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Appendix A Data description 

Human mobility 

Since human mobility, the dependent variable in the estimation, has day-of-week 
fluctuations (i.e. each day of the week has its own variation characteristics, such as large 
variations during weekends), we take the difference from the previous week of the 
percentage change from the baseline. By taking the week-on-week difference, rather than 
using the percentage change from the baseline itself, we can capture the effect of new 
information in the short term, such as a week-on-week change in the number of daily 
newly infected cases, on people’s decisions about whether to go out. An example of a 
dependent variable is shown in Fig A1. 

 

  

Fig A1. Example of a dependent variable The author created fake data for the baseline, 
1 June 2021 (the previous week), and 8 June 2021. 

 

Infected cases of COVID-19 

Data on the daily number of newly infected cases of COVID-19 are obtained from NHK 
(NIPPON HOSO KYOKAI; Japan Broadcasting Corporation) [1]. Given that the number 
of new cases fluctuates over a vast range, it is better to take the logarithm of the data to 
mitigate heteroscedasticity. Since the data contain zeroes, we use an inverse hyperbolic 
sine (IHS) transformation [2, 3, 4, 5], which converts zeros to zeros and behaves similarly 
to a logarithm. Let 𝐼!" denote new cases; then, the IHS transformation of 𝐼!", 𝐼!"∗  becomes 

𝐼!"∗ = ln %𝐼!" +'𝐼!"$ + 1). 

The baseline 
(median values for each day of 
 the week for the five weeks )

0.6 million people's 
outings

From 3 January to 6 
February 2020 1 June 2021 (Tuesday) 8 June 2021 (Tuesday)

-40% -30%

+10 percentage points

Google’s data →

Our dependent variable →

0.7 million people's 
outings

1 million people's  
outings (on Tuesday)
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Additionally, since new cases have day-of-week fluctuations (e.g. fewer PCR tests 
on weekends), we convert the IHS transformation of new infections to the difference from 
the same day of the previous week. Hence, the week-on-week difference of daily new 
infected cases transformed by the IHS, ∆𝐼!"∗ , approximates the growth rate of new cases 
compared to the previous week. 

According to an NHK news article [6], ‘A record number of cases—5,773—were 
confirmed in Tokyo on Friday, 13 August 2021. This is the highest number ever recorded. 
The number of cases has increased by 1,258 since last Friday, and the rapid spread of 
infection continues’ (translated from the Japanese article by the author). Daily news in 
Japan primarily covered the number of daily new infections and week-on-week changes 
in the number of infections. In this way, our approximation of the week-on-week growth 
rate of new cases in our data for our estimation reasonably illustrates the information 
received by people judging the severity of the situation based on week-on-week changes 
in the number of infections. 

 

The declarations of a state of emergency 

The DSE data are obtained from the Cabinet Secretariat’s COVID-19 Information and 
Resources [7]. The timing of DSEs varied between prefectures. Fig A2 displays DSE 
periods for each prefecture. 
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The first emergency 

declaration (first 

wave) 

The fourth emergency 

declaration  

(fifth wave) 

 

The second emergency 

declaration  

(third wave) 

The third emergency 

declaration  

(fourth wave) 
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Fig A2. DSE periods for each prefecture. The red colour indicates the period during 
which the DSE was issued. 

 

Details of DSE 

NPIs in Japan 

Regarding NPIs in Japan, lockdowns accompanied by legal enforcement have not been 
implemented. Instead, Japan implemented DSEs that requested that people refrain from 
leaving their residences except for essential and urgent purposes and that facilities shorten 
their hours of operation or temporarily close down. As such, the Japanese policies for 
controlling the spread of COVID-19 are referred to as ‘soft lockdowns’ [8] or ‘voluntary 
lockdowns’ [4, 5]. This means that even if a DSE is declared, individuals are not legally 
regulated but are requested to stay at home; accordingly, going out behaviours are 
voluntary [9]. To account for this, we consider DSEs by the Japanese government to be 
COVID-19-related information. 

