more fine-
grained temporal resolution [7, 8]. An important avenue for
future exploration involves comparing the utility of different
distributional summaries, such as median, mean, and stan-
dard deviation as features in prediction models.

Evaluating the feature importance of our models, the pre-
eminent role was attributed to the PHQ-2, marked by con-
sistently high importance across different models as indi-
cated by SHAP scores. This importance was indicated for
both the PHQ-2 summary score and its individual items,
with variation between the different models. Additionally,
communication-related features, encompassing missed in-
teractions, along with location-related features, and in V2,
weather-related features, demonstrated a moderate level of
importance in both split conditions. Notably, V2 exhibited
more considerable variability than V1, aligning with obser-
vations from previous univariate studies that hint at a correla-
tion between depression severity and communication-derived
and location-derived features [9, 43]. Moreover, our findings
reinforce the robust predictive power of Ecological Momen-
tary Assessments (EMAs) in discerning depression trends
[22].

The consistency of these trends was further substantiated by
various subset models. Models grounded in the PHQ-2 con-
sistently outperformed Dummy models across both user- and
random-split conditions. In contrast, models relying on pas-
sive data exhibited similarities to Dummy models in both
splits, albeit with a slight improvement on average. Notably,
the MERF demonstrated superior performance in the user-
split scenario, potentially attributable to its described base-
line estimation through the random intercept.

To gain a deeper understanding of the relationships be-
tween different predictors and our targets, we employed
nested multi-level models to examine both between- and
within-subject effects. Our inferential approach not only
affirmed prior observations regarding the robust predictive
power of the PHQ-2 but also revealed subtle between-subject
effects for communication-related features in V1 and cer-
tain weather-related items in V2. This corroborates find-
ings from earlier studies, suggesting that communication-
related features may play a significant role in influencing both
between- and within-person effects [7, 9]. The observed as-
sociation with weather patterns, differing from previous re-
sults, underscores the potential impact of geographical het-
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Fig. 5. Between- and within-subject importance in V2. Forest plot showing the standardized slope estimates in the inferential models for the PHQ-9 and each of the factor
scores in V2. Points represent posterior medians and intervals are posterior 95% highest density intervals. Significant associations are coded in red, and non-significant

associations are in grey.

erogeneity, as earlier studies were conducted in more ho-
mogenous regions [44]. It’s essential to note a limitation
in this study’s communication-derived features, characterized
by limited availability and a high degree of missingness. Fu-
ture studies with denser availability of these features may en-
hance predictive capabilities.

Collectively, these findings underscore a robust influence of
the PHQ-2, akin to a form of Ecological Momentary Assess-
ment (EMA), while also revealing more modest yet persistent
effects for communication-related items. This aligns coher-
ently with earlier research indicating comparatively subdued
impacts of passive data [21, 22].

These outcomes provide additional evidence for the
formidable predictive capabilities of EMAs, prompting a cru-
cial inquiry: What precisely is the role of passive data in re-
mote monitoring, and what data streams/features do we need
to collect?

Our findings suggest that valuable insights can be derived
from measures of communication, and employing more ad-
vanced metrics could yield enhanced features in the realm of
remote monitoring. For instance, exploring the sentiment of
sent messages could be highly promising as linguistic fea-
tures might offer an even more precise understanding of the
current mood state, as evidenced in studies exploring senti-
ment analysis in other contexts [45, 46]. Additionally, our re-
sults present some evidence supporting the utility of weather-
related features, which can be conveniently gathered in stud-
ies leveraging GPS signals. Here further investigation is nec-
essary to determine the utility of these signals.

8 | medRxiv

A pivotal challenge for forthcoming studies leveraging phone
data lies in the imperative to ensure comprehensive and pre-
cise data sampling. In this investigation, we employed indi-
cator variables to capture missing data and maintain sample
size; however, more densely sampled data holds promise for
improving prediction accuracy. The choice of sampled data
in subsequent studies will hinge significantly on the target
disease and the specific outcome measure. Our inferential
analyses unveiled the impact of communication variables on
the PHQ-9 scale and the psychomotor/concentration factor,
though this effect did not extend to other factors in V1. To
validate and generalize these findings, further research is war-
ranted, emphasizing the necessity for future studies to care-
fully consider the specific outcome of interest.

