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1 Compared MR methods

In this study, we considered 15 summary-level data-based MR methods including IVW-fixed,

IVW-random, Egger, RAPS, Weighted-median, Weighted-mode, MR-PRESSO, MRMix, cML-

MA, MR-Robust, MR-Lasso, MR-CUE, CAUSE, MRAPSS and MR-ConMix. These methods

all belong to the family of polygenic MR which uses variants from multiple genetic regions

across the whole genome to estimate the causal effect of an exposure on an outcome. We

categorized these methods into four groups: the inverse-variance weighted (IVW) class (IVW-

fixed and IVW-random), outlier detection and removal methods (MR-PRESSO, MR-Lasso,

and cML-MA), outlier-robust methods (Weighted-median, Weighted-mode, MR-Robust), and

model-based methods (Egger, RAPS, MRMix, MR-ConMix, MR-CUE, CAUSE, and MR-

APSS). To proceed with an overview of these methods, we first introduce the basic framework

of MR and the assumptions that underlie it.

Table S1: Summary of compared methods

Method Method category IV validity assumption R package

IVW-fixed IVW-class All IVs are valid TwoSampleMR

IVW-random IVW-class
All IVs can be invalid affected by

(mean zero) uncorrelated pleiotropy
TwoSampleMR

MR-Lasso Outlier detection and removal Plurality valid MendeianRandomization

cML-MA Outlier detection and removal Plurality valid MRcML

MR-PRESSO Outlier detection and removal
Majority IVs can be invalid affected by

(mean zero) uncorrelated pleiotropy
MR-PRESSO

Weighted-median Outlier robust Majority valid TwoSampleMR

MR-Robust Outlier robust Plurality valid robustbase

Weighted-mode Outlier robust Plurality valid TwoSampleMR

Egger Model based
All IVs can be invalid affected by

(non-zero mean) uncorrelated pleiotropy
TwoSampleMR

RAPS Model based
All IVs can be invalid affected by

(mean zero) uncorrelated pleiotropy
mr.raps

MRMix (Mixture) model based Plurality valid MRMix

MR-ConMix (Mixture) model based Plurality valid MendeianRandomization

MR-APSS (Mixture) model based
All IVs can be invalid due to pleiotropy

or population stratification
MRAPSS

CAUSE (Mixture) model based Majority IVs not affected by correlated pleiotropy cause

MR-CUE (Mixture) model based Majority IVs not affected by correlated pleiotropy MR.CUE

1.1 The basic framework of MR

Three IV assumptions Mendelian randomization is a method that uses genetic variants as

instruments to assess the causal effect of an exposure (X) on the outcome (Y ) in the presence

of unmeasured confounder U . To ensure the validity of an MR analysis, genetic variants used

as IVs should be valid satisfying three IV assumptions. As illustrated in Figure S1, these

assumptions can be summarized as follows:

• IV-I: The IV (Gj) is associated with the exposure (X) of interest;
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• IV-II: The IV (Gj) is not associated with the confounders (U) of the exposure (X) and

the outcome (Y );

• IV-III: The IV (Gj) affects the outcome (Y ) exclusively through the exposure (X) of

interest.

𝑌𝐺!

𝑈

𝑋

IV assumption (I) IV assumption (III)IV assumption (II)

𝑌𝐺!

𝑈
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Figure S1: The three IV assumptions

Assumed statistical model Let {Gj}Mj=1 be the M SNPs used as IVs. We assume that

all relationships between variables including {Gj}Mj=1, X, Y, and U are linear and the M SNPs

used as IVs are independent of each other. We consider the following linear models for X and

Y ,

X =
M∑
j=1

γjGj + ηXU + ϵX,j, Y = Xβ +
M∑
j=1

αjGj + ηYU + ϵY,j, (1)

where γj is the effect of Gj on X, αj is the effect of Gj on Y , β be the causal effect of X on Y

which is of interest, ηX and ηY are the effect of confounder U on X and Y , respectively, and

ϵX,j and ϵY,j are the residual terms.

