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ABSTRACT

Survival prediction integrates patient-specific molecular information and clinical signatures to forecast the anticipated time
of an event, such as recurrence, death, or disease progression. Survival prediction proves valuable in guiding treatment
decisions, optimizing resource allocation, and interventions of precision medicine. The wide range of diseases, the existence of
various variants within the same disease, and the reliance on available data necessitate disease-specific computational survival
predictors. The widespread adoption of artificial intelligence (AI) methods in crafting survival predictors has undoubtedly
revolutionized this field. However, the ever-increasing demand for more sophisticated and effective prediction models
necessitates the continued creation of innovative advancements. To catalyze these advancements, the need of the hour is to
bring existing survival predictors knowledge and insights into a centralized platform. The paper in hand thoroughly examines 22
existing review studies and provides a concise overview of their scope and limitations. Focusing on a comprehensive set of 74
most recent survival predictors across 44 diverse diseases, it delves into insights of diverse types of methods that are used in
the development of disease-specific predictors. This exhaustive analysis encompasses the utilized data modalities along with a
detailed analysis of subsets of clinical features, feature engineering methods, and the specific statistical, machine or deep
learning approaches that have been employed. It also provides insights about survival prediction data sources, open-source
predictors, and survival prediction frameworks.

Introduction

According to World Health Organization (WHO), around ten
thousand diseases have been discovered and each disease has
unique symptoms, characteristics, and implications on human
health1. Millions of people died from such diseases in the
span of years 2000 to 2019, while cancers, cardiovascular,
and infectious diseases persisted as the leading causes of mor-
tality2, 3. Extensive research on the intersection of life and
technology has yielded a wide range of therapies and medi-
cations for various well-known diseases. However, the core
idea behind traditional therapies and medications is based on
the “one-size-fits-all”4. In this paradigm, a single drug is sup-
posed to effectively treat a medical condition across a variety
of patient cohorts i.e., children, old and young populations4, 5.
In-depth exploration and understanding of living organisms’
inherent biological processes reveal that high variability in
genetics and drug responses make one-size-fits-all medication
ineffective4, 5.

The groundbreaking discoveries of the factors contributing
to the limited effectiveness of generalized medications marked
the inception of the era of precision medicine6, 7. Precision
medicine offers customization in tailored medical treatments
based on an individual’s unique genetic makeup, and optimiza-
tion in drug selection and dosage based on the individual’s
lifestyle, and environmental factors8. Precision medicine’s
adoption and effectiveness have been significantly enhanced

by the accurate, cost-effective, and large-scale analysis of
molecular information obtained through next-generation se-
quencing9.

In the realm of precision medicine, survival prediction
plays a pivotal role in tailoring medical treatments to indi-
vidual needs10, 11. Survival prediction categorizes patients
into distinct risk groups that enhance the efficiency of re-
source allocation for the patients who are likely to gain the
most benefit from specific treatments10, 11. It also enables
counseling of patients and their families by predicting the
expected course of the disease and potential challenges10.
In addition to medical treatments, survival prediction offers
multiple advantages in research, particularly in the area of
biomarker discovery and disease understanding12, 13. Survival
prediction models provide useful information about the corre-
lation between different features and clinical outcomes. This
correlation information enables the identification of novel
biomarkers associated with disease prognosis12. Moreover,
researchers leverage survival prediction to unravel disease
heterogeneity which helps to identify distinct subtypes with
different survival profiles14. This knowledge not only aids in
the stratification of homogeneous patients in clinical trials but
also validates therapeutic targets by assessing their relevance
in predicting patient outcomes15. Furthermore, it enables the
longitudinal monitoring of disease progression that helps to
explore critical time points and progression patterns16.
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Figure 1. An end-to-end survival prediction pipeline. 2/30
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To expedite advancements in survival prediction research,
researchers are harnessing the capabilities of AI algorithms by
utilizing extensive survival-related data from public databases
such as the Cancer Genome Atlas Program (TCGA)17, and
NCI Genomic Data Commons (GDC)1819–24. In addition, the
diversity and heterogeneity of diseases hinder the development
of a universally applicable survival prediction pipeline14, 25.

Following the need for disease-specific predictors, there is
a marathon for the development of more accurate and power-
ful predictors26–28. Figure 1 illustrates that for the advance-
ment of survival predictors, public databases provide a spec-
trum of clinical data29, 30 and encompass 9 diverse omics data
modalities, including gene expression (mRNA), micro RNA
(miRNA), DNA methylation, copy number variation (CNV),
long non-coding RNA (lncRNA), proteomics, metabolic,
whole exome sequencing (WES) and mutation23, 26, 31, 32. In
each data modality, there exists an array of missing values
that hinder survival predictors learning. Extensive research
is being conducted to impute missing values by using differ-
ent techniques such as deletion, multiple, K-nearest neighbor
(KNN), and median imputation33–35. In addition, various nor-
malization methods are also being used to normalize feature
space such as quantile, variance threshold, and rank normal-
izations36.

In the development of survival prediction pipelines, re-
searchers are trying to unlock the potential of various data
modalities by assessing predictor performance with individ-
ual modalities and combinations of multiple data modalities
across diverse types of diseases. When data from different
modalities is combined, survival predictors’ input feature
space becomes very large which impedes the performance
of AI approaches37. Researchers are trying to explore feature
engineering approaches such as random forest importance
(RFI), and recursive feature elimination (RFI)38, principal
component analysis (PCA)31, 39, non-negative matrix factor-
ization (NMF)40, and autoencoders (AEs)41–43. Moreover,
in an end-to-end survival predictive pipeline, apart from the
selection of appropriate data and feature engineering strategy,
designing appropriate survival prediction models is also an
active area of research.

Under different aforementioned directions, the recent 3
years have witnessed around 74 different survival predictors
for different diseases. To further accelerate and expedite the
development of more powerful predictors, in the last 10 years,
from time to time, researchers have published 22 different
review articles. These articles primarily aim to summarize
the latest trends and developments in data modalities, feature
engineering methods, and AI models specifically related to sur-
vival prediction. However, the focus of these reviews is often
constrained to either a singular disease or multiple subtypes
of cancer, highlighting a limited scope within the broader
landscape of survival prediction research37, 44–48. More com-
prehensive details about the scope of existing review articles
in terms of contributions and drawbacks are summarised in
Table 1 and section . Following the need for a comprehensive

review article for survival prediction, the contributions of this
paper are manifold:

• It consolidates a diverse array of 22 survival prediction
review papers, bringing together their scopes and limita-
tions under a unified umbrella. This compilation serves
as a valuable resource for researchers seeking high-level
insights and pertinent information in the field.

• It provides comprehensive insights into 74 survival pre-
diction articles published between 2020 and 2023.

The objective is to delve into diverse aspects of the field,
extract and furnish useful information from these articles un-
der the following different research questions and objectives:
i) What is the distribution of 74 research articles across 44 dif-
ferent diseases, and how does it vary among cancer subtypes
and other diseases? ii) How do studies address the spectrum
of survival prediction, from a broader perspective covering
multiple cancer subtypes to individual subtypes? iii) What are
the predominant survival endpoints used in studies, and how
are studies distributed across four endpoints overall survival
(OS), disease-free survival (DFS), progression-free survival
(PFS), and biochemical recurrence (BC)? iv) What are the
most commonly used public and private data sources in ex-
isting survival prediction studies and the types of data they
encompass? v) What are the most commonly used omics data
modalities and their associations with different diseases and
survival endpoints? vi) Which clinical features are most com-
monly employed in survival prediction studies? vii) How have
feature engineering techniques evolved across different data
modalities, diseases, and survival endpoints in survival predic-
tion studies? viii) Which specific statistical, machine learning
(ML), and deep learning (DL) survival prediction algorithms
have been applied to diverse diseases and survival endpoints?
ix) Which survival prediction studies have made their source
codes publicly available, and what types of methods are avail-
able in open-source survival prediction frameworks? x) What
are the most commonly utilized survival prediction evaluation
measures? xi) Which conferences and journals predominantly
publish survival prediction studies?

Background
Survival prediction makes use of patient-specific molecular
information and clinical signatures to forecast a wide range of
events at particular time intervals. The most common events
include recurrence, metastasis, response, recovery, hospitaliza-
tion, and progression of a disease. Some of these events rep-
resent similar contexts, i.e., metastasis and progression both
contribute to the overall progression of the condition/cancer.
Survival prediction events are generally categorized into 4
different survival endpoints namely, overall survival (OS),
disease-free survival (DFS), progression-free survival (PFS),
and biochemical recurrence (BC). Survival endpoints serve as
crucial measures for assessing the outcomes of interventions,
indicating the duration until specific events occur. Therefore,
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events are essentially the occurrences that contribute to the
survival endpoints. These endpoints are critical to examine
the trajectory of a particular disease.

Survival prediction is time to event approach with two dis-
tinct aspects, i.e., survival and hazard function. Survival func-
tion describes the probability that a subject survives longer
than some specified time t. Mathematically, it is expressed as:

S(t) = P(T > t), (1)

where T is the random variable for survival time, t is a spe-
cific value of interest for T . For instance, S(10) represents the
probability of survival beyond 10 years without experiencing
a specific event. As time passes, S(t) decreases, reflecting the
reduction in the probability of surviving without the occur-
rence of event E up to time t.

In comparison, the hazard function illustrates the proba-
bility of an event E occurring at a specific time interval (∆t)
with a prior assumption that the event has not taken place.
The probability that the event E occurs within a very small
time interval ∆t around time t is given by the conditional
probability:

P(t ≤ T < t +∆t |T ≥ t) (2)

Dividing this probability by the length of the time interval
(∆t) gives the rate of occurrence of the event at time t. The
limit as the time interval (∆t) approaches zero gives the instan-
taneous rate of occurrence at time t. Mathematically, this is
represented as:

h(t) = lim
(∆t→0)

Pr(t ≤ T < t +∆t | T ≥ t)
∆t

=
f (t)
S(t)

(3)

Pr(t ≤ T < t +∆t | T ≥ t) =

P(individual fails in the interval [t, t +∆t] | survival up to time t)
(4)

where f (t) represents the probability density function of
survival time. Thus, survival function S(t) shows that the sub-
ject survives beyond a specific time point and hazard function
h(t) complements this by providing a risk rate that a patient
does not survive in a specific time interval conditioned on
having survived thus far. Moreover, S(t) is always monotonic
in nature, however h(t) is classically assumed to follow in-
creasing Weibull, decreasing Weibull, or lognormal survival
curves.