A prospective application of passive data involves determin-
ing a threshold, beyond which an Ecological Momentary As-
sessment (EMA) is triggered to gather supplementary infor-
mation. This approach leverages passive data to mitigate alert
fatigue that may arise from recurrent EMA responses, of-
fering a judicious balance between timely intervention and
the associated costs or non-intervention. Identifying opti-
mal cut-offs necessitates a careful consideration of alert fa-
tigue, intervention costs, and the potential implications of
non-intervention, thereby facilitating an accurate assessment
of depression severity when required.

This limitation is integral to the overall scope of our analysis.
While our primary focus centered on predicting either PHQ-
9 total scores or dimensions (factors) of depression, we did
not explicitly evaluate the advantages of these predictions.
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To conduct a more comprehensive assessment, a cost-benefit
analysis would be imperative, particularly concerning poten-
tial interventions, mirroring approaches employed in prior
studies on suicidality prediction [47]. This analysis could be
complemented with tailored prediction algorithms for spe-
cific symptoms necessitating immediate attention, such as
suicidality. Although earlier attempts have been made to pre-
dict individual symptoms from phone data [18, 19], these
analyses predominantly focused on binary outcomes rather
than the nuanced severity of individual symptoms, with the
added nuance of overlooking cost-benefit considerations.

In conclusion, this analysis provides compelling evidence
underscoring the considerable promise of smartphone data
in the remote monitoring of depression across diverse di-
mensions of severity. Our findings notably highlight the ro-
bust predictive capabilities of Ecological Momentary Assess-
ments (EMAs), contributing valuable insights into the poten-
tial utility of certain passive features. These insights, gleaned
from our exploration, offer a foundation for shaping future
studies in remote device monitoring for depression. More-
over, our discussion delves into prospective avenues for ad-
vancing this line of research, emphasizing key questions that
warrant exploration in forthcoming studies.
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Female 1429
Male 490
Community_College | 412
Elementary_School 6
Graduate_Degree 310
High_School 439
None 2
University 750
NoWork 619
YesWork 1300
MarriedOrPartner 631
Separated 213
Single 1075
Black 186
Native 17
Asian 130
MultipleRace 57
White 1057
Hispanic 458
Pacificlslander 5
OtherRace 9
Android 528
IPhone 1391
Age_Range 18-76
Age_min 18
Age_max 76
Age_Median 30
Age_StdDev 11.090308700715573
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Fig. 7. Subset Model Performance for PHQ-9 Total Score
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Table 1. Missingess in V1 as a fraction of total collection points.

12 | medRyiv

Vincent Holstein et al.

Factors | chisq tli tli.robust | cfi cfi.robust | rmsea | rmsea.robust | srmr | aic bic
2 141.547 | 0912 | 0913 0.953 | 0.954 0.082 | 0.081 0.034 | 22058.528 | 22228.870
3 32.830 | 0.976 | 0.978 0.992 | 0.992 0.043 | 0.041 0.013 | 21963.810 | 22168.222
Factors | Threshold | chisq tli tli.robust | cfi cfi.robust | rmsea | rmsea.robust | srmr | aic bic
2 0.4 73.079 | 0.921 | 0.922 0.952 | 0.953 0.086 | 0.085 0.034 | 15070.028 | 15157.614
2 0.5 63.347 | 0.888 | 0.889 0.944 | 0.944 0.110 | 0.110 0.036 | 12648.382 | 12721.370
3 04 26.650 | 0.985 | 0.986 0.992 | 0.993 0.039 | 0.036 0.017 | 17152.714 | 17269.495
3 0.5 4459 | 0971 | 0.971 0.995 | 0.995 0.060 | 0.059 0.009 | 10198.316 | 10261.572
Feature Missingness
PHQ-2 Item 1 0.004
PHQ-2 Item 2 0.004
PHQ-2 Sum 0.004
aggregate communication | 0.609
call count 0.609
call duration 0.609
interaction diversity 0.609
missed interactions 0.609
mobility 0.499
mobility radius 0.499
sms count 0.609
sms length 0.609
unreturned calls 0.615
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0
PHQ-2 Item 2 0.113
cloud cover std 0.356
distance powered vehicle 0.356
text Length received 0.933
temp median 0.356
text Count sent 0.933
dew point median 0.356
cloud cover median 0.356
dew point mean 0.356
unique Numbers calls missed 0.933
humidity std 0.356
precip sum 0.356
hours powered vehicle 0.356
cloud cover mean 0.356
call Count missed 0.933
dew point IQR 0.356
textLength sent 0.933
hours high speed transportation 0.356
hours accounted for 0.356
hours stationary nhw 0.356
unique Numbers calls outgoing 0.933
hours stationary 0.356
text Count received 0.933
location variance 0.357
call Count outgoing 0.933
distance walking 0.356
unique Numbers texts received 0.933
PHQ-2 Sum 0.113
hours walking 0.356
temp mean 0.356
distance active 0.356
PHQ-2 Item 1 0.113
hours of sleep 0.356
call Duration outgoing 0.933
temp std 0.356
temp IQR 0.356
call Count incoming 0.933
humidity median 0.356
text Count 0.933
unique Numbers calls incoming 0.933
unique Numbers texts 0.933
came to work 0.345
humidity IQR 0.356
distance high speed transportation | 0.356
unique Numbers texts sent 0.933
humidity mean 0.356
call Duration incoming 0.933
hours active 0.356
dew point std 0.356
cloud cover IQR 0.356