Requests regarding DSEs 

The content of requests regarding DSEs is entrusted to each prefecture and varies by 
prefecture. This section provides an overview of the details of such requests, focusing on 
Tokyo and Osaka, Japan’s two representative major cities. Since both are large cities, the 
requests were almost identical.  

In the first DSE (first wave), the closure of facilities and stores was requested in 
principle for amusement facilities, universities, tutoring schools, educational (school) 
facilities, exercise facilities, theatres, gathering and exhibition facilities (including 
museums), and commercial facilities (including department stores). In principle, the 
government asked that events be held without spectators. 

In the second DSE (third wave), the government asked facilities and stores to reduce 
their operating hours instead of closing entirely. The maximum attendance for events was 
set at 5,000 people, easing the limitation imposed in the first DSE.  

The third DSE (fourth wave), in which the Alpha variant was prevalent, resulted in 
a new request to close restaurants and stores serving alcoholic beverages and offering 
karaoke. In addition, requests to close facilities and stores were issued to amusement 
facilities, exercise facilities, theatres, commercial facilities (including department stores), 
and museums with footprints of over 1,000 square metres. Additionally, the government 
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asked that events that attract visitors be held without spectators and that college classes 
be conducted online. Thus, with the emergence of the Alpha variant, the requests were 
strengthened.  

In the fourth DSE (fifth wave), the government asked restaurants and stores serving 
alcoholic beverages and offering karaoke to close again. Meanwhile, facilities and stores 
were not requested to close in principle but were asked to shorten their operating hours. 
Moreover, the maximum attendance for events was again set to 5,000 people. Thus, these 
requests were less restrictive than those made during the third declaration. 

During all the DSEs, restaurants were asked to shorten their operating hours, and 
people were asked to avoid unnecessarily leaving their homes. The above information 
regarding the DSEs was taken from the Tokyo Metropolitan Government [10] and the 
Osaka Prefectural Government [11]. 

The first DSE was issued to all 47 prefectures. In contrast, the subsequent DSEs 
were only issued to some prefectures based on the local severity of infections; specifically, 
the second DSE was issued in 11 prefectures, the third in 10 prefectures, and the fourth 
in 21 prefectures. Moreover, the length of the DSE periods differed by prefecture. One 
exception is that, only in Okinawa Prefecture, DSEs were declared for the third and fourth 
waves without interruption. In all cases, the government asked facilities and stores to 
close only in the first and third DSEs. In short, the first and third requests were typically 
strict, and the second and fourth requests were typically lenient; across prefectures. 

 

Vaccination rates 

The daily data on COVID-19 vaccination of each prefecture are obtained from the 
COVID-19 Vaccination Status by the Digital Agency [12]. We convert the data into a 
cumulative format to determine the vaccination rate per million persons. Population data 
for each prefecture (on 1 October 2020) are obtained from Population Estimates by the 
Statistics Bureau of Japan [13]. Since the number of vaccinations has day-of-week 
fluctuations, the data (vaccination rate per million persons) are converted to the week-on-
week change. 

We have other reasons for utilising week-on-week rather than daily data itself in our 
estimations. Since vaccinated people have more reassurance that they can avoid infection, 
we reason that higher vaccination rates are likely to correlate with a higher portion of 
people going out in each prefecture. In the extreme, each vaccinated individual will shift 
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from the fearful group (unvaccinated group) to the reassured group (vaccinated group). 
The size of the reassured group will thus increase in step with the promotion of 
vaccination in the prefecture, and the going-out behaviour of the group will also increase 
proportionally. Thus, one might think that the better choice would be to use the 
vaccination rate itself, which ranges from 0–100%.  