The linear model in Eq.1 can be represented as

X =
M∑
j=1

γjGj + ηXU + ϵX,j, Y =
M∑
j=1

(γjβ + αj)Gj + (βηX + ηY )U + ϵY,j, (2)

If Gj is a valid IV, we should have (IV-I) γj ̸= 0, (IV-II) Gj independent of U , and (IV-III)

αj = 0. Therefore, we can obtain the following relationship for a valid IV,

Γj = βγj, (3)

where γj and Γj represents the genetic effect of Gj on X and Y , respectively.

1.2 Inverse variance weighted methods

Let us denote the GWAS estimates of the j-th SNP Gj on the exposure and outcome as γ̂j and

Γ̂j, respectively, with standard errors σ̂X,j and σ̂Y,j. Equation (3) indicates the causal effect
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can be estimated using the j-th SNP as the ratio of the SNP-outcome effect estimate to the

SNP-exposure effect estimate:

β̂j =
Γ̂j

γ̂j
. (4)

Assuming negligible estimation error of the SNP-exposure effect γ̂j (No Measurement Error

assumption or NOME assumption), the standard error of the estimate can be obtained

using the delta method:

SE(β̂j) =

√
σ̂2
Y,j

γ̂2j
.

IVW-fixed refers to the inverse variance weighted fixed-effects meta-analysis, which

combines the ratio estimates fromM IVs to obtain a causal effect estimate under the framework

of meta-analysis. However, in addition to the NOME assumption, two key assumptions are

further needed: (1) all IVs are valid, and (2) there is no heterogeneity among the ratio estimates

across IVs. Under these assumptions, the IVW estimator is therefore computed as a weighted

mean of the ratio estimates of the M IVs, as shown in Eq. (5):

β̂ =

∑M
j=1 Γ̂j γ̂jσ̂

−2
Y,j∑M

j=1 γ̂
2
j σ̂

−2
Y,j

. (5)

The IVW estimator in Eq.(5) can be equivalently obtained as the slope of a weighted regression

between the SNP-outcome effect estimates (Γ̂j) and the SNP-exposure effect estimates (γ̂j)

with a fixed intercept of zero and inverse variance weights (σ̂−2
Y,j):

Γ̂j = βγ̂j + ϵj, ϵj ∼ N (0, σ̂2
Y,j), (6)

where ϵj is the error term. The variance of the IVW-fixed estimator is obtained as

Var(β̂) =
1∑

j γ̂
2
j σ̂

−2
Y,j

. (7)

IVW-random known as the inverse variance weighted fixed-effects meta-analysis, on the

other hand, is a variation of the IVW-fixed estimator that incorporates residual heterogeneity

into the model. This heterogeneity can arise due to various factors, such as unmeasured

confounding factors like pleiotropy. To account for this heterogeneity, the IVW-random

estimator incorporates a multiplicative factor (ϕ) on the variance of the error term. As such,

the regression equation in Eq. (6) becomes

Γ̂j = βγ̂j + ϵj, ϵj ∼ N (0, ϕσ̂2
Y,j), (8)

where ϕ is an overdispersion parameter and should be greater than 1. The inclusion of the

overdispersion parameter will not affect the point estimate of the causal effect, meaning that

the causal effect estimate of IVW-fixed and IVW-random will be the same as given in Eg. (5).

However, the variance will be different, which is obtained as

Var(β̂) =
ϕ̂∑

j γ̂
2
j σ̂

−2
Y,j

, (9)

where ϕ̂ is the estimate of the dispersion parameter. In the presence of heterogeneity across IVs,

ϕ̂ can be larger than 1 because of the overdispersion of genetic effects, making the standard

error of IVW-random estimator larger than that of IVW-fixed.
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1.3 Outlier-robust methods

The second group of MR methods aims to obtain causal effect estimates that are robust to the

presence of outlier invalid instrumental variables (IVs). These methods include the MR-Robust,

Weighted-mode, and Weighted-median estimators.