Table 2. Missingness in V2 as a fraction of total collection points.
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MAE | MSE Spearman | Pearson | Target Estimator Split Study | p-value
3.178 | 15953 | 0.674 0.683 phq9sum | MERF User vl 0.001
2.216 | 8.749 | 0.833 0.84 phg9sum | MERF Random | vl 0.001
3.07 15.64 0.681 0.685 phq9sum | LinearRegression User vl 0.001
2.995 | 14.677 | 0.699 0.71 phg9sum | LinearRegression Random | vl 0.001
3.041 | 15.056 | 0.689 0.698 phq9sum | ARDRegression User vl 0.001
3.0 14.689 | 0.7 0.709 phq9sum | ARDRegression Random | vl 0.001
3.172 | 16.547 | 0.661 0.666 phg@9sum | SVR User vl 0.001
2922 | 1445 | 0.715 0.719 phq9sum | SVR Random | vl 0.001
3.102 | 15.665 | 0.673 0.683 phq9sum | GradientBoostingRegressor | User vl 0.001
2.871 | 13.626 | 0.722 0.735 phg9sum | GradientBoostingRegressor | Random | vl 0.001
3.17 16.464 | 0.658 0.666 phq9sum | RandomForestRegressor User vl 0.001
2.761 | 12.961 | 0.738 0.749 phg9sum | RandomForestRegressor Random | vl 0.001
4.341 | 29.606 | 0.0 0.0 phq9sum | BaselineDummy User vl 1.0
2.508 | 11.897 | 0.763 0.774 phg9sum | BaselineDummy Random | vl 0.001
0.554 | 0.489 | 0.634 0.656 factorl MERF User vl 0.001
0.455 | 0.363 | 0.737 0.764 factorl MERF Random | vl 0.001
0.561 | 0.505 0.642 0.647 factorl LinearRegression User vl 0.001
0.549 | 0.47 0.657 0.675 factorl LinearRegression Random | vl 0.001
0.555 | 0479 | 0.648 0.666 factorl ARDRegression User vl 0.001
0.549 | 0.468 0.658 0.674 factorl ARDRegression Random | vl 0.001
0.578 | 0.549 | 0.586 0.607 factorl SVR User vl 0.001
0.514 | 0452 | 0.671 0.691 factorl SVR Random | vl 0.001
0.548 | 0.49 0.635 0.657 factorl GradientBoostingRegressor | User vl 0.001
0.525 | 0.449 0.671 0.693 factorl GradientBoostingRegressor | Random | vl 0.001
0.56 | 0.504 | 0.622 0.646 factorl RandomForestRegressor User vl 0.001
0.513 | 0.445 0.673 0.695 factorl RandomForestRegressor Random | vl 0.001
0.702 | 0.866 | 0.0 0.0 factorl BaselineDummy User vl 1.0
0.505 | 0.492 | 0.652 0.665 factorl BaselineDummy Random | vl 0.001
0.68 | 0.685 | 0.407 0.496 factor2 MERF User vl 0.001
0.492 | 0.41 0.677 0.744 factor2 MERF Random | vl 0.001
0.656 | 0.662 | 0.43 0.521 factor2 LinearRegression User vl 0.001
0.641 | 0.631 0.46 0.552 factor2 LinearRegression Random | vl 0.001
0.651 | 0.65 0.438 0.532 factor2 ARDRegression User vl 0.001
0.64 | 0.63 0.457 0.553 factor2 ARDRegression Random | vl 0.001
0.699 | 0.754 | 0.358 0.443 factor2 SVR User vl 0.001
0.601 | 0.58 0.516 0.599 factor2 SVR Random | vl 0.001
0.675 | 0.687 0.402 0.498 factor2 GradientBoostingRegressor | User vl 0.001
0.633 | 0.605 0.484 0.577 factor2 GradientBoostingRegressor | Random | vl 0.001