However, we are using week-on-week differences in retail and recreation behaviour 
and residential time as the dependent variables in our estimation. Since fear is expected 
to decrease considerably immediately after vaccination, the growth from the previous 
week in going-out behaviour is expected to increase only at this point. In other words, 
individuals who already feel reassured and engage in going-out behaviour right after 
being vaccinated will essentially not contribute to later growth in going-out behaviour. 
Therefore, we use the difference in the vaccination rate compared to the previous week 
(incidentally, when we use the vaccination rate instead, none of the results would have 
been significant). Theoretically, each vaccinated person shifted from the fearful group to 
the reassured group and contributed to the growth in going-out behaviour at that point. 
For example, in the fake data in Fig A1, we can see that the number of people going out 
from 1 June to 8 June 2021 increased by 0.1 million. If we hypothesise that this increase 
is entirely due to vaccination, then we can assume that the increase only happens from 1 
June to 8 June 2021 and that the 0.1 million newly vaccinated people who joined the 
reassured group at this time will continue to go out and not contribute to later increases 
in going-out behaviour. 

The other reason we use the difference from the previous week was the 
multicollinearity between the first and second vaccination doses. Japan’s vaccination rate 
accelerated in 2021 [14]. At the time, due to the Ministry of Health, Labour, and Welfare 
announcement that two doses of the COVID-19 vaccine can prevent infection [15], most 
people who received a first dose also received a second dose. Therefore, the first and 
second vaccination rates almost perfectly correlate (correlation coefficient = 0.99). 

 

Time series plots 

The time series plots of variables used in the estimation are shown in Fig A3. From the 
figure, infections and human mobility are moving in opposite directions. Further, the first 
and second vaccinations proceeded rapidly. Additionally, the timing of the DSE differs 
by prefecture. 
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Fig A3. Time series plots of the variables per prefecture used in the estimation. On 
each chart, the blue-green-coloured line (on the right-hand axis) is the 7-day backward 
moving average using the geometric mean of human mobility in retail and recreation; the 
red-purple-coloured line is the IHS transformation of the 7-day backward moving average 
number of infected persons; the purple-coloured double-dashed lines are the IHS 
transformation of the cumulative number of people vaccinated with 1–3 doses, and the 
pink-shaded areas are the DSE periods. The data transformation employed here, such as 
the 7-day backward moving average, is only for visualisation purposes; we use other 
transformations in our estimation. 

 

Control variables 

Our estimation model employs control variables. Specifically, we exploit temperature 
(average daily temperature) and precipitation (total daily precipitation) data from the 
Japan Meteorological Agency [16], which are relevant to human mobility. We select the 
capital of each prefecture as the geographical location for the daily temperature average 
and daily precipitation totals (there are only four missing data which we substitute with 
data from the nearest location). We take the difference from the previous day for the 
temperature. Additionally, we use the IHS transformation for these two variables.  

Day-of-the-week and weekends-and-holidays dummies (abbreviated as holidays-
dummies) account for daily fixed effects. The day-of-the-week dummies are Tuesday, 
Wednesday, Thursday, and Friday. Holidays-dummies take a value of 1 if the day is 
Saturday or Sunday, a Japanese holiday, Lantan festival (O-bon in Japanese, which took 
place on 13–16 August for 2020, 2021, and 2022), or New Year’s holiday (from 29 
December to 3 January, when most businesses and government offices are on vacation); 
otherwise, they take a value of 0.  

As for prefectural fixed effects, two demographics—the population density per 
square kilometre of inhabitable land area and the percentage of the population over 65 
years old—are extracted from the Regional Statistics Database (System of Social and 
Demographic Statistics) from the Statistics Bureau of Japan [17]. We take logarithms for 
these two demographics. 
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Appendix B Methods 

Lags in estimation 

We take lags for the IHS difference (from the previous week) of new infections, ∆𝐼!"∗ ; its 
spatially weighted variables, 𝑾"

∗∆𝑰"∗; the week-on-week increased range of vaccination 
rate per million persons, ∆𝑽%" ; and its spatially weighted variables, 𝑾"

∗∆𝑽%" , in the 
estimation equation (2) in the main manuscript. Daily lag 𝑝 from day 𝑡 is taken from 1 
day (𝑝 = 1) to 7 days (𝑝 = 7). We also take a lag for the spatial weight matrix, 𝑾"

∗, which 
corresponds to lag day 𝑡 − 𝑝 of the estimation. 