MR-Robust modifies the inverse-variance weighting (IVW) regression model to provide

robustness against outliers. Unlike the standard IVW methods which use the ordinary least

squares for estimation, MR-Robust combines the robust regression technique MM-estimation

with Tukey’s bisquare loss function to obtain a more robust estimate of the causal effect. This

approach allows us to put more weight on the more reliable ratio estimates and less weight on

outlier estimates while still incorporating information from all included IVs.

Weighted-median aims to obtain the median of the ratio estimates of multiple IVs. Unlike

the IVW estimator that computes a weighted mean of ratio estimates, which can be biased by

the inclusion of invalid IVs, the weighted-median estimator is consistent even when up to 50%

of the SNPs are invalid IVs. In other words, the weighted-median estimator only requires the

majority (over 50%) of the SNPs to be valid IVs, which is referred to as the majority valid

assumption. In our analysis, we used a more efficient weighted version of the median estimator,

where the weights are equal to the inverse of the variance of the ratio estimates, rather than

the simple median estimator, where each SNP is assigned equal weight.

Weighted-mode estimates the causal effect using the mode of the ratio estimates. In our

analysis, we used a weighted version of the mode estimator, where the weights are equal to the

inverse of the variance of the ratio estimates. The causal effect is estimated as the value that

maximizes the normal kernel density of the ratio estimates. Compared to the weighted-median

estimator, the weighted-mode estimator requires a weaker assumption of plurality validity

to ensure that the set of valid IVs falls into the largest group.

Both the weighted-median and weighted-mode estimators are designed to be more robust

in the presence of invalid IVs when compared to the IVW estimator. However, they may be

less efficient than the IVW estimator.

1.4 Outlier detection and removal methods

Outlier detection and removal methods treat invalid IVs as outliers and try to obtain reliable

causal estimates by removing them from the analysis. Methods in this group include MR-Lasso,

cML-MA, and MR-PRESSO.

MR-Lasso extends the IVW regression model by introducing an intercept (αj) to each of

the IVs to account for pleiotropy and puts a penalty on the L1-norm of the intercept terms.

The model is formulated as follows:∑
j

σ̂−2
Y,j(Γ̂j − βγ̂j − αj)

2 + λ
∑
j

|αj|, (10)

where αj represents the direct pleiotropic effect of the j-th IV Gj on the outcome that is

not mediated by the exposure (X). With the lasso penalty applied to the intercept terms,

their estimates tend to be shrunk toward zero. The SNPs with zero intercept estimates are

considered as valid IVs. Then, the causal effect is estimated by fitting an IVW-fixed regression

using the valid IVs. The sparsity level of the intercepts relies on a tuning parameter (λ) of
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the lasso penalty. In our analysis, we chose the optimal value of λ by performing a search

over a range of values that satisfy the heterogeneity stopping rule, as is implemented in the

mr lasso function of the ‘MendelianRandomization’ R package. However, we found that the

implemented code for the heterogeneity stopping rule has a risk of stopping at some λ values

where no αj is shrunk to zero, indicating the absence of valid IV. This gives null results for

some exposure-outcome trait pairs.

Unlike MR-Lasso which uses the sparsity property of L1 penalty for detection of invalid

IVs, cML-MA considers the constrained maximum likelihood approach where L0 penalty is

introduced for identification of invalid IVs. Specifically, cML-MA tries to solve the following

problem,

min
∑
j

σ̂−2
X,j(γ̂j − γj)

2 + σ̂−2
Y,j(Γ̂j − βγj − αj)

2, subject to
∑
j

I(αj ̸= 0) = K, (11)

where I(·) is the indicator function and K represents the unknown number of invalid IVs. In

cML-MA, K is selected through the Bayesian information criterion.