A Look-back Into Existing Review Studies
In recent years multiple review papers have been published
and the objective of each review revolves around summarising
fundamental concepts in survival prediction and identifying
trends in statistical, ML, and DL algorithms that have been
utilized in the development of survival predictors. Table 1

illustrates a high-level overview of the existing 22 review
articles in terms of their review scope and limitations. This
comprehensive summary aims to assist researchers in locating
specific information within relevant articles more effectively.

In Table 1, a comprehensive analysis of the scope of review
articles indicates that existing studies can be classified into
three distinct groups. I) 9 review papers primarily focus on
the application of DL algorithms in survival prediction47, 49–56

, II) 7 review papers summarise the application of ML algo-
rithms in survival prediction37, 48, 57–61, and 6 review papers
summarise survival prediction methods from three different
categories namely statistical, ML, and DL methods44–46, 62–64.

On the other hand, in the realm of disease specific sur-
vival predictors scope of existing review papers is limited.
For instance, 8 papers only summarize survival predictors on
single disease or subtype of cancer, i.e., cervical cancer46,
glioblastoma63, esophageal adenocarcinoma48, esophageal
and gastroesophageal junction cancer57, head and squamous
cell carcinoma61, palliative cancer patients47, cardiovascular
diseases (CVD)64, 65, and schizophrenia60. Although 4 papers
cover multiple subtypes of cancer but they cover only handful
of 8 different subtypes such as, breast, lung, gastric, colon,
esophageal, ovarian cancers and so on.

While the scope of survival prediction extends beyond mul-
tiple diseases, existing review papers fall short to summa-
rize current trends of data modalities, feature engineering ap-
proaches and survival prediction models. For example, Deepa
et al.44 specifically address the primary categories of data
modalities used for survival prediction, namely multiomics
and clinical data. However, the review does not extensively
explore trends and patterns related to the 9 different omics
types i.e., gene expression (mRNA), micro RNA (miRNA),
methylation, copy number variation (CNV), whole exome
sequencing (WES), long noncoding RNA (lncRNA), muta-
tion, metabolic, and proteomics, or clinical features associated
with distinct cancer subtypes. Similarly, Westerlund et al.64

do not explore the potential of multiomics data in terms of
cardiovascular diseases. In addition, various review papers
completely neglect to address feature engineering in survival
prediction46, 47, 52, 56, 57, 62. For instance, Feldner et al.37 de-
spite their focus on dimensionality reduction, fall short in
providing a comprehensive summary of current trends in fea-
ture engineering approaches with respect to diseases and data
modalities. Futhermore, a small portion of these review pa-
pers cover details of few state of the art survival prediction
models49, 52, 56. While current review papers summarize sur-
vival prediction pipelines partially, there is a necessity to bring
diverse information into a unified platform which offers com-
prehensive insights into patterns and trends associated with
survival prediction pipelines.
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Table 1. The scope and limitations of current survey papers.

Article Citations Number
of Articles
Covered

Scope Shortcomings

Deepa et
al.,44

17 37 Cancer survival, subtypes, and recurrence predic-
tion across 7 cancer subtypes i.e., breast, lung,
gastric, cervical, oral, cystic fibrosis, and multi-
cancers

Does not take into account all types
of cancers, and other diseases on
the basis of multiomics and clinical
data.

Hermann
et al.,45

59 NS A benchmark of different ML and statistical sur-
vival analysis methods on multiple cancer datasets
from TCGA i.e., bladder, breast invasive, colon,
esophegeal, head-neck squamous, kidney renal,
cervical kidney, acute myloid leukemia, low grade
glioma, liver hepatocellular, lung adenocarcinoma,
lung squamous, ovarian cancer, oancreatic, sar-
coma, skin cutaneous, stomach, and Uterine corpus
cancers.

A benchmark with a limited number
of methods for survival modeling.

Rahimi
et al.,46

2 13 Cervical cancer (CC) survival analysis based on
ML and statistical methods to predict Disease-free
survival (DFS), progression-free survival (PFS),
and overall survival (OS)

The review is confined to cervical
cancer survival prediction and does
not encompass deep learning-based
methods.

Bashiri
et al.,62

80 17 Survival Prediction based on gene expression data
across Mantle cell lymphoma, esophageal adeno-
carcinoma, Esophageal squamous cell carcinoma,
Non- small cell lung carcinomas, Diffuse large B-
Cell lymphoma (DLBCL), astrocytic tumor, and
Lung cancer

Multiomics data is not extensively
discussed, as it is understood that the
emphasis on gene expression alone
may not define the survival of a sub-
ject.

Tewarie
et al.,63

23 27 Continous and discrete-time survival prediction
across glioblastoma based on magnetic resonance
images (MRI), genomics, and clinical data

The review paper does not include
a discussion of survival prediction
models. Also, the role of multiomics
data in survival prediction has not
been explored.

Westerlund
et al.,64

23 NS Risk prediction in cardiovascular diseases (CVD)
based on clinical, and image data, and molecular
signatures such as single nucleotide polymorphism
(SNP).

-

Kresoja
et al.,65

5 NS An overall spectrum of survival prediction in car-
diovascular diseases is presented based on the im-
age, omics, and clinical data.

-

Wiegrebe
et al.,49

4 58 Survival prediction with DL models from 5 ma-
jor categories i.e., discrete-time, piece- wise expo-
nential, parametric, ranking-based, and ordinary
differential equation (ODE)

While it encompasses numerous
models, the paper still lacks cover-
age of information related to ML
models.

Salerno
et al.,50

5 NS ML and DL based methods are discussed for sur-
vival analysis with a focus on high dimensional-
ity of the data. Mainly, regularized cox models,
support vector machines, random survival forests,
boosting, and artificial neural networks are pre-
sented.

Only a handful of methods are
discussed in this specific review
whereas, the number of methods
used to deal with high dimensional
data is significant in number.

Pobar et
al.,47

15 16 DL for survival prediction in palliative cancer pa-
tients (advanced cancer patients) on the basis of
radiomics data and evaluation based on Palliative
Prognostic Score (PaP), Palliative Prognostic Index
(PPI) and Number of Risk Factors (NRF)

The prime focus is only related to
radiomics-based methods.
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Bakasa
et al.,51

16 NS Pancreatic survival prediction models and the use
of DL models such as image segmentation, and
feature extraction. Different concepts like image
segmentation and feature extraction are discussed
in detail with less emphasis on their utilization in
ML or DL-based survival prediction. In addition,
very few studies are referred related to pancreatic
cancer survival prediction.

Ahmed
et al.,52

252 NS The internal components of artificial neural net-
works (ANNs)

Authors provide a rough overview
of artificial neural networks (ANNs).
At the time of this publication, there
was approximately very little at-
tention given to survival predic-
tion using ML and DL-based mod-
els. Therefore, the review discusses
only the internal workings of ANNs
rather than discussing the details of
survival prediction and the role of
AI in it.

Kantidakis
et al.,56

3 24 Studies related to survival prediction are presented
in two different settings i.e., setting 1: time is
added as part of the input features and a single
output node is specified, setting 2: multiple output
nodes are defined for each time interval

Authors discuss different types of
neural network setting used for sur-
vival analysis yet they did not cate-
gorize all the studies related to sur-
vival analysis on the basis of the
type of neural network setting being
used.

Altuhaifa
et al.,53

0 30 Studies related to cancer survival prediction. The
authors present databases utilized for the prediction
of cancer survival prediction along with feature
selection algorithms, types and nature of features,
survival prediction models, and limitations.

Lack of characterization with re-
spect to the multiomics-based data
modalities.

Wekesa
et al.,54

0 NS radiomics, and multiomics studies related to dif-
ferent factors that play a critical role in various
diseases i.e., miRNA, circRNA, and so on are pre-
sented. The prime focus is on data integration
techniques based on DL for interaction prediction,
disease diagnosis, and treatment.

Only a handful of studies are cov-
ered

Kvamme
et al.,55

47 NS Authors discuss in detail the architectures and
schemes utilized to predict survival in a discrete or
continuous fashion.

-

Feldner37 13 NS Dimensionality reduction in ML models with con-
text to cancer subtype identification, and survival
prediction.

The prime focus is on the use of
dimensionality reduction in multi-
omics related tasks. The role of di-
mensionality reduction in survival
prediction has not been covered in
this review.

Boshier
et al.,48

0 17 Survival prediction in esophageal adenocarcinoma
is discussed on the basis of clinical data. In addi-
tion, various survival prediction models are eval-
uated on new validation data comprised of 2450
patients.

Only limited to a single cancer and
the focus is only related to clinical
data.
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Gupta et
al.,57

38 16 Prognostication in terms of esophageal and gastroe-
sophageal junction cancer on the basis of image
and clinical data.

Lack of multiomics-based analysis.

Wissel
et al.,58

- - Authors discuss and propose new standardized
benchmark datasets and their splits for survival
prediction, obtained from TCGA, TARGET, and
ICGC databases. The comparison of the AI-based
and statistical models is also presented in the pa-
per which shows that statistical models often beat
AI-based models in time to event prediction with
multiomics data.

-

Lee et
al.,59

62 NS Different concepts related to survival analysis are
discussed i.e., survival functions, Kalpan Meier
estimators, and log-rank test. In addition, multiple
time-to-event modeling approaches are also pre-
sented in detail such as, Cox-PH model, random
survival forest, survival support vector machines,
bagging, cox boosting, and artificial neural net-
works.

Limited coverage of omics-based
modalities and an in-depth discus-
sion.

Guan et
al.,60

40 NS Subtyping and risk prediction in Schizophrenia. -

Mo et
al.,61

0 NS A comparison of 12 supervised ML models to
predict the outcome of head and squamous cell
carcinoma i.e., bayesian network, naive Bayes,
logistic regression, generalized linear model, k-
nearest neighbor, decision tree, random forest,
bootstrap aggregating, and AdaBoost, gradient
boosting trees, neural network, and support vector
machine. In addition, important genes are further
validated using a variety of wet lab experiments.

Only a single multiomics data is
used for the comparison of different
survival outcome prediction models,
whereas multiple datasets can show
the generalizability of the models on
the data belonging to various demo-
graphic locations.

Ours - 74 A systematic analysis of diverse survival predic-
tion literature. This review encompasses ML, DL,
and statistical survival predictors across more than
30 different diseases. In addition, the review ad-
dresses diverse research questions related to the
distribution of survival predictors, databases, data
modalities, feature engineering methods, survival
prediction models, source codes and libraries for
the development of survival predictors, and various
evaluation measures.

