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Abstract 

Background 
Surgical resection is the standard of care for patients with large or symptomatic brain 
metastases (BMs). Despite improved local control after adjuvant stereotactic radiotherapy, 
the local failure (LF) risk persists. Therefore, we aimed to develop and externally validate a 
pre-therapeutic radiomics-based prediction tool to identify patients at high LF risk. 

Methods 
Data were collected from A Multicenter Analysis of Stereotactic Radiotherapy to the 
Resection Cavity of Brain Metastases (AURORA) retrospective study (training cohort: 253 
patients (two centers); external test cohort: 99 patients (five centers)). Radiomic features 
were extracted from the contrast-enhancing BM (T1-CE MRI sequence) and the surrounding 
edema (FLAIR sequence). Different combinations of radiomic and clinical features were 
compared. The final models were trained on the entire training cohort with the best 
parameters previously determined by internal 5-fold cross-validation and tested on the 
external test set. 

Results 
The best performance in the external test was achieved by an elastic net regression model 
trained with a combination of radiomic and clinical features with a concordance index (CI) of 
0.77, outperforming any clinical model (best CI: 0.70). The model effectively stratified 
patients by LF risk in a Kaplan-Meier analysis (p < 0.001) and demonstrated an incremental 
net clinical benefit. At 24 months, we found LF in 9% and 74% of the low and high-risk 
groups, respectively. 

Conclusions 
A combination of clinical and radiomic features predicted freedom from LF better than any 
clinical feature set alone. Patients at high risk for LF may benefit from stricter follow-up 
routines or intensified therapy. 
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Key points  
• Radiomics can predict the freedom from local failure in brain metastasis patients 
• Clinical and MRI-based radiomic features combined performed better than either 

alone 
• The proposed model significantly stratifies patients according to their risk 
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Importance of the Study 
Local failure after treatment of brain metastases has a severe impact on patients, often 
resulting in additional therapy and loss of quality of life. This multicenter study investigated 
the possibility of predicting local failure of brain metastases after surgical resection and 
stereotactic radiotherapy using radiomic features extracted from the contrast-enhancing 
metastases and the surrounding FLAIR-hyperintense edema.  
By interpreting this as a survival task rather than a classification task, we were able to predict 
the freedom from failure probability at different time points and appropriately account for the 
censoring present in clinical time-to-event data. 
We found that synergistically combining clinical and imaging data performed better than 
either alone in the multicenter external test cohort, highlighting the potential of multimodal 
data analysis in this challenging task. Our results could improve the management of patients 
with brain metastases by tailoring follow-up and therapy to their individual risk of local failure. 
 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.24300782doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300782
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 
Brain metastases (BMs) are the most common malignant brain tumors, far outnumbering 
primary brain tumors such as gliomas1. Recent guidelines recommend surgery as a 
treatment for patients with symptomatic or large BMs2. To improve local control, stereotactic 
radiotherapy (SRT) should be applied to the resection cavity in patients with one to two 
resected BMs2. This way, local control rates of 70% to 90% at twelve months can be 
achieved3.  
Determining an individual patient's risk of local recurrence can benefit patients by tailoring 
follow-up treatment and care. For example, patients at high risk of local failure may benefit 
from SRT dose escalation, systemic therapy agents with penetration of the blood-brain 
barrier, and more frequent follow-up imaging after SRT to detect a potential failure early. 
Recent publications have demonstrated the power of automated segmentation of BMs and 
their surrounding edema4–6. This cannot only help radiation oncologists by eliminating the 
time-consuming task of manual BM delineation but can also simplify other additional 
evaluations: Radiomics allows the extraction of large amounts of quantitative imaging 
features from a previously delineated image7. This enables professionals to analyze 
additional information that is not visible to the human eye and allows the creation of 
predictive mathematical models8. 
Such radiomics models can be used for multiple tasks such as tumor characterization, 
prediction of treatment response, and prognostic risk assessment9–13.  
Some radiomic features are sensitive to acquisition modes and reconstruction parameters14. 
Furthermore, MRI intensities are not standardized and depend on the manufacturer and 
model of the devices15. Moreover, patients and treatment characteristics can differ between 
medical institutions. Therefore, multicentric training and testing are needed to develop and 
validate generalizable models.  
Several previous studies could demonstrate the general propensity of radiomics to predict 
local failure (LF) as a binary variable in patients receiving stereotactic radiotherapy without 
surgery in monocentric studies without external validation16–18. 
The aim of this project was to develop a pre-therapeutic radiomics-based machine learning 
model to predict freedom from local failure (FFLF) after surgical resection and SRT of BMs. 
All models were validated in an external multicenter international test cohort. The ability to 
stratify patients into specific risk groups and their net clinical benefit were assessed. 
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Methods 