Both MR-Lasso and cML-MA rely on the plurality valid assumption that out of all groups

of IVs having the same asymptotic ratio estimates of the causal effect, the largest group is

the group of valid IVs. MR-Lasso further assumes no measurement error (NOME) on the

SNP-exposure effect estimates.

MR-PRESSO, known as MR pleiotropy residual sum and outlier, is developed based on

the framework of the IVW regression. It exploits the rationale that valid IVs will have small

regression residuals and will be close to the regression line, while invalid IVs will significantly

deviate from the regression line with a larger absolute value of residuals. The outlier test of MR-

PRESSO is thus designed by comparing the observed residual sum of squares to the distribution

of the expected residual sum of squares which are simulated under the null of no horizontal

pleiotropy. To ensure validity, MR-PRESSO requires that at least 50% of the SNPs are valid

IVs or have balanced pleiotropy in which case the average of a direct pleiotropic effect (αj)

should be zero. Furthermore, it requires the InSIDE (Instrument Strength Independent of

Direct Effect) assumption, meaning that γj and αj are independent of each other.

1.5 Model based methods

The final group of methods aims to address the issue of invalid instrumental variables (IVs) in

MR by using mixture component models or other modeling techniques. These methods include

Egger, RAPs, MRMix, MR-ConMix, MR-CUE, CAUSE, and MR-APSS.

Egger and RAPS rely on the following model of invalid IVs:

Γj = βγj + αj, (12)

where the genetic effect of the j-th IV on outcome (Γj) can be decomposed into a sum of indirect

effect (causal effect of the exposure (βγj)) and a direct (pleiotropic) effect (αj). Here, αj should

be zero for a valid IV and deviate from zero for an invalid IV. The InSIDE assumption is

satisfied if γj and αj are assumed to be independent of each other.

Egger regression is designed to address the issue of directional pleiotropy, which occurs

when the average of the pleiotropic effects (αj) is non-zero. To achieve this, Egger modifies the
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IVW regression by introducing a non-zero intercept (α0), as shown below:

Γ̂j = βγ̂j + α0 + ϵj, ϵj ∼ N (0, ϕσ̂2
Y,j), (13)

where ϵj is a normally distributed error term with mean zero and variance ϕσ̂2
Y,j, However, for

the estimator to be consistent, the InSIDE assumption must be satisfied. Moreover, the

NOME assumption is also required by Egger because it ignores the estimation error of the

SNP-exposure effect estimates.

RAPS offers a distinct approach to Egger’s method by addressing concerns that arise

when performing MR, such as bias due to weak pleiotropic effects and large pleiotropic outliers.

Specifically, RAPS uses a random effects model to account for the pleiotropic effects, allowing

for variation of effects across different genetic variants under the InSIDE assumption. The

pleiotropic effect (αj) is assumed to follow a normal distribution with a mean of zero and a

variance of τ 2,

Γj = βγj + αj, αj ∼ N(0, τ 2). (14)

For estimation, RAPS uses a profile likelihood approach to simultaneously estimate the causal

effect β and the variance term τ 2, as given by the following equation,

ℓ(β, τ 2) = −1

2

p∑
j=1

(Γ̂j − βγ̂j)
2

σ̂2
X,jβ

2 + σ̂2
Y,j + τ 2

+ log(σ̂2
Y,j + τ 2). (15)

Notably, this approach relaxes the NOME assumption since the likelihood function accounts for

the estimation error of γ̂j. To further reduce the influence of large pleiotropic outliers, RAPS

employs a robust loss function, such as Tukey’s weight loss function or Huber’s loss function,

which down weights the influence of outliers in the data and helps mitigate their impact on the

estimated causal effect

Other methods belonging to this group, such as MRMix, MR-ConMix, MR-CUE, CAUSE,

and MR-APSS, are all MR approaches that employ different mixture component models to

address the potential issue of invalid instruments. The basic idea behind these methods is

to assume that the genetic instruments are a mixture of two or more components, where one

component contains causal signal used for causal inference and one or more components are

used to account for IV invalidity. However, the specific models and algorithms used by each

method are different.