During the pandemic, most people decided whether to go out based on information 
regarding the infection status announced up to the previous day. The same is true for 
vaccination ∆𝑉!" , whereby outgoing behaviour is determined by the vaccines 
administered up to the previous day. Therefore, in our estimation, the maximum lag days 
is set to 7. By contrast, the lag is not taken for DSE (𝐸!"), as DSE on the day, rather than 
the day before, influences outgoing behaviour. Similarly, lags are not taken for the control 
variables: temperature, precipitation, day-of-the-week dummies, and holidays-dummies, 
since each is only relevant for human mobility of that day. 

Another reason to take the lags for the infected cases is the announcement timing. 
Daily infected cases are only reported in the evening (around 17:00) or later. For instance, 
the infected case in Tokyo on 31 August 2021 was announced by NHK at 23:25, Nikkei 
at 17:00, Bloomberg at 17:19, Jiji Press News at 22:34, TV Asahi at 18:45, and Tokyo 
Shinbun at 16:56 (based on Google search which accessed on 15 August 2022). 

Due to the data used to create the weight matrix, the value is fixed for a given week. 
Therefore, in our estimation, we use a spatial weight matrix (𝑾∗ ) for the week 
corresponding to day 𝑡  in the analysis, which gives 𝑾"

∗ . For example, 15 June 2022 
corresponds to the 24th week of 2022. If we take 𝑝 = 1 lag in our estimation, we obtain 
14 June 2022, which also corresponds to the 24th week of 2022. Therefore, we choose 
the spatial weight matrix for the 24th week. Nevertheless, if lag 𝑝 = 5 is taken from 15 
June 2022, the observed date would be 10 June 2022, corresponding to the 23rd week of 
2022, that is, the spatial weight matrix will be that of the 23rd week. Therefore, the value 
of the spatial weight matrix does not change by day within the same week. 

Estimates are conducted separately for each lag day: meaning that the estimation is 
performed seven times. A model encompassing all lag orders (distributed lag model) is 
also estimated to ensure robustness. We employ the polynomial degree 1 Almon lag 
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model to avoid multicollinearity arising from the distributed lag model. Further details on 
the Almon lag model estimation are provided in Appendix D. 

 

Constructing a spatial weight matrix in the estimation model 

To construct a spatial weight matrix, 𝑾∗, we acquire a dataset called Cross-Prefecture 
Travel Data from Vital Signs of Economy-Regional Economy and Society Analyzing 
System (V-RESAS) provided by the Cabinet Secretariat and the Cabinet Office, 
Government of Japan [18]. These data are constructed from Agoop Corporation’s Current 
Population Data, which is based on GPS data obtained with user consent from specific 
smartphone applications and makes demographic data using day/night population data.  

There are two types of data: movement from other prefectures to the relevant 
prefecture and movement from the relevant prefecture to other prefectures. In this study, 
we choose the former. Since the latter is the movement of people in one’s own prefecture, 
reverse causality from the dependent variable (human mobility in one’s own prefecture) 
to the spatial weight matrix (human movement from one’s own prefecture to other 
prefectures) can occur, which creates an endogeneity concern. Furthermore, there are two 
types of population movement: composition (%) and index. We choose the index because 
the index allows us to capture the decrease in movement compared to 2019 and the 
changes in the inter-prefecture movement for each prefecture. The index is based on the 
average movement across prefectures for all weeks in 2019 as 1. The ISO-8601 week 
number is employed in the index. According to V-RESAS, the index data is calculated as 
follows, 

The	index	

= 	 *
The	population	that	moved	from	other	prefectures	to	the	prefecture	during	the	week	in	question
The	average	population	that	moved	from	other	prefectures	to	the	prefecture	per	week	in	2019 	?. 

The spatial weight matrix 𝑾 for the specific week is standardised using Kelejian and 
Prucha’s method [19]: 

𝑾∗ = 𝑾×
1

min 9max
!
∑ 𝑤!&'
& , max

&
∑ 𝑤!&(
! ?