AURORA study 
MR imaging and clinical data was collected as part of the “A Multicenter Analysis of 
Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases” (AURORA) 
retrospective trial. The trial was supported by the Radiosurgery and Stereotactic 
Radiotherapy Working Group of the German Society for Radiation Oncology (DEGRO). The 
inclusion criteria were: known primary tumor with resected BM and SRT with a radiation dose 
of > 5 Gy per fraction. Exclusion criteria were: interval between surgery and RT > 100 days, 
premature discontinuation of RT, and any previous cranial radiation therapy (RT). 
Synchronous non-resected BMs had to be treated simultaneously with SRT. Ethical approval 
was obtained at each institution (main approval at the Technical University of Munich: 119/19 
S-SR). 
LF was determined by individual radiologic review or by histologic results after recurrence 
surgery. FFLF was calculated as the time difference between the end of SRT and LF. If no 
LF occurred, patients were right-censored after the last available imaging follow-up. 

Dataset 
In total, we collected data from 481 patients from seven centers. We analyzed four 
preoperative imaging sequences of each patient: a T1-weighted sequence with and without 
contrast enhancement (T1-CE and T1), a T2-weighted sequence (T2) as well as a T2 fluid-
attenuated inversion recovery sequence (T2-FLAIR). Except for T1-CE, a missing sequence 
was allowed.  
The required data were available for 352 patients. We split the patients into a training cohort 
with 253 patients from two centers and an external, multicenter, international test cohort with 
99 patients from five centers. 

Preprocessing 
The DICOM (Digital Imaging and Communications in Medicine file format) images were 
converted to NIfTI (Neuroimaging Informatics Technology Initiative file format) using 
dcm2niix19. The MRI sequences were then further preprocessed using BraTS-Toolkit20. First, 
the sequences were co-registered using niftyreg21 and these were then transformed into the 
T1-CE space. A brain mask was created using HD-BET22 and applied to all sequences to 
extract only the brain without the surrounding skull. The skull-stripped sequences were 
transformed into the BraTS space using the SRI-24 atlas23. Overall, the preprocessing 
provided co-registered, skull-stripped sequences in a 1 millimeter isotropic resolution in 
BraTS space. 
The missing sequences were then synthesized using a generative adversarial network 
(GAN). The GAN takes the three available sequences as input and generates the matching 
missing fourth sequence. We used a GAN which was originally developed for missing 
sequences in glioma imaging24, but has been proven to work for metastasis imaging4,5.  

Segmentation 
All contrast-enhancing metastases and their surrounding edema were individually segmented 
using the open-source software 3D-Slicer (version 4.13.0, stable release, 
https://www.slicer.org/)25 by a medical doctoral student (JAB) after undergoing extensive 
training by a board-certified radiation oncologist (JCP) (7 years of experience). To ensure 
accuracy, all segmentations for the test cohort were reviewed and manually adjusted by 
JCP.  
To test the feasibility of a fully automated workflow, segmentations generated by a previously 
trained neural network4,5 were used as alternative segmentations and compared to the 
manual segmentations. 
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As around 25% of patients had multiple BMs, but usually only the largest is resected26, we 
also determined the largest metastasis with a connected component analysis27 in all patients 
with multiple BMs and used only that metastasis and its surrounding edema as 
segmentations for an additional analysis. 

Radiomic feature extraction 
Radiomic features were extracted with pyradiomics (version 3.0.1, https://github.com/AIM-
Harvard/pyradiomics)28 using the Python implementation. The metastasis segmentation was 
used to extract the T1-CE features, while the edema segmentation was used for the T2-
FLAIR features. In total, we extracted 104 original features per segmentation (see 
Supplemental Table 1 for a list of features and extraction parameters). 
Further analysis and modeling were performed in the programming language R 4.2.329. To 
adhere to the Image Biomarker Standardisation Initiative (IBSI) standard30, the kurtosis was 
adjusted by -3. We created nine feature sets in total. Three of these included only radiomic 
features. The metastasis and edema feature sets were created by extracting the features 
from the T1-CE sequence and T2-FLAIR sequence, respectively. Both feature sets were 
merged into a combined feature set. We also created three clinical feature sets with the 
following clinical features:  