This review paper focuses solely
on current trends in survival predic-
tion, omitting basic terminologies
and mathematical formulations. For
a concise mathematical overview,
readers are advised to consult ear-
lier review papers55, 59.
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Results

RQ I, II, III: Survival predictors distribution analysis
across diseases and survival endpoints
The primary aim of this section is to summarise the distribu-
tion of survival predictors across various diseases and survival
endpoints. Predictors distribution analysis under individual
diseases offers insights into the most active trends of pre-
dictors associated with specific diseases. This consolidated
distribution provides a centralized platform to access valuable
information about their disease of interest. Similarly, exam-
ining the distribution of articles across survival endpoints is
valuable for identifying current trends in forecasting multiple
events. This approach not only enhances our understanding of
the current state of predictive modeling but also facilitates re-
searchers in efficiently accessing information specific to their
desired endpoints. Through this exploration, we aim to con-
tribute to a deeper understanding of the diverse landscape of
survival prediction research and its applications across various
diseases and endpoints.

Table 2 illustrates disease specific predictors distribution for
both cancer and other diseases respectively. In the last 3 years,
60 predictors have been designed for different cancer subtypes
related survival prediction24, 104, 108 while only 14 predictors
have been designed for other diseases such as cardiovascular
diseases, COVID-19, and trauma29, 112, 119, 120.

To date, approximately more than 100 different cancer
subtypes have been identified121. However, a deeper analysis
of the last 3 years reveals that survival prediction models
have been developed for only 36 distinct cancer subtypes,
as outlined in Table 2. Among 36 different subtypes, most
of the predictors have been designed for breast cancer, lung
adenocarcinoma, ovarian cancer, and glioblastoma. On the
other hand, 7 different predictors have been designed for
pancancer. Notably, there is a difference between other cancer
types and pancancer because under this paradigm predictors
simultaneously deal with multiple cancer subtypes. For the
development of pancancer based predictors, there exists public
data having more than 30 distinct cancer subtypes. However,
researchers are utilizing different subsets for the development
of predictors. Figure 3 provides an overview of multiple
survival prediction studies that encompass a range of cancer
subtypes, either within a pancancer context or within the
context of predicting survival for different subtypes. A total
of 14 studies have taken into account multiple cancer subtypes
whereas the majority of the studies have only covered only
a single type of cancer subtype such as colorectal cancer109,
lymphoma85, colon adenocarcinoma39, gastric cancer42 and
so on.

Figures 2 and 4 illustrate predictors distribution across sur-
vival endpoints. A majority of studies 54 (79%) have OS
as an endpoint of survival prediction28, 82, 101, 120, whereas 7
studies have incorporated multiple survival endpoints in their
analysis. Out of 7 studies, 3 studies have incorporated DFS
and BC22, 26, 122. Two studies have incorporated OS, DFS, and
PFS40, 108 and 2 studies have OS, and PFS as the survival end-

Table 2. Distribution of survival predictors across individual
diseases.

Disease Subtype Number of
Studies

References

Nasopharyngeal Carcinoma: 1 66

HER2-negative metastatic
breast cancer

1 67

Tripple negative breast
cancer

1 68

Breast invasive carcinoma 1 14

Colon adenocarcinoma 1 39

Gastric cancer 1 42

Gastrointestinal cancer 1 30

Adult diffuse glioma 1 69

Invasive ductal carcinoma 1 70

Pancreatic cancer
undergoing biliary drainage

1 71

Kidney renal clear cell
carcinoma

2 14, 72

Lung squamous cell
carcinoma

1 14

Cervical Cancer 1 73

Neuroblastoma 1 38

Rectal cancer 1 74

Colon cancer 3 75–77

Liver Cancer 1 41

Esophageal Carcinoma 2 78, 79

Stomach adenocarcinoma 1 72

Ovarian serous
cystadenocarcinoma

2 72, 78

Kidney renal clear cell
carcinoma

2 31, 72

Lower grade glioma 1 80

Head-and-neck squamous
cell carcinoma

1 72

Bladder Cancer 3 40, 81, 82

Bladder urothelial
carcinoma

1 72

Renal cell carcinoma 83, 84

Lymphoma 1 85

Hepatocellular carcinoma 3 43, 86, 87

Ovarian cancer 4 86, 88–90

Glioblastoma 4 90–93

Prostate Cancer 2 22, 94

Non-small cell lung cancer 3 95–97

Pancreatic cancer 3 26, 32

Breast Cancer 6 23, 74, 90, 98–100

Lung adenocarcinoma 4 27, 101–103

Pancancer 7 24, 28, 104–108

Colorectal Cancer 1 109

Atherosclerosis 3 29, 110, 111

Myocardial infarction 1 112

Stroke 1 112

COVID-19 1 113

Cardiovascular disease 6 112, 114–118

Liver transplant 1 119

Trauma 1 120
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Figure 2. Survival endpoint distribution across diverse studies.
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points31, 81. A single study has focused on DFS only95, and 2
only on BC94, 117. The rest of studies either did not explicitly
specify their endpoints for survival prediction or predomi-
nantly concentrated on predicting patients’ survival outcomes
without a specific focus on distinct survival endpoints.

RQ IV: Survival prediction data availability in public
and private sources and opportunities for develop-
ment of predictors
Survival prediction models development relies on the quality
and quantity of annotated data, which is generated through
extensive wet lab experiments. Experimental findings are
stored in different types of databases that open new doors for
the development of survival prediction applications. However,
there exist multiple databases and each database encompasses
particular diseases and modality specific survival data. For
instance, CGGA124 focuses on brain tumors, and MESA128

contains data related to atherosclerosis. To accelerate the
development of more competent survival predictors, it is es-
sential to summarise which database contains which type of
disease and what data modalities. In the highlight of research
question IV, Table 3 illustrates public databases details in
terms of diseases and data modalities they offer.

A deeper analysis of existing survival predictors re-
veals that among the 74 studies 54 utilized publicly
accessible data from three key databases: the Can-
cer Genome Atlas Program (TCGA)17, NCI Genomic
Data Commons (GDC)18, and the Gene Expression Om-
nibus (GEO)31, 32, 72, 73, 80, 82, 87, 90, 91, 130, 131. Apart from pub-
lic databases, there also exist private databases that
have been utilized in existing survival prediction stud-
ies66, 75, 81, 112, 113, 117, 118. However, these private databases
often restrict data access and may require extensive research
proposals for data retrieval. Among these databases com-
monly used databases are Heidelberg University Hospital30,
COMBO-0171, Life cohort115, and UNOS119 . The reliance
on private databases for survival prediction creates signifi-
cant hurdles for research in several ways. Firstly, limited
accessibility to such data impedes the reproducibility and ver-
ification of study findings by other researchers, hindering the
validation and robustness of predictive models. Secondly, the
lack of transparency and standardized access procedures for
private datasets introduces challenges in benchmarking and
comparing different survival prediction models. Lastly, the
exclusivity of private databases may contribute to a potential
bias in research outcomes, as the diversity and representa-
tiveness of the data are often compromised which impacts
the generalizability of survival predictions to broader patient
cohorts.

Public access to databases enables researchers to create
survival benchmark datasets that fosters the development of
survival prediction models. However, many researchers de-
velop datasets without making them public which hinders
transparency and the broader scientific community progress.
The lack of shared data and presence of multiple datasets as-

sociated with a single disease pose a notable challenge in sur-
vival prediction. For instance, it hinders the establishment of
standardized testing and benchmarking procedures for newly
proposed survival prediction methods, leading to ambigui-
ties in identifying the most advanced techniques. Moreover,
recognizing the need for standardization in benchmarking
survival prediction models, Wissel et al.58 introduced bench-
mark survival datasets tailored for both individual cancer sub-
types and pancancer settings. These datasets are accessible at
https://survboard.vercel.app/, contributing to
a more uniform and transparent benchmarking framework
within the survival prediction landscape. Particularly, here we
emphasize the use of these datasets for benchmarking in addi-
tion to newly created datasets to have unified benchmarking
for cancer-specific survival prediction models.

RQ V, VI: Survival prediction data modalities and
utilization of their combinations for disease and sur-
vival endpoints specific predictors development
Following the objective of research question V, the primary
focus of this section is to investigate and provide a compre-
hensive summary of the various data modalities utilized in
the development of diverse survival predictors. To address
research question V, it describes the distribution of data modal-
ities across predictors associated with four distinct survival
endpoints, and 44 different diseases. Furthermore, in response
to research question VI, it furnishes information regarding the
specific clinical features utilized by various survival prediction
studies.

Out of 74 different studies, data modalities details of
only 68 studies are available. Within this subset, 14 stud-
ies exclusively used clinical data, 39 studies utilized multi-
omics data, and 15 studies investigated the combined poten-
tial of both clinical and multiomics data modalities. More-
over, based on characteristics of molecular information omics
data is generally categorized into 9 different classes namely
gene expression (mRNA), micro RNA (miRNA), methy-
lation, copy number variation (CNV), whole exome se-
quencing (WES), long noncoding RNA (lncRNA), muta-
tion, metabolic, and proteomics. The specifics of differ-
ent predictors, in terms of variations in the combinations
of clinical and various omics data modalities, are outlined
in Table 4. Among 54 survival prediction studies based
on multiomics, 49 studies utilized different combinations of
four distinct omics types: mRNA, methylation, miRNA, and
CNV14, 26, 27, 42, 43, 69, 72, 73, 77, 82, 84, 89, 96, 97, 100, 101, 106, 108. Only
7 studies utilized additional modalities such as whole exome
sequencing (WES)26, 31, long coding RNA (lncRNA)31, pro-
teomics22, 23, 108, 113, 115, and mutation data22, 23, 108, 115.

The choice of omics type hinges on the specific disease un-
der investigation, as indicated by the disease-wise distribution
of omics types in Figure 5. Out of 9 omics types, mRNA,
CNV, miRNA, and methylation have been the most commonly
utilized modalities for 33 cancer subtypes i.e., breast can-
cer14, 23, 68, 74, 90, 98–100, pancancer24, 91, 105–108, 131, colon can-
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Table 3. The ample collection of survival data within diverse public databases.

Data Source Diseases Covered Types of Data URL Description

GDAC Broad
Firehose123

38 different cancer subtypes Clinical, CNV, methylation,
miRNA, mRNA, mutation, pro-
teomics

https://gdac.
broadinstitute.
org/

The Firehose platform provides processed
and analyzed data from TCGA, making it
accessible to researchers for further analysis
and interpretation.