, (A1) 

where 𝑤!& is an element of the spatial weight matrix with row 𝑖 (travel from) and column 
𝑗 (travel to), and the diagonal element 𝑤!! is 0. This standardisation is conducted for all 
sample weeks. During the pandemic, the more people travel from prefecture 𝑖 to their own 
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prefecture 𝑗, the more the COVID-19 trend in prefecture 𝑖 is expected to affect human 
mobility inside 𝑗 substantially. Two factors can explain this: (1) the higher the interaction 
of the people between 𝑖  and 𝑗 , the higher the risk of COVID-19 transmission across 
prefectural borders; and (2) for commuters 𝑗 to 𝑖, the trends in prefecture 𝑖 are of concern. 
The larger the element of the spatial weight matrix, 𝑤!&∗ , the higher the number of people 
moving from prefecture 𝑖 to	𝑗. 

Using the constructed spatial weight matrix, 𝑾"
∗, we create the cross-terms, spatially 

weighted infected cases 𝑾"
∗ × ∆𝑰!"∗ , spatially weighted DSE 𝑾"

∗ × ∆𝑬!" , and spatially 
weighted vaccination 𝑾"

∗ × ∆𝑽!" to examine the impact of information from the number 
of infections in other prefectures, the DSE in other prefectures, and the vaccination rate 
in other prefectures, respectively.  

Regarding the impact of NPIs on human mobility, Ilin et al. [20] investigate the 
spatial spillover effects of NPIs on neighbourhoods. The authors consider certain 
distances for measuring the effects but not spatial interactions using spatial weights. 
Another study [21] uses a spatial error panel model to assess the effects of DSE on 
mobility. However, it does not contain the spatial structure for the explanatory variables, 
as we do. In addition, in constructing spatial weights, they use a nearest neighbour dummy 
that captures whether the other prefecture is close or not to a specific prefecture. Our study 
differs from these studies in that we employ spatial weight matrices constructed by the 
data related to human travel across prefectures, thus accounting for spatial interactions. 

As an example, the elements of the spatial weight matrix for the last week of January 
2020 (27 January–2 February 2020) are illustrated in Fig B1. This period occurred just 
prior to the pandemic when irregular movements due to the New Year celebrations in 
Japan had already dissipated; as a result, this week is representative of normal inter-
prefecture travel. In Fig B1, the dark-red-coloured cells indicate that more people travel 
between prefectures located in or around large cities such as Tokyo, Aichi, Osaka, and 
Fukuoka. 
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Fig B1. Spatial weight matrix per prefecture for the last week of January 2020 (27 
January–2 February 2020). Constructed using V-RESAS’s Cross-Prefecture Travel 
data from the Cabinet Secretariat and the Cabinet Office, Government of Japan. Within 
the figure, the darker the red colour, the greater the number of travellers between 
prefecture 

 

Spatially weighted fixed effects in the estimation model 

To control for the unobservable spatial spillovers resulting from the travel between each 
prefectural pair (other than spatially weighted infection, spatially weighted DSE, and 
spatially weighted vaccination, which are observable), we use the elements of a 
standardised spatial weight matrix 𝑾∗, as if the least squares dummy variable (LSDV) 
estimation. In other words, component ∑ 𝛿&𝑤!&"∗'

&)*  represents spatially weighted fixed 
effects [22, 23], where cross-prefecture travel in each prefecture, 𝑤!&"∗ , varies over cross-
sectional (prefectural) dimension 𝑖  and time dimension 𝑡  and 𝛿&  is to be estimated. 
Unobservable spatial spillovers are related to human travel among prefectures, which are 
specific to the cross-sectional (prefectural) unit and vary over time. 
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Common factors and loadings in the estimation model 

Common factors, denoted by 𝐹"+, are unobservable elements that vary over time and are 
common for all cross-sectional (prefectural in our case) units. Since each cross-sectional 
unit (in our case, prefectures) receives a different load from the common factor, 𝝀+ 
describes the difference in loadings. Component ∑ 𝝀+𝐹"+,

+)* "  corresponds to the 
generalisation of individual-specific and time-specific fixed effects in the panel data 
analyses; this component can better describe time-varying unobservable elements with 
different loadings through cross-sectional units than ordinary two-way fixed effects. 