• pre-OP feature set: patient age at RT start, Karnofsky performance status (KPS), 
histology of the primary tumor, location of BM 

• post-OP feature set: pre-OP + resection status 
• RT feature set: post-OP + concurrent chemotherapy, concurrent immunotherapy and 

equivalent dose in two Gray fractions (EQD2) 
As a seventh feature set, we combined all radiomic features (combined) with the pre-OP 
feature set to comb+pre-OP. 
Multiple publications suggest the predictive value of the brain metastasis volume (BMV) for 
predicting LF31–33. Therefore, we created two additional feature sets by adding the cumulative 
BMV of each patient as an additional feature to the pre-OP set (pre-OP+BMV) and the 
comb+pre-OP set (comb+pre-OP+BMV). 

Intraclass correlation 
To identify radiomic features that were susceptible to small changes in segmentation, we 
generated additional segmentations of all patients in the training cohort using the previously 
mentioned neural network4. Intraclass correlation (ICC (3,1)) was calculated using the R 
package “irr”34. According to Koo et al., an ICC above 0.75 is considered “good”35. 
Consequently, this value was employed as a cut-off threshold. Of the 208 features, 173 
(83%) had an ICC of > 0.75 and were selected for all further steps. Of the 35 excluded 
features, the majority (27) were extracted from the edema mask, while only eight excluded 
features were extracted from the metastasis mask. 
All selected radiomic features were normalized by z-score standardization and by applying 
the Yeo-Johnson transformation36 to transform the distribution of a variable into a Gaussian 
distribution. 

Feature reduction 
We applied a minimum redundancy - maximum relevance (MRMR) ensemble feature 
selection framework implemented in R37 initially proposed by Ding et al.38 as an efficient 
method for the selection of relevant and non-redundant features.  
We created multiple smaller feature sets of the metastasis, edema, and combined feature 
sets with three, five, seven, nine, eleven, thirteen, and fifteen features each.  
We used bootstrapping39 to obtain more reliable results: Feature reduction was repeatedly 
applied to 1000 bootstrap samples for each set and each number of features. For our final 
set of features, we ranked the features based on the number of times they were selected. 
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The best number of features was later determined by nested cross-validation in the training 
set.  

Batch harmonization 
To account for differences created by 29 different MRI scanners in our multicenter dataset, 
we used batch harmonization implemented by neuroCombat40. In total, 10 batches were 
created according to the MRI model names by combining related models. According to 
Leithner et al.41, ComBat harmonization without Empirical Bayes estimation provided slightly 
higher performance in similar machine learning tasks. Therefore, Empirical Bayes was 
deactivated. Besides the non-harmonized dataset, we created two harmonized datasets: one 
by only adjusting the means and the other by adjusting means and variances.  

Model creation, testing, and patient stratification 
For model creation and evaluation, the R package MLR342 was used as a basis. Our 
prediction target was right-censored time-to-event data, where we used LF as the event and 
the FFLF or time-to-last imaging follow-up as the time variable for patients with and without 
event, respectively. We compared three different learners: random forest (RF), extreme 
gradient boosting (xgboost), and generalized linear models with elastic net regularization 
learner (ENR).  
We implemented nested cross-validation to select the best mode of batch harmonization and 
the best number of features: For batch harmonization selection, all three datasets were 
compared while always using the combined feature set with nine features. Five iterations of 
five-fold nested cross-validation for dataset selection showed no significant difference 
between the sets with and without batch harmonization (p = 0.3, Kruskal-Wallis rank sum 
test). Therefore, all further analyses were performed on the base dataset without batch 
harmonization to avoid unnecessary and potentially distorting preprocessing steps. To select 
the ideal number of features in each feature set, the nested cross-validation was conducted 
without batch harmonization. The best average performance was achieved with seven, three, 
and seven features in the metastasis, edema, and combined sets, respectively. The 
comb+pre-OP set, which included the seven combined and four clinical features, therefore, 
had 11 features. The features are listed in Supplementary Table 2. 
The parameter tuning was performed using repeated cross-validation. All tuning and 
selection steps were performed on the training set. To account for the class imbalance 
(around 1:5 event:no-event), synthetic minority over-sampling was implemented using 
SMOTE43. We used an implementation in R which is capable of handling numeric and 
categorical data. The number of samples in the minority class was increased by creating 
synthetic samples to reach a ratio of 1:2. We only used SMOTE on the training folds in each 
step of our (nested) cross-validation. This way we ensured that our models were only 
validated on real patients. 
The final models were trained with the best parameters determined by the cross-validation 
on the whole training set while also using SMOTE to balance the classes. The models were 
then tested on our multicentric external test cohort. 
The 33rd and 66th percentiles of the continuous risk ranks in the training cohort were used 
as cutoffs for patient stratification. These cutoffs were used to divide the test cohort into three 
groups according to their predicted continuous risk rank and compare their survival with 
Kaplan Meier analysis. 