Chinese Glioma
Genome Atlas

(CGGA)124

Brain Tumor Clinical, single cell RNA, mRNA,
image, and microarray

http://www.cgga.
org.cn/

The Chinese Glioma Genome Atlas
(CGGA) is a genomic database focused on
glioma, providing comprehensive molecu-
lar characterization and clinical information
to advance the understanding and treatment
of glioma tumors.

TARGET Pediatric cancers such as
osteosarcoma, neuroblastoma,
rhabdoid cancer, Wilms, acute

myloid leukemia, acute
lymphoblastic leukemia

Clinical, mRNA, miRNA, methyla-
tion, proteomic and CNV

https://www.cancer.
gov/ccg/research/
genome-sequencing/
target

The TARGET (Therapeutically Applicable
Research to Generate Effective Treatments)
NCI (National Cancer Institute) database
is dedicated to pediatric cancers, offering
molecular and clinical data to facilitate re-
search and the development of targeted ther-
apies for pediatric cancer patients.

SEQC125 Neuroblastoma Microarray, and mRNA - RNA-seq and microarray data to predict
clinical/survival endpoints for neuroblas-
toma,

MsigDb126 - Curated gene sets, motif gene sets,
gene ontology terms, oncogenic sig-
natures, and immunologic signa-
tures

https://www.
gsea-msigdb.org/
gsea/msigdb

The Molecular Signatures Database
(MSigDB) is a collection of annotated
gene sets, pivotal for gene set enrichment
analysis, encompassing diverse biological
pathways and functions, aiding researchers
in studying gene expression patterns.

GTEX127 54 non-diseased tissue sites across
nearly 1000 individuals

Single cell, mRNA, methylation,
chip-seq, histology images

https://www.
gtexportal.org/
home/

The Genotype-Tissue Expression (GTEx)
project is a comprehensive research initia-
tive that characterizes the genetic and tissue-
specific gene expression patterns across a
diverse set of human tissues, providing valu-
able insights into the relationship between
genetic variation and gene regulation.

Kaggle Not disease-specific Clinical https://www.kaggle.
com/

Kaggle is an online platform that hosts
data science competitions and facilitates
collaboration among data scientists, offer-
ing datasets and a community for learning
and problem-solving. In addition, Kaggle
is not specifically designed for omics-based
datasets or studies.

MESA128 Heart diseases Clinical, genetic, and imaging https://www.
mesa-nhlbi.org/
default.aspx

The Multi-Ethnic Study of Atherosclerosis
(MESA) MESA is a research study by the
National Heart, Lung, and Blood Institute,
involves 6,000+ individuals from six U.S.
communities, assessed at affiliated univer-
sity clinics

UCSC Xena129 Various cancer subtypes that are
present in TCGA

Clinical and omics data modalities
associated with TCGA

https://xena.ucsc.
edu/

UCSC Xena is a bioinformatics platform
offering a user-friendly interface for the
exploration and visualization of integrated
multi-omic and clinical datasets, enabling
researchers to analyze and interpret diverse
biological and disease-related information
collaboratively.

GEO130 Plethora of diseases such as
cardiovascular and neurological

diseases and cancers

Clinical, mRNA, miRNA, CNV,
methylation, chromatin interac-
tion, DNA modification, splicing,
lncRNA, and mutation

https://www.ncbi.
nlm.nih.gov/geo/

The Gene Expression Omnibus (GEO) is a
publicly accessible repository, maintained
by the National Center for Biotechnology
Information (NCBI), housing a diverse col-
lection of high-throughput functional ge-
nomics datasets, enabling researchers to
freely access and analyze gene expression
and other omics data across a broad spec-
trum of biological conditions and diseases.
GEO does not have a specific or dedicated
portal for survival prediction datasets.

TCGA/GDC17 More than 40 cancer subtypes such
as glioblastoma, pancreatic, bladder,

breast and rectal cancers

Clinical, mRNA, miRNA, CNV,
methylation, methylation, miRNA,
splicing, lncRNA, and mutation

https://www.cancer.
gov/ccg/research/
genome-sequencing/
tcga

Cancer genome atlas (TCGA) generates ge-
nomics data, while GDC is the platform that
hosts and shares not only TCGA data but
also other cancer genomics datasets, pro-
moting data accessibility and collaboration
in the cancer research community.
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Figure 5. Distribution of omics data modalities across a diverse set of diseases.

Table 4. Distribution of data modalities across diverse surival prediction studies.

Data Modality
Studies

22 30 29 81 85 118 67 71 68 14 75 86 103 95 28 98 101 24 109 96 105 113 38 74 66 94 97 99 106 107 42 92 39 27

Clinical ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ × ✓ ✓ × ✓ ✓ ✓ × ✓ × × × × ✓ ✓ × × × × × ✓ × ×

mRNA ✓ × × × × × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ × ✓ ✓

miRNA × × × × × × × × ✓ ✓ × × × × × × ✓ ✓ ✓ ✓ × × × × × ✓ ✓ × ✓ ✓ × × ✓ ✓

Methylation ✓ × × × × × × × × ✓ × × × × ✓ × ✓ × × ✓ × × ✓ ✓ × ✓ ✓ × ✓ × ✓ × ✓ ✓

CNV × × × × × × × × × × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × × × × × × × × × ✓ × ✓ × × × ✓

Proteomics ✓ × × × × × × × × × × × × × × × × × × × × ✓ × × × × × × × × × × × ×

Mutation × × × × × × × × × × × × ✓ ✓ × × × × × × × × × × × × × × × ✓ × × × ×

Metabolic × × × × × × × × × × × × × × × × × × × × × ✓ × × × × × × × × × × × ×

lncRNA × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

WES × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

Data Modality
Studies

70 112 78 80 31 87 90 111 88 91 32 114 115 73 131 119 72 82 40 117 23 43 89 84 93 79 69 41 76 26 100 77 108 102

Clinical ✓ ✓ ✓ × × × × ✓ × ✓ × ✓ ✓ × × ✓ ✓ × × × × × × × × × × × × ✓ × ✓ × ×

mRNA × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

miRNA × × × × ✓ × × × × × × × × ✓ ✓ × ✓ ✓ × × × ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Methylation × × ✓ ✓ ✓ × × × × ✓ ✓ × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓

CNV × × × × × ✓ ✓ × × ✓ ✓ × × ✓ × × ✓ ✓ × × ✓ × ✓ ✓ ✓ × × × × × ✓ × × ✓

Proteomics × × × × × × × × × × × × ✓ × × × × × × × ✓ × × × × × × × × × × × ✓ ×

Mutation × × × × × × × × × × ✓ × × ✓ × × × × × × ✓ × × × × × ✓ × × × × × × ×

Metabolic × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

lncRNA × × × × ✓ × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

WES × × × × ✓ × × × × × × × × × × × × × × × × × × × × × × × × ✓ × × × ×
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Figure 6. Distribution of different omics modalities with respect to survival endpoints.

cer39, 74–77, lung adenocarcinoma27, 101, 102, and ovarian can-
cer72, 84, 88–90, 103. In addition, mutation data has been uti-
lized for 7 cancer subtypes namely, adult diffuse glioma69,
breast cancer23, cervical cancer73, non-small cell lung can-
cer95, ovarian cancer103, and pancreatic cancer32. Among 10
data modalities, 3 modalities namely, proteomic, lncRNA and
WES have been utilized the least having limited applicabil-
ity to clear renal cell cancer31, pancreatic cancer26, breast
cancer23, localized prostate cancer22, and pancancer107. In
terms of other diseases i.e., COVID-19 and heart diseases,
proteomics, methylation, mRNA, metabolic, and methylation
have been the only omics types utilized for survival predic-
tion113, 115, 117.

The variability in omics-type selection is not solely bound
to diseases but notably varies across a wide spectrum of sur-
vival endpoints. Figure 6 shows the counts of different omics
types that have been utilized for different survival endpoints
prediction. In the context of OS prediction, mRNA, miRNA,
methylation, and CNV have been primarily utilized in more
than 30 studies, with 10 studies based on proteomics, mu-
tation, and metabolic data. However, in terms of DFS and

PFS the selection of omics types appears less distinct. These
endpoints have been frequently studied in conjunction with
OS, predominantly utilizing mRNA, miRNA, and methyla-
tion data. This combination suggests a commonality in the
predictive factors across these survival endpoints, indicating
potential interconnections or shared biological processes.

Clinical data modality has been utilized in 29 different
studies. However, in this modality number of features varied
from study to study and it is still unclear which particular
set of features is most important. To perform an in-depth
analysis, which study utilized which subset of features across
diverse cancer subtypes and heart diseases, a comprehensive
collection of clinical features is presented in Table 5. In
order to better understand and discern the trends in clinical
features across diverse diseases, hereby they are placed in 7
different categories i.e., demographic features (6), disease-
specific clinical markers (71), treatment-related features (17),
laboratory and biomarkers (48), comorbidity and lifestyle
factors (18), and other factors (15).

A closer look at the clinical features across diverse diseases
reveals a consistent set of fundamental demographic features
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i.e., age and gender which are prevalent in nearly all stud-
ies85, 86, 91, 111, 112, 115. Beyond demographic features, disease-
specific features also play critical role for disease-specific
survival prediction. For instance, cancer-related studies invari-
ably focus on tumor stage, histological type, and treatment
specifics, underlining the critical role of disease-specific clini-
cal markers in prognosis22, 75.

Treatment-related features such as chemotherapy, radiother-
apy, and immunotherapy, are particularly evident in cancer
subtypes specific studies which reflect the profound influence
of therapeutic interventions on survival outcomes86, 98. More-
over, the recurrent inclusion of lifestyle and comorbidity fac-
tors ranging from smoking history and BMI to hypertension
and diabetes across multiple diseases underlines their perva-
sive impact on prognostic modeling101, 111. These lifestyle
and comorbidity features show the complex relationship be-
tween individual health choices and their potential influence
on survival outcomes.

RQ VII: Feature engineering trends across data
modalities and disease-specific survival predictors
This section addresses research question VII by investigating
the application of feature engineering methods in survival
prediction studies across a variety of diseases. This will help
researchers to analyze and understand trends of feature en-
gineering techniques in disease or endpoint specific survival
prediction pipelines. Additionally, it delves into the trends
in diverse feature engineering methods and their relevance to
clinical and multiomics data modalities. This investigation
aims to reveal trends and patterns in the dynamic interplay
between feature engineering methods and the specific charac-
teristics of different data modalities, and survival endpoints.