In fact, there are unobservable factors affecting human mobility that should be taken 
into account. For example, suppose a new variant of COVID-19 emerged in a country 
other than Japan. In that case, it is probable that people in urban areas such as Tokyo and 
Osaka, which have international airports and large population concentrations, would be 
more cautious of the outbreak than people in rural areas. Thus, when vigilant of the 
severity of a new variant infection, people in urban and rural areas will exercise different 
levels of caution in responding to such information. 

Another example of an unobservable factor is how government policies are 
transmitted. For instance, even if there is an announcement by the Japanese government 
regarding vaccinations, each prefecture has a different system for promoting vaccinations, 
so residents in each prefecture (or, more specifically, each municipality, which is the main 
body promoting vaccinations) will receive the announcement differently. In addition, 
people may welcome the rapid vaccination programme announcement more in 
prefectures with higher infection rates.  

In such cases, these pieces of information are either unobservable or difficult to 
incorporate into the model. Additionally, such information affects all prefectures 
simultaneously; however, the level of sensitivity differs by prefecture. Therefore, the 
interactive effects model is a better method for controlling these unobservable factors. In 
the first example, common factors 𝐹"+ capture the risk of epidemics of the new variants, 
while the loadings 𝝀+ capture differences between prefectures in vigilance against the 
new variants. 

A Hausman-type specification test proposed by Bai [24] is used to determine 
whether it is appropriate to use the factors or classical two-way fixed effect; the results of 
all tests support the factor type. Dimension 𝑑 of factors is chosen by consistent estimation 
(Bai and Ng, [25]), which also considers the underestimation of the true variance. Our 
results show that dimension 𝑑 = 7 . For the variance-covariance matrix, we use 
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heteroscedasticity and autocorrelation consistent estimators, proposed by Bai [24]. The 
estimation of the interactive effects model is conducted using the ‘phtt’ R library with 
circumstances of R 4.0.5. 

 

Appendix C Duration of the COVID-19 infection wave for each prefecture 

As the government made no official announcements regarding the beginning and end of 
COVID-19 infection waves, we independently determine the COVID-19 wave duration 
of each prefecture, as shown in Fig C1. 

The duration of the COVID-19 infection wave in each prefecture is determined using 
the 7-day backward moving average of new COVID-19 cases in each prefecture from 22 
February 2020 to 15 August 2022. The first wave of infections began on 22 February 
2020 (due to data availability). The endpoint of each wave in each prefecture is the day 
with the lowest number of infections in that wave (in some cases, there may be several 
days in a row with the lowest number of infections; however, we assume that the 
subsequent wave begins the day after the first record low). In addition, we assume the 
wave lasts from when the DSE is issued until it is lifted (the wave does not switch during 
the DSE, with the exception of Okinawa Prefecture, where the DSE was issued in 
succession in the third and fourth waves).  

In the first wave, in some cases, some prefectures repeatedly moved back and forth 
between having no infections and having infections. In such cases, it is difficult to 
determine the lowest infection; therefore, the wave’s endpoint is specified so that the 
wave does not deviate largely from those in other prefectures. In this study, it is necessary 
to identify the peak of each wave of infections to analyse each wave’s increasing and 
decreasing phases separately. The peak is defined as the day with the highest 7-day 
backward moving average of new cases in the wave (however, the peak could not be 
observed only for the first wave in Iwate Prefecture; accordingly, the average of the peaks 
of all prefectures’ waves serves as a proxy). As a result, six waves have been identified. 
The final point is specified as 20 June 2022, when the wave for all the prefectures (i.e. 
the entirety of Japan) hit a new low. 
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Fig C1. COVID-19 wave durations in each prefecture. The data are from 22 February 
2020 to 20 June 2022. There are six waves in total, generated by taking a 7-day backward 
moving average of the number of daily new infections of COVID-19 from NHK. 