Metrics 
To account for both timing and outcome, the learners' performance was quantified using the 
concordance index (CI)44. The 95% confidence intervals are based on 10,000 bootstrap 
samples. A decision curve analysis was performed to consider clinical consequences with a 
time endpoint of 24 months45. The threshold range was chosen as suggested by Vickers et 
al.46 based on these considerations: Since LF is a severe event and its detection is critical, a 
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lower threshold of 5% seems appropriate. Especially in elderly and multimorbid patients, 
where additional imaging may be burdensome, an upper threshold of 30% is reasonable. 
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Results 
An overview of patient characteristics of both patient cohorts is shown in Table 1. A total of 
147 patients had missing sequences, the majority of which were missing T2 and T1 
sequences (82% and 10%, respectively), which were not relevant for our further analyses. 
The general workflow, with example images of a test cohort patient, is shown in Figure 1. 

Baseline clinical models 
To create a baseline for comparison with our radiomic models, we first tested the predictive 
value of two established clinical indices with univariate Cox analysis: the Recursive 
Partitioning Analysis (RPA)47 and the Graded Prognostic Assessment (GPA)48 index. They 
reached a CI of 0.47 and 0.52 in the internal validation, respectively. In external testing, RPA 
again performed worse with a CI of 0.39 compared to GPA with a CI of 0.44. 

Model performance 
The performances in the internal validation, as well as in the multicentric external test cohort, 
are shown in Table 2. To determine the best overall learner, we ranked the performance 
across all feature sets and found that ENR ranked best, followed by RF and xgboost with 
mean ranks of 1.4, 1.6, and 2.9, respectively. Therefore, all further experiments were 
conducted with ENR. For completeness, the results obtained by RF and xgboost are shown 
in Supplementary Tables 3 and 4. The highest mean CI across all five folds and ten iterations 
of the cross-validation was achieved with the comb+pre-OP feature set (CI = 0.67).  
The comb+pre-OP feature set also led to the highest performance in the external test cohort 
and achieved a CI of 0.77. While the T1-CE feature set achieved a CI of 0.76, FLAIR was 
only able to reach 0.50. The three clinical feature sets performed slightly worse than our 
radiomic feature sets or the combined feature sets: the pre-OP, post-OP, and RT feature 
sets reached a CI of 0.64, 0.63, and 0.63 in the internal validation, respectively. In external 
testing, they achieved a CI of 0.70, 0.65, and 0.70, respectively. While adding the BMV to the 
pre-OP feature set did not change the predictive performance, adding it to comb+pre-OP led 
to worse results with a CI of 0.72.  
For reproducibility, we listed the beta values used by our best model (comb+pre-OP ENR) in 
Supplementary Table 5. The corresponding calibration curve to this model is shown in Figure 
2 (right panel). Furthermore, we calculated the time-dependent area under the receiver 
operating characteristic curve (AUC) by transforming the crank to an event probability 
distribution. The proposed model reached a mean of 0.80. Supplementary Figure 1 shows 
the plotted time-dependent AUC. 

Patient stratification 
Using the cutoffs determined by the training cohort as described above, our comb+pre-OP 
ENR model was able to significantly stratify the patients into three risk groups with a low, 
medium, and high risk of local failure (p = 0.0001, Chi-squared Test). A Kaplan-Meier 
analysis with all three groups is shown in Supplementary Figure 2. 
By combining the low- and medium-risk groups into one, we created dichotomous 
predictions. Kaplan-Meier analysis (Figure 2) illustrates the survival in each risk group.  
Decision curve analysis using these predictions showed a net benefit of our predictive model 
compared to treating all patients in the relevant threshold range (Figure 3). 