0.688 | 0.716 0.384 0.474 factor2 RandomForestRegressor User vl 0.001
0.6 0.567 | 0.528 0.614 factor2 RandomForestRegressor Random | vl 0.001
0.803 | 0.909 | 0.0 0.0 factor2 BaselineDummy User vl 1.0
0.513 | 0479 | 0.652 0.694 factor2 BaselineDummy Random | vl 0.001
0.361 | 0.213 0.607 0.6 factor3 MERF User vl 0.001
0.249 | 0.116 | 0.802 0.806 factor3 MERF Random | vl 0.001
0.345 | 0.205 0.622 0.617 factor3 LinearRegression User vl 0.001
0.337 | 0.194 | 0.646 0.641 factor3 LinearRegression Random | vl 0.001
0.343 | 0.2 0.632 0.627 factor3 ARDRegression User vl 0.001
0.338 | 0.195 | 0.639 0.64 factor3 ARDRegression Random | vl 0.001
0.37 | 0.234 | 0.56 0.555 factor3 SVR User vl 0.001
0.306 | 0.171 0.696 0.696 factor3 SVR Random | vl 0.001
0.349 | 0.208 0.617 0.611 factor3 GradientBoostingRegressor | User vl 0.001
0.325 | 0.182 0.672 0.671 factor3 GradientBoostingRegressor | Random | vl 0.001
0.358 | 0.219 0.598 0.59 factor3 RandomForestRegressor User vl 0.001
0.315 | 0.177 0.688 0.682 factor3 RandomForestRegressor Random | vl 0.001
0.454 | 0.331 0.0 0.0 factor3 BaselineDummy User vl 1.0
0.271 | 0.142 0.753 0.758 factor3 BaselineDummy Random | vl 0.001
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MAE | MSE Spearman | Pearson | Target Estimator Split Study | p-value
3.886 | 24.688 | 0.607 0.594 phg9sum | LinearRegression User v2 0.001
3.51 19.129 | 0.663 0.682 phq9sum | LinearRegression Random | v2 0.001
3.625 | 20.086 | 0.647 0.648 phg9sum | ARDRegression User v2 0.001
3.446 | 18.152 | 0.686 0.701 phq9sum | ARDRegression Random | v2 0.001
3.832 | 22.771 | 0.601 0.611 phq9sum | SVR User v2 0.001
3.572 | 20.15 | 0.671 0.677 phq9sum | SVR Random | v2 0.001
3.709 | 21.491 | 0.608 0.61 phg9sum | GradientBoostingRegressor | User v2 0.001
3.194 | 16.068 | 0.735 0.742 phg9sum | GradientBoostingRegressor | Random | v2 0.001
3.68 | 20.759 | 0.626 0.631 phg9sum | RandomForestRegressor User v2 0.001
3.058 | 15.195 | 0.747 0.757 phg9sum | RandomForestRegressor Random | v2 0.001
3.806 | 21.646 | 0.631 0.622 phq9sum | MERF User v2 0.001
2.386 | 10.648 | 0.835 0.838 phq9sum | MERF Random | v2 0.001
4971 | 35.611 | 0.0 0.0 phg9sum | BaselineDummy User v2 1.0
2.409 | 10.81 0.827 0.836 phg9sum | BaselineDummy Random | v2 0.001
0.693 | 0.777 0.541 0.534 factorl LinearRegression User v2 0.001
0.646 | 0.659 0.611 0.615 factorl LinearRegression Random | v2 0.001
0.656 | 0.679 0.592 0.589 factorl ARDRegression User v2 0.001
0.629 | 0.626 0.634 0.636 factorl ARDRegression Random | v2 0.001
0.701 | 0.771 0.523 0.521 factorl SVR User v2 0.001
0.626 | 0.63 0.631 0.636 factorl SVR Random | v2 0.001