Table 6 illustrates 26 different feature engineering methods
that have been utilized in diverse survival prediction studies.
These methods are broadly categorized into five categories,
namely supervised methods, incorporating L1 regularized Cox
regression29, RSF algorithm29, Cox regression103, least ab-
solute shrinkage and selection operator (lasso) regression120,
cascaded Wx105, recursive feature elimination38, Boruta31,
Akaike information criterion (AIC) regression114, variance72,
lasso analysis40, multivariate regression40, Chi-squared118,
mutual information118, and ANOVA39, 118. Additionally, Net-
work based methods include network based stratification
(NBS)83, weighted correlation network analysis (WGCNA)86,
canonical correlation analyses (CCA)67, patient similarity net-
works38, and neighborhood component analysis (NCA)23. Di-
mensionality reduction methods include non-negative matrix
factorization (NMF)40, autoencoders (AEs)28, variational au-
toencoders (VAEs)43, principal component analysis (PCA)39,
and dominant effect of the cancer driver genes (DEOD)75, 132.
Moreover, clustering methods comprise Kruskal-Wallis and
Gaussian clustering131, hierarchical clustering82, and Guas-
sian clustering131.

A comprehensive analysis of feature engineering methods
across a range of disease-specific survival prediction studies

unveils that supervised methods, such as Cox regression, L1
regularized Cox regression, and RSF algorithm, have been
prevalent in diseases like ASCVD, trauma, and ovarian can-
cer103, 120. On the other hand, network based methods includ-
ing NBS and WGCNA, have been applied in diseases like
KIRP, and hepatocellular carcinoma, which shows the sig-
nificance of network structures in certain medical contexts86.
Univariate analyses, including ANOVA, chi-squared, and uni-
variate Cox regression, have been prevalent in diseases such
as pancreatic cancer and heart failure, underscoring the signifi-
cance of statistical testing in identifying relevant features71, 118.
Furthermore, dimensionality reduction methods such as PCA,
and NMF have been consistently used across various diseases
namely, ovarian cancer103, lower grade glioma80, colon ade-
nocarcinoma39, bladder and breast cancers40, 70. In addition,
the potential of AEs, and VAEs have also been explored in
diseases like glioblastoma multiforme, breast cancer, pan-
cancer, and Lung Adenocarcinoma for feature integration and
dimensionality reduction14, 28, 101.

While feature engineering methods exhibit specificity tai-
lored to distinct diseases, their efficacy is influenced by the
inherent characteristics of the utilized data. This raises the per-
tinent question of which particular feature engineering method
proves most effective in the context of clinical and multiomics
datasets. A thorough analysis of feature engineering methods
and their applicability with respect to clinical and multiomics
datasets reveals that methods like Cox regression, CCA, AIC,
and ANOVA have been quite widely utilized in studies involv-
ing only clinical data29, 67, 114, 118. These methods have been
applied to clinical data for multiple reasons for instance, such
methods are interpretable which is important to gain mean-
ingful insights for healthcare professionals. Clinical data is
always multifactorial, which means that multiple features of
the data can lead to a specific event, and methods like ANOVA
are quite efficient in analyzing such contributors. Although,
such models have shown promising performance with clin-
ical data, yet one of the drawbacks of such models is their
inability to handle non-linear data which is the case in terms
of multiomics data. Considering similar limitations, multi-
ple methods such as cascaded wx105, RFI38, PSN31, NMF40,
Boruta31, PCA82 variance72, DEOD75, have been utilized to
handle multiomics to capture important interactions among
the features and to integrate cross modalities properly. Partic-
ularly, here methods such as AEs and VAEs play a significant
role and recent studies also show a growing interest in using
such methods for dimensionality reduction and feature inte-
gration by such methods for multiomics and clinical datasets
i.e., AEs26, 27, 31, 39, 39, 41–43, 76, 90, and VAEs28, 89, 100, 106, .

Although the selection of a feature engineering method
is tied to the characteristics of the disease and the nature
of the data, there is no significant evidence to suggest that
it is substantially impacted by survival endpoints such as
DFS, PFS, BC, and OS. This assumption arises due to the
absence of a consistent pattern in feature engineering method
selection across different survival endpoints. Studies, such
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Table 5. Diverse collection of clinical features utilized in various survival prediction studies.

Study Disease Total Features (Generic)
29 Atherosclerotic

Cardiovascu-
lar disease
(ASCVD)

39 Height, Weight, Waist and Hip Circumference, Blood Pressure, B-Ultrasound, Heart Rate, Hypertension, Prehypertension, Pulse Pressure
Difference, Body Mass Index, Body Obesity Index, Waist to Hip Ratio, Composite Index Triglyceride, Blood Glucose Index, Fat Accumulation
Product Index, Lipoprotein Binding Index, Atherosclerosis Index, Atherogenic Index of Plasma, Low High Density Lipoprotein Ratio, Bilirubin
Composite Index, Family History of Diseases of Diabetes or ASCVD, Smoking, Alcohol Consumption, Fasting Blood Glucose, Triglyceride,
High-Density Lipoprotein Cholesterol, Total Cholesterol, Low-density Lipoprotein Cholesterol, Diabetes, Fatty Liver, Blood Glucose Index, Fat

Accumulation Product Index, Lipoprotein Binding Index, Atherosclerosis index, AIP, Low–high-density lipoprotein ratio and Bilirubin
Composite Index

22 Localized
Prostate
Cancer

24 Prostate-specific Antigenes, Gleason Primary Score, Tumor Stage Expression Levels for NF2 and CDKN1B

30 Gastroesophageal
Cancer

117 Biometric Variables, Past Medical History of Diseases, Tumor Diagnosis, cTNM Classification, Histology, Neoadjuvant Therapy, Time between
Diagnosis and Resection, Type of Operation, Extent of Resection, Anatomical Reconstruction, Duration of Surgery, Intraoperative Complication,
Blood Loss and Transfusion, Days on ICU and Ward, Postoperative Complications, pTNM Classification, Lymph Node Ratio, Grading, R status,

Histology, Post-discharge Problems
81 Bladder

Cancer
17 Gender, Median Age, Ethnicity, Smoking History, Initial Tumor stage, Neoadjuvant Chemotherapy Received, Histology, Pathology, Pathologic

Complete Response, Smoking History, Pack Years, Body Mass Index, Hemotocrit, Urine cfDNA, Variant Allele Frequency, Inferred Tumor
Mutational Burden, Tumor Fraction

85 Lymphoma 18 Sex, Age at Diagnosis, Ethnic, Medical Insurance, Ann Arbor Stage, Pathological Type, B symptoms, Surgery, Radiotherapy, Chemotherapy,
Targeted Therapy, Immunotherapy, LDH, β2-microglobulin, Platelet, Lymphocyte, Albumin Globulin ratio and C reactive protein

75 Colon Cancer 7 Age, Sex, AJCC stage, Prognostic Information such as Alive, Deceased, Disease Free and Recurrence
86 Hepatocellular

Carcinoma
24 Age, Gender, ALT, Main Tumor Size, Multinodular, Cirrhosis, TNM stage, BCLC stage, CLIP stage, Tumor Grade, TMB, Stromal Score,

Immune Score, ESTIMATEScore, Risk Score, CNLC stage, Hepatitis B, Lymph node invasion, Vascular Invasion, Perineural Invasion, Albumin,
AFP, CEA and CA199

95 Non-small
Cell Lung

Cancer

6 Histology, Gender, Age, Pathological Staging, DFS, and Smoking Status related features

98 Breast Cancer 25 Age at Diagnosis, Tumor Size, Tumor Stage, Lymph Nodes, Examined Positive Neoplasm, Histologic Grade, Histological type, ER Status, PR
Status, HER2 SNP6 State, Type of Treatment, The Patient Received Survival Status and Time, Inferred Menopausal State, Overall survival,

HER2 SNP6 State, Treatment and Patients Vital Status
118 Heart Failure 13 Age, Anaemia, High Blood Pressure, Creatinine Phosphokinase, Diabetes, Ejection Fraction, Sex, Platelets, Serum Creatinine, Serum Sodium,

Smoking, Time Follow up Period and Death Event
67 Metastatic

Breast Cancer
10 Age at Diagnosis, Mean age, Molecular classification (Luminal, Triple-negative), De novo Metastasis, Number of Metastatic Sites, Visceral

Metastases, Adjuvant Chemotherapy, Adjuvant Radiotherapy, Adjuvant Endocrine Therapy and Previous Endocrine Therapy
96 Non-small

Lung Cancer
11 Age, Sex, Tumor, Volume, Primary Diagnosis, Prior Malignacy, Synchronous Malignancy, Pathological Stage , Staging Tumor, Staging Lymph

Nodes, Staging Metastasis, No. of Pack-years Smoked
66 Nasopharyngeal

Carcinoma
17 Age, Stage, Sex, Ethnicity, Marriage, Occupation, Pathological, Transfer Information, Radiotherapy, Chemical Therapy, Targeted Therapy, EBV,

BQ, LAR, NLR and PLR
112 Cardiovascular 8 Age, Age Groups, Sex, Region of Residence, Number of Charlson Comorbidities, Charlson comorbidities, Lab Test Results(LDL-cholesterol,

Blood Glucose, eGFR, HbA1c, At least one Lab Test), Features related to Medications
78 Esophageal

Carcinoma
3 Vital Status, Days to Death and Days to Last Follow up

91 Glioblastoma
multiforme

9 Age, Gender, Diagnosis Method, Treatment History, Karnofsky Score, Performance Score, Radiation Therapy, Duration of Survival and Death
Status

115 Cardiovascular
Disease

12 Age, Sex, Body Mass Index, Smoking Status, Systolic and Diastolic Blood Pressure, Current Smoker, Total Cholestrol, HDL Cholestrol,
Triglycerides, Lipid Lowering Drug Dose, Antihypertensive Drug Use and Median Follow-up Time

111 Atherosclerosis 33 Age, Albumin/Creatinine Ratio, BMI, Cholesterol, Diabetes, Educational Status, Family History of Heart Diseases, Gender, HDL,
Hyperlipidemia, Hypertension, Income Category, LDL, Mean Diastolic and Systolic Blood Pressure, Metabolic Syndrome, Smoking in Past
Years, Statin Use, Triglycerides, Minutes Walking Per Week, C Reactive Protein, D Dimer, Factor VIII, Fibrinogen Antigen, Homocysteine,
Interleukin-6, Plasmin Antiplasmin, Pericardial Fat Deposition, Coronory Artery Calcium Score, Left Ventricular Area and Left Ventricular

Ejection Fraction
72 Multiple

Cancer
Subtypes

3 Age, Overall Survival time, Status

94 Prostate
Cancer

4 Age at Diagnosis, Clinical Tumor stage(T1(a-c),T2(a-c), T3(a-b),T4), NA Gleason Score and Preoperative PSA

119 Liver Trans-
plantation

97 52 Donor and 45 Liver Recipient Characteristics, Unique Encrypted Person Id, Unique Encrypted Donor Id, Candidate Listing Center, OPO
Serving, Transplant Center, Transplant Date, Graft Failure Date, Cohort Censoring Date, Death Date, Graft Follow up Date, Age, Gender, Race,
Ethnicity, Socioeconomic Status and Education Level, Smoking History, Alcohol Consumption, Physical Activity Level, Cocaine or Other Drug
History, Blood Type, Etiology (Cause of Disease), Laboratory Measurements for Arginine, Serum Creatinine, Serum Sodium, Total Bilirubin

26 Pancreatic
Adenocarci-

noma (PAAD)

7 Sex, Grade, AJCC Cancer stage, Smoking history, Treatment Outcome, Age, Primary Site

77 Colon Cancer 7 Gender, Survival Status, Survival Time, TNM Stage, Age at Initial Diagnosis
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Table 6. Diverse feature engineering methods for survival
prediction.