The relevance of brain metastasis volume 
The predictions of our comb+pre-OP ENR model did weakly correlate with the cumulative 
BMV or BMV of the largest BM (Spearman's rank correlation: r = 0.246 (p = 0.014) and 0.254 
(p = 0.011), respectively). 
While cumulative BMV alone was highly predictive in the test cohort, with a CI of 0.76 in a 
univariate Cox analysis, it only achieved a CI of 0.53 in internal validation. Using the BMV of 
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only the largest BM increased the internal validation and external testing performance to 0.55 
and 0.77, respectively. There was no significant difference in the BMV between the training 
and test cohort (p = 0.64, Wilcoxon rank sum test).  
Stratifying our test set into small and large BMs by dividing the set at the median volume 
resulted in groups with three and 13 events, respectively. Our best model scored a CI of 0.58 
and 0.78 in the respective groups. Interestingly, the model significantly risk-stratified the 
patients in the small BMV group, but not in the high BMV group (corresponding Kaplan-Meier 
analysis are depicted in Supplementary Figures 3 and 4). 
When repeating the training and testing with the radiomic features extracted only from the 
biggest BM, the ENR learner was able to reach a CI of 0.75 (comb+clinical, Table 3). The 
results obtained by the RF model even surpassed our previously best model by 0.01 (CI = 
0.78, Supplementary Table 4). 

End-to-end model using neural network-based automatic segmentations 
To test the predictive value of neuronal network-based segmentations and therefore test the 
feasibility of a fully automated workflow, we conducted an additional parameter tuning and 
training run with radiomic features extracted from the automatically created segmentations. 
The results for our ENR learner are shown in Table 3. The best test results with this data 
were again obtained with the comb+pre-OP feature set (CI = 0.72). Overall, we observed an 
average decrease in performance by 0.06. 
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Discussion 
In this work, we were able to develop radiomics-based machine learning models that were 
able to predict FFLF better than clinical features alone. Our best model was trained with a 
combination of radiomic and clinical features and achieved a CI of 0.77 in a multicenter 
external test cohort outperforming any clinical predictive model. Our final model’s predictions 
significantly stratified the test patients into two risk groups and achieved an incremental net 
clinical benefit.  
 
When using automatically generated segmentations from a previously trained neural 
network, the models performed slightly worse, with an average performance loss of 0.06. 
Still, the comb+pre-OP ENR model was able to reach a respectable CI of 0.72 in external 
testing. This demonstrates that an end-to-end solution is possible without clinician 
intervention. 
 
The results in the external test cohort were, on average, better by a CI of 0.04. This may be 
explained by the larger amount of data available for training: The models tested on the 
external cohort were trained on all training data, while for internal validation, only 80% of the 
data was used for training, while testing was performed on the remaining 20%. 
 
Several studies have approached predicting the LF of BMs. Most of them interpreted the 
prediction as a classification task and therefore only predicted whether an event occurred at 
a predetermined time16–18,49–58. In contrast, we approached the task as a survival task and 
therefore predicted a combination of event and time in terms of FFLF. 
Another study predicting event and time of local failure by Huang et al.59 used Cox 
proportional hazards models and found that non-small cell lung cancer BMs with a higher 
zone percentage were more likely to respond favorably to Gamma Knife radiosurgery. In 
contrast to the treatment with surgery and adjuvant SRT in our study, the aforementioned 
studies focused on BMs treated with SRT, WBRT, and immune checkpoint inhibitors. Only 
one monocentric study with 67 patients by Mulford et al.52 investigated the prediction of local 
recurrence after surgical resection and adjuvant stereotactic radiosurgery, and found that 
radiomic features provided more robust predictive models of local control rates than clinical 
features (AUC = 0.73 vs. 0.40). Unlike our study, they predicted local failure as a binary 
classification task. 
Another unique feature of our study is the multicenter external test cohort with patients 
treated at five different centers in multiple countries. In contrast to our study, the 
aforementioned studies all tested their models on an internal validation set and were 
therefore not tested on such a wide variety of scanners and imaging protocols as our models 
were. 
 
Contrary to findings in previous studies60, the cumulative BMV and the BMV of the largest 
BM were not predictive in the internal validation, where they only reached a CI of 0.53 and 
0.55, respectively. Since outcome and BMV appear to be independent in the training cohort, 
radiomic features representing BM size were not selected by our feature reduction algorithm. 
The only selected shape class feature in the best-performing feature set was metastasis 
flatness. Moreover, there was only a minor correlation (r = 0.25) between the predictions of 
the radiomic model and BMV. This shows that Radiomics can predict local failure based on 
features that do not directly represent BM size or volume. 
 