0.686 | 0.746 | 0.526 0.528 factorl GradientBoostingRegressor | User v2 0.001
0.606 | 0.579 | 0.67 0.672 factorl GradientBoostingRegressor | Random | v2 0.001
0.679 | 0.748 | 0.551 0.54 factorl RandomForestRegressor User v2 0.001
0.59 0.572 0.668 0.669 factorl RandomForestRegressor Random | v2 0.001
0.68 | 0.72 0.571 0.555 factorl MERF User v2 0.001
0.498 | 0.444 | 0.745 0.765 factorl MERF Random | v2 0.001
0.863 | 1.055 | 0.0 0.0 factorl BaselineEDummy User v2 1.0
0.504 | 0.495 0.724 0.735 factorl BaselineEDummy Random | v2 0.001
0.71 0.808 | 0.397 0.42 factor2 LinearRegression User v2 0.001
0.681 | 0.701 0.471 0.449 factor2 LinearRegression Random | v2 0.596
0.694 | 0.71 0.381 0.432 factor2 ARDRegression User v2 0.001
0.66 | 0.645 | 0.462 0.503 factor2 ARDRegression Random | v2 0.001
0.689 | 0.723 | 0.372 0.425 factor2 SVR User v2 0.001
0.62 | 0.609 | 0.505 0.551 factor2 SVR Random | v2 0.001
0.728 | 0.786 0.299 0.342 factor2 GradientBoostingRegressor | User v2 0.001
0.632 | 0.599 | 0.51 0.551 factor2 GradientBoostingRegressor | Random | v2 0.001
0.713 | 0.745 0.329 0.385 factor2 RandomForestRegressor User v2 0.001
0.609 | 0.562 0.544 0.594 factor2 RandomForestRegressor Random | v2 0.001
0.724 | 0.746 | 0.306 0.356 factor2 MERF User v2 0.001
0.484 | 0.402 | 0.696 0.734 factor2 MERF Random | v2 0.001
0.81 0.869 | 0.0 0.0 factor2 BaselineEDummy User v2 1.0
0.472 | 0.437 | 0.685 0.714 factor2 BaselineDummy Random | v2 0.001
0.439 | 0.316 0.558 0.546 factor3 LinearRegression User v2 0.001
0.398 | 0.253 | 0.635 0.628 factor3 LinearRegression Random | v2 0.001
0.415 | 0.268 0.593 0.592 factor3 ARDRegression User v2 0.001
0.397 | 0.245 | 0.631 0.635 factor3 ARDRegression Random | v2 0.001
0.434 | 0.302 | 0.535 0.533 factor3 SVR User v2 0.001
0.371 | 0.23 0.67 0.674 factor3 SVR Random | v2 0.001
0.422 | 0.277 0.572 0.568 factor3 GradientBoostingRegressor | User v2 0.001
0.372 | 0.221 0.686 0.683 factor3 GradientBoostingRegressor | Random | v2 0.001
0.435 | 0.293 0.527 0.538 factor3 RandomForestRegressor User v2 0.001
0.361 | 0.214 | 0.69 0.695 factor3 RandomForestRegressor Random | v2 0.001
0.434 | 0.285 | 0.554 0.549 factor3 MERF User v2 0.001
0.284 | 0.149 | 0.793 0.806 factor3 MERF Random | v2 0.001
0.532 | 0417 | 0.0 0.0 factor3 BaselineEDummy User v2 1.0
0.278 | 0.147 0.8 0.807 factor3 BaselineDummy Random | v2 0.001
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Study Sub-Set Data Points ~ Subjects  Features
Vi EMA 3007 541 16
Vi Communication 3007 541 27
\2! Mobility 3007 541 14
V2 EMA 1159 276 16
V2 Activity 1159 276 37
V2 Communication 1159 276 36
V2 Weather 1159 276 39
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