Method Name Studies

L1 regularized Cox regression 29

RSF algorithm 29

Cox regression 29, 103

Network-Based Stratification
(NBS) for data integration

83

Weighted correlation network
analysis (WGCNA)

86

Canonical correlation analyses
(CCA)

67

Least Absolute Shrinkage and
Selection Operator (lasso)

regression modeling

120

Cascaded Wx 105

Recursive feature elimination 38

Patient similarity networks 38

Boruta 31

Akaike Information Criterion
(AIC) regression

114

Kruskal-Wallis and Gaussian
clustering

131

Variance 72

Non-negative matrix
factorization (NMF)

40

Lasso analysis 40

Multivariate regression 40

PCA 31, 39, 82, 103

ANOVA 39, 118

Chi-squared 118

Mutual information 118

Hierarchical clustering 77, 82

Neighborhood component
analysis (NCA)

23

DEOD 75

Variational autoencoders 28, 89, 100, 101, 106

Autoencoders 26, 27, 31, 39, 41–43, 76, 90

as95,39, and40, demonstrate a varied use of feature engineering
techniques irrespective of the specific survival endpoints (DFS,
PFS, BC, or OS). This lack of uniformity implies that feature
engineering method selection is driven more by the unique
characteristics of the data and disease than by the nature of
the survival endpoint itself.

Table 7. Survival analysis libraries, models, and evaluation
metrics

Library Language Models Evaluation Metrics

scikit-
survival133

Python Cox-PH, Penalized Cox-
PH, RSF, Kaplan-Meier,
Gradient boosting survival,
Survival suppport vector
machine

Concordance Index
(C-index), Integrated
Brier Score

Lifelines134 Python Kaplan-MeierFitter,
CoxTimeVaryingFitter,
Survival regression, Dis-
crete survival models,
Piecewise exponential
models

Concordance Index
(C-index)

survival135 R Survival regression, Cox-
PH, accelerated time failure
(AFT) models, Competing
risk analysis,

Hazard Ratios, Log-
likelihood, Akaike In-
formation Criterion
(AIC)

Statsmodels136 Python PHReg, AFT models Hazard Ratios, Log-
likelihood, Akaike In-
formation Criterion
(AIC)

Pycox137 Python Continuous time models
such as Cox-Time, CoxCC,
PCHazard and DeepSurv,
Discrete time models such
as Nnet-survival, probabil-
ity mass function, Deep-
Hit, multitask logistic re-
gression, and BCEsurv

Concordance Index,
integrated and admin-
istrative Brier Score,
time dependent con-
cordance index, neg-
ative and integrated
bionomial log likeli-
hood

Pysurvival138 Python CoxPH, RSF, Kaplan-
Meier, Survival Support
Vector Machine, multi-
task logistic regression,
Parametric models like
exponential, Weibull,
Gompertz, log logistic, and
log normal

Concordance Index
(C-index), Integrated
Brier Score

flexsurv139 R Parametric survival models
(e.g., Weibull, Exponential)

Hazard Ratios, Log-
likelihood, Akaike In-
formation Criterion
(AIC)

mlr3proba140 R Density estimation mea-
sures, Cox-PH, flexible
spline models, penalized re-
gression, RSF, Van Belle
support vector machine,
gradient boostinf machine
DeepSurv, DeepHit, Cox-
Time

Houwelingen’s β ,
C-index, time depen-
dent AUC, log-loss,
integrated log loss,
Brier and integrated
Brier score, and
Schmid score

rstpm2141 R Restricted Mean Survival
Time (RMST), Cause-
specific Hazard Models,
Fine-Gray Model (Compet-
ing Risks)

IBS, Time-dependent
ROC curves, Grays
Test for Equality of
Cumulative Incidence
Functions

survex142 R Local and global explana-
tions for survival prediction
models

None

On the basis of various trends and patterns it can be con-
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cluded that for heart diseases, univariate analyses and super-
vised feature engineering methods have been utilized. Con-
versely, in terms of cancer subtypes a mixture of dimensional-
ity reduction methods is observed with a recent trend toward
the AEs. In terms of survival datasets, the prime focus has
been to use supervised methods for clinical data and multiple
dimensionality reduction methods for multiomics data. More-
over, there are no conclusive remarks that feature engineering
methods get affected by the survival endpoints, as the current
literature also suggests a varied use of feature engineering
methods regardless of the survival endpoints.

RQ VIII: Survival Prediction Methods Insights and
Distribution Across Disease Types and Survival End-
points
In pursuit of addressing research question VIII, this section
presents an overview and insights about statistical, ML, and
DL algorithms that have been utilized in existing survival
prediction pipelines. It succinctly examines their emerging
trends across diseases and survival endpoints. This explo-
ration aims to empower researchers in identifying gaps within
disease-specific and survival endpoint-focused studies, ulti-
mately contributing to the enhancement of survival predictive
pipelines.

Table 8 provides information about 44 diseases and the
corresponding survival prediction algorithms utilized in these
diseases. A deeper analysis of Table 8 shows that Cox-PH
and lasso Cox-PH models have been extensively utilized
for disease specific survival prediction i.e., ASCVD29, 111,
bladder cancer40, 82, colorectal cancer74–77, hepatocellular
carcinoma43, 86, 87, ovarian cancer88–90, 103, lung adenocarci-
noma101, heart failure118, HER2-negative metastatic breast
cancer67, pancreatic cancer26, 71, trauma120, nasopharyngeal
carcinoma66, triple-negative breast cancer68, lymphoma85,
breast cancer40, 81, 82, ovarian cancer88–90, 103, and lower-grade
glioma80, cardiovascular disease112, 114–117, invasive ductal
carcinoma70, liver transplantation119, gastric cancer42, lung
cancer27, esophageal squamous cell carcinoma79, glioma69,
and liver cancer41. RSF has been employed in 13 studies
for 6 diseases namely, ASCVD29, bladder cancer82, gastroin-
testinal cancer30, cervical cancer73, liver transplantation119,
and heart failure118. DL model DeepSurv, has been utilized
in 5 studies related to gastrointestinal cancer30, ASCVD111,
NSCLC97. On the other hand, in the analyzed survival pre-
dictive pipelines less frequently utilized methods are i.e., sur-
vival SVM79, 95, 120, partial logistic regression70, 75, log haz-
ard net75, 104, boosting41, 112, stepCox86, elastic net95, CNN-
cox104, DeepOmix104, ordinal Cox-PH78, DeepHit112, and
linear multitask logistic regression (MTLR)112.

Furthermore, supplementary Table S3 provides details
about predictors distribution with respect to survival endpoints.
A detailed analysis reveals, out of 74 predictors, 31, 8, 1, and 6
models have been utilized for OS, DFS, PFS, and BC survival
endpoints respectively. Unlike disease-specific predictors,
here a mixture of methods is utilized and no particular trend

Table 8. Distribution of survival predictors across diverse
diseases.

Studies Disease Predictor
29, 111 ASCVD Cox-PH, RSF, MTLR, Deepsurv

neural network, lasso Cox-PH
14, 83 KIRP GeneNet, ANNs
22, 94 Prostate cancer Coherent Voting Network (CVN),

Best Linear Unbiased Prediction
(BLUP)

30 Gastrointestinal cancer DeepSurv, MTLR, Gompertz model,
RSF

68 Tripple negative breast
cancer

lasso Cox-PH

40, 81, 82 Bladder cancer Cox-PH, RSF, CoxNet, and transfer
learning-based CoxNet

85 Lymphoma lasso-Cox-PH
74–77 Colon cancer Loghazard Net, partial logistic

regression, Cox-PH
43, 86, 87 Hepatocellular carcinoma Stepwise Cox (StepCox),

SurvivalSVM, Cox-PH, CoxNet
88–90, 103 Ovarian cancer Cox-PH, Cox-Time, and DeepSurv

with consensus training
95–97 NSCLC SVM, Elastic net and Cox-PH, CNN

and ANN
28 Multiple cancers ANN

23, 90, 98, 100 Breast cancer CoxNet, Cox-PH, Cox-Time, and
DeepSurv with consensus training,

Loghazard Net, partial logistic
regression

101 Lung adenocarcinoma Cox-PH, and lasso Cox-PH
24, 72, 104–108, 131 Pancancer Survival neural network, CNN-Cox,

Cox-PH, DeepOmix, lasso and group
penalized Cox-PH, VAE based NN

109 Colorectal cancer Lasso Cox-PH
118 Heart failure Cox-PH, RSF
67 HER2-negative metastatic

breast cancer
Cox-PH

26, 71 Pancreatic cancer Cox-PH, l2 regularized regression
120 Trauma RF, SVM for outcome prediction
66 Nasophrngeal carcinoma Cox-PH

112, 114–117 Cardiovascular disease Survival outcome prediction based on
naive Bayes, ANNs, and SVM,

Logistic regression and XGboost.
Survival prediction: Cox-PH,
survival XGboost, DeepHit,

DeepSurv, Cox-PH, Linear MTLR,
and RSF

113 COVID-19 SVM
38 Neuroblastoma Deep neural network (DNN)
70 Invasive ductal carcinoma Multivariate Cox two way stepwise

regression
78 Stomach, Esophageal

carcinoma and Ovarian
serous cystadenocarcinoma

Bidirectional LSTM, ordinal Cox
model network and auxiliary loss

80 Lower grade glioma lasso Cox-PH
31 Renal cell carcinoma Cox-PH

90–93, 102 Glioblastoma Cox-PH, CoxNet, SVM and Cox-PH,
lasso Cox-PH

73 Cervical cancer RSF, and Cox-PH
84 Ovarian and breast cancer
119 Liver transplantation RSF, Cox-PH, and partial logistic

artificial neural networks (PLANN)
39 Lung adenocarcinoma
42 Gastric cancer lasso, univariate and multi-variate

Cox-PH
27 lung cancer Cox-nnet
79 esophageal squamous cell

carcinoma
Support vector machine, K-means

clustering
69 Glioma Cox regression
41 Liver cancer XGBoost for subtype classification,

and Cox-PH for survival prediction
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exists. To provide high-level overview of multiple methods
that have been utilized in all four survival endpoints we have
provided a graphical representation of methods in Figure 7.