Compared to approaches focusing on the use of neural networks, the use of classical 
machine learning has some advantages: Because only a small number of features are fed 
into the model, it becomes more comprehensible. Since it is known how the radiomics 
features are computed, it is possible to infer the clinical correlates. Neural networks, on the 
other hand, are more of intransparent black boxes, and it is difficult to understand exactly 
which characteristics of the tumor are predictive. In addition, neural networks often require 
the use of a graphics processing unit (GPU) to complete predictions in a reasonable amount 
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of time, while our models run on the central processing unit (CPU) and can, therefore, run on 
low-end hardware. 
 
Nevertheless, this work has several limitations: Training the models with only a limited 
number of features extracted from the segmentations prevents them from taking other factors 
into account, such as the surrounding tissue. Furthermore, segmentations of consistent 
quality are necessary for reliable results. In this study, all segmentations were created by the 
same person. To reduce the influence of the personal segmentation style, only features with 
a high correlation between manual and automatic segmentations were used for further 
modeling. The sole use of automatically generated segmentations may help with this 
limitation.  
Around one-quarter of our patients had multiple BMs. By using the cumulative BMV as a 
feature, we not only took the volume of the resected BM into account but also the volume of 
all additional BMs. In our additional analysis, where we only considered radiomic features 
extracted from the largest metastasis, the best result improved slightly, while the mean 
across all models decreased by 0.01 compared to using the combined segmentation of all 
BMs. From this, we can conclude that segmenting all BMs did not harm the prediction of 
local failure of the resected BM. 
In addition, radiomic features were extracted from a total of twelve synthesized T2-FLAIR 
sequences (six in the training cohort and six in the test cohort). Excluding these patients from 
the training and test sets resulted in a slight increase in performance. The largest increase in 
performance was found in the combined feature set (CI = 0.72 from 0.69). Furthermore, the 
T1-CE model showed the second largest increase in performance, surpassing our previous 
best feature set (comb+pre-OP), which showed no change in performance. Since the new 
best model did not even include features extracted from the T2-FLAIR sequence, we can 
conclude that radiomic features extracted from the synthesized T2-FLAIR sequences did not 
noticeably affect the performance of our model and the increase in performance may be 
attributed to the exclusion of difficult cases. 
Despite these limitations, we were able to develop a model to predict freedom from local 
progression of BMs after resection and adjuvant SRT. The model performed well in a 
multicenter external test cohort with a variety of MRI scanners and imaging and therapy 
protocols. This model may help to tailor treatment to a patient's individual risk of metastasis 
recurrence, thereby improving the overall management of BMs. We have published the 
model as an easy-to-use web app (https://jbuchner.shinyapps.io/shiny/), where the user can 
either upload the required MRI sequences and segmentations or input previously extracted 
radiomic features. 
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Figure 1: Summarized overview of our workflow 

 
After manual and automatic definition of the volume of interest (VOI), we extracted 104 
original features from each metastasis and edema segmentation. We reduced the number of 
features in each set with MRMR. Furthermore, we added up to eight clinical features and 
combined all features into multiple different feature sets. The optimal number of features in 
each set was determined with a nested cross-validation. The optimal parameters for our 
selected learners were chosen based on a 5-fold cross-validation. The best parameters for 
each learner-feature-combination were tested in the external test cohort. 
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Figure 2: Kaplan Meier analysis 

 
We created dichotomous predictions of the comb+pre-OP ENR model by using the 66th 
percentiles of the continuous risk ranks in the training cohort as cutoffs for patient 
stratification. We found a significant difference in freedom from local failure (FFLF) between 
the predicted low- and high-risk groups (p < 0.001) in the multicenter external test cohort. 
After 24 months, we found a FFLF of 91% and 26% in the groups, respectively. 
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Figure 3: Decision curve analysis (left) and calibration curve (right) 