 

Appendix D Performing the estimation through the Almon lag model 

When considering the Almon lag model with lags from 1 to 7, 

𝑦!" = 	𝑎 +N𝑏-𝑥!".-

/

-)*

+ 𝑒!" , (A2) 

where 𝑖 is the cross-sectional index, 𝑡 is the time index, and 𝑝 is the lag taken for the time 
dimension 𝑡. The expression of the polynomial degree 1 Almon lag model is 

𝑦!" = 	𝑎 + 𝜃0N𝑥!".-

/

-)*

+ 𝜃*N𝑘𝑥!".-

/

1)*

, (A3) 

The estimated coefficients can be retrieved from 

𝑏V- = 𝜃V0 + 𝜃V*𝑝. (A4) 
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To find the standard errors of the estimated coefficients, we use the following equation:  

𝑠. 𝑒. Y𝑏V-Z = '𝑉𝑎𝑟[𝑏V-] = '𝑉𝑎𝑟[𝜃V0 + 𝜃V*𝑝]

= ^N𝑝$2𝑉𝑎𝑟[𝜃V2]
$

2)0

+ 2N𝑝(245)𝐶𝑜𝑣[𝜃V2 , 𝜃V5]
275

, (A5) 

where 𝑞 and 𝑟 are the order of 𝜃, that is, the degree of the Almon lag, and 𝑞 ≠ 𝑟. For a 
detailed explanation of the Almon lag model, see, for instance, Chapter 17 in [26]. 

 

Appendix E Results of the residential time response 

The residential category indicates the change in the time spent at home. According to 
Google [27], given that people are already spending a large portion of their day at their 
residences, the change in time spent at home is not substantial (even on workdays) 
compared to the human mobility response. As per Fig E1, the response is minimal; 
however, the trends are clear. 

E.1 Infected cases in the increasing phase 

A 1% week-on-week increase in the number of infected cases during the first wave is 
associated with at most a 0.26 pp (lag: 3, s.e. = 0.03) week-on-week increase in the 
percentage change of the residential time from the baseline (Fig E1a). In the second wave, 
the confidence interval is narrower, and the magnitude of the increase in the residential 
time is lower than in the first wave, with a maximum of 0.11 pp (lag: 2, s.e. = 0.02). 
Similar to the case of retail and recreation, the impact in the first and second waves 
decreased each day (from 3-day to 7-day lags in the first wave and from 2-day to 7-day 
lags in the second wave). 

In the third and fourth waves, the effect is even more negligible, with a maximum 
increase of 0.09 pp in the third wave (lag: 3, s.e. =0.02) and a maximum increase of 0.09 
pp in the fourth wave (lag: 7, s.e. = 0.04). The fourth wave has a slightly increasing trend 
as the lag periods are longer. For all four waves, all of the results are significant at a 5% 
significance level. While for the fifth wave, when the Delta variant was prevalent, the 
impact increase from lag 1 to lag 4, with a maximum increase of 0.14 pp (lag: 4, s.e. = 
0.04). Similarly, for the sixth wave, when the Omicron variant was prevalent, an 
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increasing trend is observed as the lag periods become longer, with a maximum increase 
of 0.10 pp (lag: 7, s.e. = 0.03). 

A habituation trend is also observed for stay-at-home behaviour from the first to the 
third wave. However, due to the prevalence of the new variants from the fourth wave, the 
habituation trend halted, and the fourth to the sixth waves show an increasing tendency 
each lag day, as in the retail and recreation case. 

E.2 Infected cases in the decreasing phase 

In the decreasing phase (Fig E1b), when the estimates are positive and significant, means 
the residential time decreases as the infected cases drop. In the first wave, residential time 
is reduced by 0.14 pp at max (lag: 4, s.e. = 0.02). However, the impact is smaller than in 
the increasing phase. Similar to the retail and recreation case, behaviours did not entirely 
return to normal, possibly due to fear of COVID-19. In the second wave, the impact is 
even smaller, with a maximum reduction of 0.08 pp (lag: 2, s.e. = 0.02). At the same time, 
the third wave is insignificant except for lag 3; furthermore, the impact of lag 3 is 
negligible. Conversely, in the fourth wave, the magnitude of the estimates increases 
slightly. Notably, the same tendency (response rose in the fourth wave) is observed in the 
retail and recreation case, with a maximum reduction of 0.12 pp (lag: 2, s.e. = 0.01). Again, 
the fifth wave is insignificant for all lag days, consistent with the retail and recreation 
case. The sixth wave, as in the case of retail and recreation, has a larger impact, with a 
0.17 pp reduction (lag: 3, s.e. = 0.05). 