It can be seen in Figure 7, diverse types of methods that
have been utilized in survival predictive pipelines can be cat-
egorized into three different categories i.e., statistical, ML,
and DL. Statistical methods are broadly classified into three
different categories i.e., parametric, semi-parametric, and
non-parametric models. Parametric methods make assump-
tions about the survival time distribution122, 143. Parametric
methods include exponential, Weibull, log-normal, Weibull,
gamma models, and so on143, 144. Comparatively, semi-
parametric methods make no assumptions about the shape of
the baseline hazard function (non-parametric). Rather, these
methods assume a specific functional form for the effect of co-
variates (parametric)145. In comparison, non-parametric meth-
ods do not take into account assumptions about the underlying
distribution of survival times and the shape of the hazard func-
tion. These methods include Kalpan-Meier, Nelson-Aalen,
Breslow, Gehan-Eilcoxon, and life table methods146. Sta-
tistical methods have certain disadvantages with multiomics
based survival prediction59. For instance, statistical models
assume linear relationships among variables and fail to cap-
ture complex and non-linear data patterns147. These methods
perform poorly on high dimensional data where the number
of features is larger than the number of samples. This specific
gap is filled by the emergence of AI based models. Various
ML models are utilized for survival analysis such as random
survival forest148, and boosting-based methods149. Belle et al.,
Shivasmy et al., and Khan et al.,150–152 proposed ranking and
regression-based survival SVM for survival prediction while
handling right censored data. Particularly, survival SVM is
used in three ways for survival prediction i.e., ranking, regres-
sion, and combined. Ishwaran et al.,148 proposed RSF where
log-rank test is utilized for the splitting as compared to the
Gini impurity of the classical random forest models.

DL methods are utilized in two ways to model survival pre-
diction tasks i.e., continuous and discrete time. Models like
CoxCC and time137, piecewise constant hazard or PEANN153,
and DeepSruv154 are utilized for continuous survival time
prediction. Whereas, Nnet-survival155, Nnet-survival proba-
bility mass function (PMF)156, DeepHit and DeepHit Sin-
gle157, multi-task logistic regression (MTLR)158, 159, and
BCESurv160 are utilized to predict survival in a discrete-time
setting.

RQ IX: Open source tools and libraries potential for
development of survival prediction pipelines
Following the objective research question IX, this section
summarizes details of open-source libraries and source codes
of existing survival predictors. This comprehensive informa-
tion will facilitate researchers to build upon existing work,
fostering a collaborative environment and accelerating the de-
velopment of robust and effective survival prediction models.

Table 9 presents an overview of open-source survival

Table 9. Summary of open-source survival prediction
methods in existing studies.

Publication Disease Approach Source Code
83 Kidney Papillary,

Renal Cell
Carcinoma (KIRP)

GeneNet Link

22 Localized prostate
cancer

Coherent Voting
Network (CVN)

Link

14 GBM, KRCCC,
LSCC, BIC

ANNs for binary
survival class

prediction

Link

103 Ovarian Cancer DT, RF, and ANN Link
95 Non-small Cell Lung

Cancer
Two layer SVM Link

28 Pancancer ANN Link
24 Pancancer Survival neural

network
Link

109 Colorectal cancer Lasso penalized cox
model

Link

118 Heart failure Two-way survival
prediction

Link

96 Non-small cell lung
cancer

Elastic net and cox
proportional hazard

model

Link

105 Pancancer CNN and a cox
model (CNN-Cox)

Link

38 Neuroblastoma Deep neural network
(DNN)

Link

74 Breast cancer Loghazard Net Link
90 Glioblastoma, ovary

and breast cancers
CoxNet Link

91 Glioblastoma
multiforme

Cox regression Link

111 Atherosclerosis Various models Link
116 Cardiovascular

disease
DeepSur, Cox-PH,

RSF
Link

131 Pancancer Cox-PH model Link
72 8 cancer subtypes DeepOmix based on

DNN
Link

82 Bladder cancer Cox regression, deep
cox neural network

Link

89 Ovarian cancer Cox-PH regression Link
84 Ovarian, lung,

kidney, and
pancreatic cancer

Various survival
models

Link

119 Liver transplantation RSF, Cox-PH,
PLANN

Link

27 Lung
adenocarcinoma

Cox-nnet Link

100 Breast cancer DNN and cox
proportional hazard

model

Link
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Figure 7. Hierarchal illustration of survival prediction methods under three different categories. 19/30
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prediction models. Among the 74 distinct survival pre-
diction studies, only 26 have provided publicly acces-
sible source code. Among these studies, 6 studies
have utilized R91, 94, 96, 103, 109, 119 and 20 have opted for
Python14, 24, 28, 38, 72, 74, 82, 83, 89, 90, 95, 100, 105, 111, 116, 118, 131

23, 27, 106. A comprehensive analysis of open source codes
reveals that a majority of these tools have been developed
from scratch without utilizing any specific survival prediction
library14, 28, 83, 95.

Approximately 10 different survival prediction packages
or libraries have been developed. Each library offers a di-
verse set of preimplemented statistical, ML, and DL survival
prediction models. For instance, Pycox137 primarily focuses
on continuous and discrete DL survival prediction models
such as CoxTime, CoxCC, MTLR, and so on. Lifelines134,
scikit-survival133, and pysurvival138 cover a wide range of
statistical and ML survival prediction models like Cox-PH,
RSF, survival support vector machine, and gradient boosting
survival133, 134, 138.

Notably, addressing the lack of interpretability or explain-
ability in the previously discussed libraries, Spytek et al.142

introduced Survex. This library allows researchers to analyze
the features responsible for a specific event by offering differ-
ent methods for both local and global explanations of various
survival prediction models.

The selection of a specific library is inherently subjective
and depends on factors such as the preferred development
platform, choice of survival prediction models, and the spe-
cific research question in hand. Therefore, recommendations
are made based on the number of survival prediction models
and evaluation measures each library offers. For Python, Life-
lines134 and Pycox137 are recommended, with Lifelines134

providing a diverse range of statistical and ML models, while
Pycox137 is specialized in DL models. Additionally, for R,
mlr3proba140 is recommended, as it offers a variety of sta-
tistical and ML models for survival prediction. Ultimately,
selecting a library aligned with individual research needs not
only streamlines the development process but also contributes
to the overall reliability of survival prediction models.

RQ X: Strategies for assessing survival predictors:
unveiling common evaluation measures
The main objective of this section is to provide a concise
overview of research question X, which focuses on the com-
monly employed evaluation measures for survival predictive
pipelines.

Table 10 shows a compilation of 18 distinct evaluation
measures that have been commonly used to evaluate survival
prediction pipelines. The survival prediction pipelines can be
categorized into two distinct classes namely survival outcome
prediction and survival prediction. Details related to these
categories is provided in the background section. Out of 18
evaluation measures mentioned in Table 10, a set of 10 evalua-
tion measures have been employed to assess the performance
of survival outcome prediction models. In addition to the

Table 10. A summary of evaluation measures used in
survival prediction and survival outcome prediction pipelines.

Task Evaluation
Measure

Count References Advantages

C-index 43 22, 29, 83 Robust, measures discrim-
inatory power. Less sen-
sitive to censoring com-
pared to other metrics.

BS 7 111, 116, 119 Measures accuracy of pre-
dicted survival probabili-
ties.

IBS 5 30, 98, 116 Considers entire survival
time distribution.

Su
rv

iv
al

Pr
ed

ic
tio

n Log Rank
P-value

9 28, 31, 68, 91 Tests differences in sur-
vival experiences.

DCA 1 66 Accounts for clinical con-
sequences.

Kappa 3 22, 83, 107 Measures agreement be-
yond chance.

TD-ROC 2 67, 68 Time-dependent evalua-
tion of ROC.

AUC-pval 1 22 Evaluates AUC signifi-
cance.

Odds ratio 1 22 Measures association be-
tween groups.

Likelihood
Ratio

1 77 Helps in understanding
the odds of a predicted
event occurring compared
to the odds of it not occur-
ring.

AUC-ROC 21 14, 22, 29 Provides a comprehensive
view of the model’s per-
formance across various
threshold values.

Accuracy 12 14, 75 Simple and easy to under-
stand, providing an over-
all measure of correct pre-
dictions.

Precision 6 14, 67, 81, 98 Useful when the cost of
false positives is high, as
it focuses on the accuracy
of positive predictions.

Recall 6 14, 67, 81, 98 Emphasizes the ability of
the model to capture all
positive instances, impor-
tant for sensitive scenar-
ios.

Su
rv

iv
al

O
ut

co
m

e
Pr

ed
ic

tio
n MCC 1 98

F1-Score 2 38, 114 Harmonizes precision and
recall, making it useful
when there is a trade-off
between false positives
and false negatives.

PPV 1 81, 114 Focuses on the proportion
of true positives among
positive predictions, pro-
viding insights into predic-
tion accuracy.

NPV 1 81, 114 Focuses on the proportion
of true negatives among
negative predictions, pro-
viding insights into predic-
tion accuracy.
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aforementioned measures, 8 other evaluation measures have
been utilized to assess the performance of survival prediction
models.