 
Using the same groups as in Figure 2, we found a net benefit of our predictive model 
compared to treating all patients in the relevant threshold range from five to 30% through 
decision curve analysis (left). A decision model shows a clinical benefit if the respective 
curve shows larger net benefit values than reference strategies. The combination of radiomic 
features derived from the metastasis, edema, and clinical features (comb+pre-OP) resulted 
in a higher net benefit compared to using only the clinical Pre-OP features and treating all 
patients or none. The calibration curve on the right was created by transforming the 
continuous risk rank predicted by the best comb+pre-OP ENR model (in orange) and by the 
clinical pre-OP ENR model (in blue) to event probabilities at 24 months. Although both 
models seem to overestimate the actual risk of our patients, the comb+pre-OP model 
predicts the risk closer to the actual risk.  
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Table 1: Cohort demographics 

 
We split our patients into two cohorts: a training cohort (TUM: Klinikum rechts der Isar 
of the Technical University of Munich, USZ: University Hospital Zurich) and a 
multicenter external test cohort (FD: General Hospital Fulda, FFM: Saphir 
Radiochirurgie/University Hospital Frankfurt, FR: University Hospital Freiburg, HD: 
Heidelberg University Hospital, KSA: Kantonsspital Aarau). 
We differentiated between six different histologies: non-small cell lung carcinoma 
(NSCLC, further differentiated into adenocarcinoma, non-adenocarcinoma, and not 
further specified), melanoma, renal cell carcinoma (RCC), breast cancer, 
gastrointestinal cancer (GI), and others. 
There was no significant difference in age, location of the BM, primary diagnosis, 
residual area after resection, concurrent CTX, and total brain tumor burden between 
both cohorts. Significant differences were found in the Karnofsky performance status 

 Training-Cohort Test-Cohort 

Characteristic 
Overall, N = 

2531 
TUM, N = 

1671 USZ, N = 861 Overall, N 
= 991 FD, N = 51 FFM, N = 

111 FR, N = 181 HD, N = 
441 

KSA, N = 
211 

Age at RT start 62 (53, 71) 62 (53, 71) 62 (54, 69) 61 (54, 67) 63 (55, 64) 57 (52, 66) 58 (50, 66) 61 (54, 65) 63 (59, 70) 

KPS 80 (70, 90) 80 (70, 90) 90 (80, 90) 90 (80, 90) 80 (80, 80) 90 (90, 90) 90 (82, 
100) 

80 (78, 90) 90 (90, 
100) 

Location          

Frontal 86 (34%) 67 (40%) 19 (22%) 33 (33%) 1 (20%) 4 (36%) 5 (28%) 14 (32%) 9 (43%) 

Temporal 32 (13%) 18 (11%) 14 (16%) 7 (7.1%) 2 (40%) 0 (0%) 1 (5.6%) 2 (4.5%) 2 (9.5%) 

Parietal 47 (19%) 28 (17%) 19 (22%) 20 (20%) 2 (40%) 1 (9.1%) 1 (5.6%) 13 (30%) 3 (14%) 

Occipital 27 (11%) 12 (7.2%) 15 (17%) 12 (12%) 0 (0%) 2 (18%) 3 (17%) 5 (11%) 2 (9.5%) 

Cerebellar 56 (22%) 39 (23%) 17 (20%) 24 (24%) 0 (0%) 4 (36%) 5 (28%) 10 (23%) 5 (24%) 

Other 5 (2.0%) 3 (1.8%) 2 (2.3%) 3 (3.0%) 0 (0%) 0 (0%) 3 (17%) 0 (0%) 0 (0%) 

Primary Diagnosis          

NSCLC 89 (35%) 37 (22%) 52 (60%) 39 (39%) 3 (60%) 6 (55%) 2 (11%) 19 (43%) 9 (43%) 

Melanoma 47 (19%) 24 (14%) 23 (27%) 9 (9.1%) 1 (20%) 1 (9.1%) 1 (5.6%) 2 (4.5%) 4 (19%) 

RCC 11 (4.3%) 9 (5.4%) 2 (2.3%) 8 (8.1%) 0 (0%) 1 (9.1%) 2 (11%) 3 (6.8%) 2 (9.5%) 

Breast 34 (13%) 33 (20%) 1 (1.2%) 19 (19%) 0 (0%) 3 (27%) 5 (28%) 9 (20%) 2 (9.5%) 

GI 26 (10%) 26 (16%) 0 (0%) 11 (11%) 0 (0%) 0 (0%) 4 (22%) 5 (11%) 2 (9.5%) 

Other 46 (18%) 38 (23%) 8 (9.3%) 13 (13%) 1 (20%) 0 (0%) 4 (22%) 6 (14%) 2 (9.5%) 