E.3 Spatially weighted infected cases 

For spatially weighted infected cases (Fig E1c), as for spatially weighted infected cases 
in retail and recreation, the impact of the first wave is large. The maximum impact is 0.46 
pp (lag: 6, s.e. = 0.07) on residential time (i.e. residential time increases as the infected 
case increases in other prefectures and vice versa). In the second wave, the impact drops, 
with a maximum of 0.11 pp (lag: 2, s.e. = 0.03). In the third wave, all lags are insignificant 
at a 5% level. In the fourth wave, the estimates are slightly higher, with a maximum of 
0.19 pp (lag: 5, s.e. = 0.07). Meanwhile, in the fifth wave, all lags are insignificant except 
lags 3, 5 and 6; these three lags all have negligible estimates. Finally, the sixth wave, 
when the Omicron variant spread, shows the influence of infection information from other 
prefectures—while all lags are significant, the effect is relatively weak. 

E.4 DSE and spatially weighted DSE 
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Although the estimates for the DSEs are positive, only the third wave is significant at a 
5% level (estimated coefficient = 0.21, s.e. = 0.03) (Fig E1d). DSEs have relatively small 
impacts on residential time compared to retail and recreation. The spatially weighted DSE 
is positive and significant for all waves, but the impact is weak (Fig E1e).  

E.5 Vaccination and spatially weighted vaccination 

An increase in vaccination rates within a prefecture negatively affects stay-at-home 
behaviour (i.e. people become more willing to go out). The results show that only lags 5 
through 7 for the second vaccine dose are significant (Fig E1f). Although the magnitude 
is relatively small, similar to retail and recreation, the second vaccine dose effectively 
changed human behaviours. While spatially weighted vaccination has negligible effects 
(Fig E1g). 

E.6 Control variables 

Of the control variables (Fig E1h), only precipitation is positively significant; the more 
precipitation, the more likely people are to stay at home. 

E.7 Results for the Almon lag model 

The estimated results utilising the Almon lag model for robustness are displayed in Fig 
E2. The results here generally support the results shown in Fig E1.  

E.8 Comparison between retail and recreation and residential time 

Overall, Fig 3 in the main manuscript and Fig E1 show that, although the magnitude 
differs, retail and recreation, and residential human behaviours are quite the opposite 
impacted by COVID-19-related information during each wave. From this, the results for 
the residential time support our main results for the retail and recreation responses. 
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Fig E1. Residential time responses to COVID-19-related information. On each chart, 
the points are estimated coefficients, and the bars indicate upper and lower 95% 
confidence intervals. The grey line traces the average coefficients of each lag day. There 
are six infection waves, but DSEs were only issued for the first, third, fourth, and fifth 
waves. We take a daily lag from 1 to 7 days for infected cases in the increasing phase, 
infected cases in the decreasing phase, spatially weighted infected cases, vaccination, and 
spatially weighted vaccination. We conduct the regression analysis seven times, from lags 
1 to 7. We do not take a daily lag for the DSE, spatially weighted DSE, and controls; 
these estimates are from the lag-1 regression.  
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Fig E2. Residential time responses to COVID-19-related information using the 
Almon lag model. On each chart, the points are estimated coefficients, and the bars 
indicate upper and lower 95% confidence intervals. The grey line traces the average 
coefficients of each lag day. There are six infection waves, but DSEs were only issued 
for the first, third, fourth, and fifth waves. We take a daily lag from 1 to 7 days for infected 
cases in the increasing phase, infected cases in the decreasing phase, spatially weighted 
infected cases, vaccination, and spatially weighted vaccination. We do not take a daily 
lag for the DSE, spatially weighted DSE, and controls. 
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