In survival prediction category based evaluation measures
the objective is to capture two distinct characteristics namely,
discrimination and calibration. Specifically, calibration refers
to how well the predicted probabilities of survival align with
the actual observed survival rates over time. Under this
paradigm most widely used evaluation measures are BS, IBS,
TD-ROC, and DCA. Discrimination paradigm based evalua-
tion measures capture differentiation between individuals with
different survival times. Under this paradigm most widely
used measures are C-index, AUC-ROC, and likelihood ratio.

On the other hand objective of survival outcome predic-
tion evaluation measures is to assess diverse characteristics
of a model i.e., efficacy of the model, overall accurate predic-
tions, biasness towards type I or type II errors. Specifically,
accuracy and F1 score are used to measure overall accurate
predictions, precision, and recall examine the model’s bias-
ness with respect to type I and type II errors. Additionally,
MCC provides a comprehensive assessment, taking into ac-
count overall accurate predictions, and errors. In addition,
AUC-ROC assesses the predictive potential of a model by
analyzing the true positive rate (TPR) and true negative rate
(TNR) at different thresholds.

RQ XI: Publisher and journal-wise distribution of
research papers
This section addresses research question XI by presenting
the distribution of survival prediction literature across diverse
journals and publishers. Overall, this analysis not only enables
researchers to strategically position their work but also offers
opportunities for interdisciplinary collaboration, promoting a
more interconnected and dynamic research landscape within
the domain of survival prediction.

In Figure 8 and 9, the distribution of survival prediction
literature is presented based on journals and publishers. The
studies have been published in 16 different publishers, in-
cluding but not limited to Springer, Elsevier, Oxford Press,
and BioMed Central. Notably, around 30 out of 74 survival
prediction studies have been disseminated through Springer,
and BioMed Central. Furthermore, Elsevier has contributed
to the field by publishing 10 relevant papers in recent years.
Particularly, these studies have been published in more than
50 different conferences/journals, which shows the diversity
of the survival prediction landscape.

Discussion
The field of disease survival prediction has become a pivotal
aspect of effective healthcare, especially within the domain
of precision medicine. Recognizing the significant variability
present among patients within specific diseases, there is an in-
creasing demand and development for disease specific survival
predictors. Our analysis reveals that researchers place a pro-
found emphasis on predicting survival in cancer as compared

to other diseases, and there are compelling reasons behind this
focus. First, cancer exhibits significant variability from one
patient to another as compared to other diseases, which high-
lights the imperative need for cancer survival prediction to
explore and comprehend the heterogeneity of cancer. Second,
cancer is a leading cause of death worldwide, and effective
survival prediction can aid in early detection and intervention,
potentially saving lives. Third, a huge amount of data sources
are developed to make cancer-related data publicly available
to accelerate and optimize cancer-related research.

Furthermore, to analyze the trajectory of the disease, re-
searchers place great focus on studying different survival
endpoints that suit the respective research setting i.e., treat-
ment, progression, recurrence, and death. Among 4 different
survival endpoints i.e., OS, DFS, BC, and PFS, OS is of-
ten emphasized more in survival prediction studies. Despite
the prime focus on OS, the significance of other survival
endpoints in understanding disease trajectories cannot be un-
derstated. These survival endpoints help to analyze different
characteristics of diseases such as understanding treatment
efficacy and durability, treatments that not only extend life but
also effectively manage the course of the illness, and markers
responsible for disease recurrence. The lack of research in
other survival endpoints opens up new research avenues for
the AI experts to develop novel methods that can help explore
various characteristics related to disease.

Although both public and private databases have been uti-
lized in survival prediction studies, yet the preference for
public databases stems from their accessibility and the wealth
of information they provide. For instance, TCGA17 offers a
vast array of genomic and clinical data across different cancer
types. This invaluable resource aids researchers in developing
accurate survival prediction models. Likewise, GDC18 and
GEO130 offer comprehensive datasets that encompass a wide
range of diseases, making them appealing choices for various
research endeavors. Furthermore, a crucial observation regard-
ing private data sources is that they are not universally acces-
sible. This argument is supported by the limited accessibility
of omics datasets related to cardiovascular diseases. Despite a
singular study employing omics data for survival prediction
in cardiovascular diseases, the challenge lies in the difficulty
of retrieving the original data. Authors often refrain from
sharing their datasets, and obtaining access to databases re-
quires extensive proposals, adding a layer of complexity to the
development of novel survival prediction pipelines for cardio-
vascular diseases. This obstacle may impede the advancement
of innovative survival prediction pipelines for cardiovascular
disease.

Overall, the use of omics and clinical data in survival predic-
tion tools marks a significant stride toward precision medicine.
The distribution of omics types in survival prediction stud-
ies reveals a preference for mRNA, methylation, microRNA,
and CNV across various cancer subtypes. In addition, the
limited number of multiomics based survival prediction stud-
ies in cardiovascular diseases hinders definitive conclusions
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on the importance of specific omics types. Disease-specific
patterns highlight the importance of tailored clinical markers,
prominently seen in cancer studies with a focus on tumor
stage and histological type. Treatment-related features, no-
tably chemotherapy and radiotherapy, underscore the impact
of therapeutic interventions on survival predictions. Moreover,
clinical features along with omics data with diverse molecu-
lar aspects are utilized together to improve the performance
of survival prediction models. Diverse survival prediction
research accentuates the pivotal role of leveraging patient
information, such as medical history, demographics, disease-
related features, and diagnostic records. This trend reflects an
increasing recognition of the potential of clinical data in not
only understanding disease progression but also in guiding
personalized treatment strategies and enhancing patient care.
A recent benchmark study on survival prediction models with
multiomics and clinical data also shows the significant role
of clinical data in survival prediction across multiple cancer
subtypes45.

In addition, our analysis reveals that increasing the total
number of data modalities does not necessarily offer improved
survival predictions, yet data modalities are quite specific to
the disease and survival endpoints. Therefore, the selection of
data modalities should be made very carefully as rather than
improving the overall performance it can induce undesirable
noise in the analysis.

One of the common problems in survival analysis is data
censoring. Censoring arises when there is incomplete infor-
mation about the time points and/or events of some subjects
in a study. There are different types of censoring i.e. I) Right
Censoring is the most common type of data censoring, where
an event does not occur for some subjects by the end of study
or by the last time point at which data is collected. For ex-
ample, a subject withdraws from the study or there is a lost
follow up for a specific subject II) Left Censoring is the least
common type of censoring where the event may occur before
the start of the study or during the data collection phase. III)
Interval Censoring arises when the event of interest occurs
in a time interval but the exact time point is not known. In
survival analysis, three assumptions are taken into account to
infer censored data i.e., II) Independent Censoring: assumes
that the censoring times for multiple subjects are independent
of each other. II) Random censoring assumes that the time
t at which individuals are censored must be random and the
failure rate for subjects who are censored is assumed to be
equal to the failure rate for subjects who remained in the risk
set who are not censored. III) Non-informative censoring
occurs if the distribution of survival times (T) provides no
information about the distribution of censorship times (C),
and vice versa. Although, data censoring is quite important
in terms of survival prediction, yet it has been discussed and
dealt with properly in the existing studies. We recommend to
incorporate comprehensive details of data censoring in future
survival prediction studies. Particularly details on how each
type of data censoring is handled should not be neglected.

Our analysis of the utilization of feature engineering meth-
ods raises two crucial points. First, even though a plethora of
methods have been already tested for various survival predic-
tion studies, autoencoder based methods tend to reduce the
dimensionality of omics data modalities more efficiently. In
addition, the rest of the methods work much better with clini-
cal features. The success of feature engineering approaches is
contingent upon the chosen technique with the inherent prop-
erties of the data. This highlights the importance of large-scale
benchmark studies in guiding the selection of feature engi-
neering strategies for the development of accurate predictive
pipelines.

With an aim to evaluate the performance of predictive
pipelines, diverse types of evaluation measures have been
developed. Each evaluation measure addresses a specific as-
pect of survival prediction models, precluding the possibility
of any single metric being universally ideal for a compre-
hensive evaluation of survival prediction. For instance, C-
index estimates the robustness and discriminatory power of
the survival prediction model. In addition, BS and IBS mea-
sure the accuracy of a model on time distribution. Moreover,
log-rank p-value evaluates the potential of the model by test-
ing the differences in different survival groups. Although
these measures are the most commonly utilized, there are
diverse other evaluation measures for similar purposes i.e.,
restricted mean survival time (RMST), odds ratio22, Kappa
for inter-rater reliability107, integrated absolute error (IAE),
integrated square error (ISE), mean absolute error (MAE),
integrated AUC (IAUC) time-dependent integrated discrimi-
nation improvement, and time-dependent net reclassification
improvement (NRI). Furthermore, while these individual mea-
sures provide valuable insights, it is noteworthy to mention
that their collective application offers a more comprehensive
evaluation. Therefore, we recommend utilizing multiple eval-
uation measures to assess discrimination and calibration of
survival prediction models.

Methodology
This section explains different steps or stages of preferred
reporting items for systematic review and meta-analyses
(PRISMA) strategy161, which is used to gather relevant papers
on survival analysis. Figure 10 provides a visual representa-
tion of various stages form PRISMA that are summarised in
the following subsections.

Search Strategy
In Figure 10, the identification stage illustrates combinations
of different keywords that are used to search research articles.
The keywords block has two different types of operators ’∧’
and ’∨’ operators. On the basis of these operators one key-
word from each block is selected and various search queries
are formulated such as, “SURVIVAL PREDICTION AND AI
AND OMICS”, “SURVIVAL PREDICTION AND AI AND
Multiomics”, “SURVIVAL Machine Learning AND OMICS”,
and so on. These queries are utilized in literature search en-
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Figure 10. A step-by-step process for articles search and their inclusion or exclusion criteria to generate a set of studies for
further in-depth trends analysis

gines like lens (https://www.lens.org/), and Google
Scholar for literature search from Jan 2020 to Jul 2023.

Screening Strategy
With an aim to retain literature related to survival prediction,
two different screenings are performed on the basis of the
following criteria;

• Articles that do not make use of only image-based
datasets for survival prediction.

• Articles that do not make use of ML, DL, or statistical
methods for survival prediction.

• Articles with closed access.

Initially, guided by the title and abstract of the articles, more
than 900 studies are discarded. Subsequently, at the final step,
based on a comprehensive review of the full text a second
screening is performed, resulting in the exclusion of an addi-
tional 20 studies. Ultimately, 74 papers are selected for the
final comparison and discussion of survival prediction.
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