Residual areas 66 (26%) 66 (40%) 0 (0%) 21 (21%) 1 (20%) 2 (18%) 1 (5.6%) 11 (25%) 6 (29%) 

Concurrent CTX 15 (5.9%) 8 (4.8%) 7 (8.1%) 3 (3.0%) 0 (0%) 2 (18%) 0 (0%) 1 (2.3%) 0 (0%) 

Concurrent ITX 10 (4.0%) 6 (3.6%) 4 (4.7%) 13 (13%) 0 (0%) 3 (27%) 0 (0%) 9 (20%) 1 (4.8%) 

EQD2 43.75 (37.50, 
43.75) 

43.75 (43.75, 
43.75) 

37.50 (37.50, 
37.50) 

37.5 (34.7, 
42.0) 

37.5 (37.5, 
40.0) 

34.7 (28.9, 
36.0) 

37.5 (37.5, 
42.3) 

38.3 (34.7, 
43.8) 

40.0 (31.2, 
40.0) 

Total brain tumor 
burden (ml) 

11 (5, 21) 11 (5, 20) 12 (7, 23) 13 (5, 24) 41 (23, 48) 17 (10, 21) 14 (5, 28) 9 (4, 15) 14 (6, 33) 

1Median (IQR); n (%) 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.24300782doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300782
http://creativecommons.org/licenses/by-nc/4.0/


(KPS, p < 0.001), concurrent ITX (p = 0.002), and the equivalent dose in 2Gy 
fractions (EQD2, p < 0.001). 
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Table 2: Performance in internal validation and external testing 
 

 
Parameter tuning and internal validation were performed with ten iterations of a five-
fold cross-validation. The 95% confidence intervals (in parenthesis) are based on 
10000 bootstrap samples. The combination of ENR learner and comb+pre-OP feature 
set performed best with a mean CI of 0.67. Adding BMV did not improve 
performance. By ranking the performance of the models across all feature sets, we 
identified ENR as the best learner and, therefore, tested this learner on the external 
test cohort. Again, the best performance was seen with the comb+pre-OP feature set 
(CI = 0.77). Best performance is printed in bold for the internal and external cohort. 

Group Learner pre-OP pre-OP + 
BMV Post-OP RT T1-CE FLAIR comb comb + 

pre-OP 
comb + pre-
OP + BMV 

5-fold CV ENR 0.64 0.63 0.63 0.63 0.65 0.47 0.62 0.67 0.67 

RF 0.63 0.63 0.63 0.63 0.61 0.58 0.64 0.66 0.66 

xgboost 0.54 0.56 0.53 0.56 0.58 0.55 0.62 0.65 0.64 

external 
test 
cohort 

ENR 0.70 

(0.53-
0.83) 

0.70 

(0.54-
0.83) 

0.65 

(0.51-
0.82) 

0.70 

(0.56-
0.83) 

0.76 

(0.63-
0.84) 

0.50 

(NA-
NA) 

0.69 

(0.55-
0.80) 

0.77 

(0.61-
0.87) 

0.72 

(0.57-0.82) 
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Table 3: Performance in the test set with automated U-Net 
segmentations and segmentations of only the largest metastasis 
 

In addition to using our manual segmentations, we also trained and tested our 
proposed model on automatically generated U-Net segmentations and segmentations 
of only the largest BM. Since the clinical feature sets are independent of the 
segmentation method, they were not added to this analysis. Compared to the manual 
segmentations, the results were, on average 0.06 and 0.02 points worse, 
respectively. 

 

Group Learner T1-CE FLAIR comb comb + 
pre-OP 

comb + pre-
OP + BMV 

Manual 
Segmentation 

ENR 0.76 

(0.63-
0.84) 

0.50 

(NA-NA) 

0.69 

(0.55-0.80) 

0.77 

(0.61-0.87) 

0.72 

(0.57-0.82) 

U-Net 
Segmentation 

ENR 0.68 

(0.54-
0.79) 

0.43 

(0.27-
0.58) 

0.64 

(0.47-0.74) 

0.72 

(0.54-0.82) 

0.67 

(0.52-0.79) 

largest BM ENR 0.75 

(0.62-
0.85) 

0.50 

(NA-NA) 

0.65 

(0.55-0.80) 

0.72 

(0.60-0.86) 

0.73 

(0.58-0.84) 
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