MRMix employs a four-component mixture model to model the potential effects of IVs on

the exposure and outcome (γj, Γj). The four components of the mixture model correspond

to four different groups of IVs: valid IVs, invalid IVs violating the IV assumption (III) by

preserving a pleiotropic effect on the outcome, and other two types of extremely weak IVs that

violate IV assumption (I) by having no effect on the exposure:

• group 1: Γj = βγj, for Gj is a valid IV satisfying the three IV assumptions;

• group 2: Γj = γjβ + αj,

[
γj
αj

]
∼ N

([
0

0

]
,

[
σ2 θ

θ τ 2

])
, for Gj is an invalid IV violate the

IV assumption (III);

• group 3: γj = 0 and Γj ∼ N (0, τ 2), for Gj is extremely weak IV and have a direct effect

on the outcome;
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• group 4: γj = 0 and Γj = 0, for Gj is extremely weak IV and have no effect on outcome.

Notably, for the set of invalid IVs with pleiotropic effect, MRMix allows γj and αj to be

correlated violating the InSIDE assumption; MRMix also allows a set of extremely weak IVs

which are not associated with the exposure. While MRMix is flexible in its ability to model IV

invalidity due to pleiotropy or weak IVs, it requires a large number of instruments to precisely

identify the group of valid instruments and improve the accuracy of causal effect estimation.

Moreover, to distinguish between the component of valid IVs and that of invalid IVs, MRMix

further requires the plurality valid assumption. This assumption is necessary to identify the

group of valid instruments and estimate the causal effect accurately.

MR-ConMix takes a simpler model compared to MRMix by dividing IVs into two groups:

valid IVs and invalid IVs. Specifically, if Gj is valid, its ratio estimate β̂j is assumed to be

normally distributed with mean β (the true causal effect) and variance se(β̂j)
2, and if Gj is

invalid, β̂j is assumed to be normally distributed with mean βj and variance se(β̂j)
2, and βj is

further assumed to have a distribution of N (0, ψ2):

• β̂j ∼ N (β, se(β̂j)
2), if Gj is valid;

• β̂j ∼ N (βj, se(β̂j)
2) with βj ∼ N (0, ψ2), if Gj is invalid.

Here the parameter ψ2 accounts for the uncertainty of the asymptomatic value of the ratio

estimates (βj) of invalid IVs. Under these assumptions, a profile likelihood approach is then

used for the estimation of the causal effect. Similar to MRMix, MR-ConMix also requires the

plurality valid assumption to ensure consistency of the causal effect estimate.

Two practical issues should be noted when using this method. The first issue is that ψ is a

user-specified parameter. The optimal choice of ψ may vary depending on the specific research

question, and a sensitivity analysis may be preferred in practice. However, due to the analysis

burden, we chose to use the default value of ψ for all the trait pairs tested, which is set as 1.5

times the standard deviation of the ratio estimates. While using default values can simplify

the analysis process, it is important to note that the optimal value of ψ may vary depending

on the specific research question, and using a single default value may not be appropriate in all

cases. The second issue is that the confidence interval given by MR-ConMix is not guaranteed

to be symmetric or a single range of values.

CAUSE is proposed to address invalid IVs due to correlated pleiotropy which occurs when

IVs affect both the exposure and outcome through a shared heritable factor. Specifically,

CAUSE divides IVs into two groups: a group of IVs affected by correlated pleiotropy, and a

group of IVs not affected by correlated pleiotropy which will be used for causal inference. The

two groups of IVs are modeled as follows,

• group 1: Γj = βγj + ηγj + αj, for Gj is affected by correlated pleiotropy.

• group 2: Γj = βγj + αj, for Gj is not affected by correlated pleiotropy;

where βγj is the causal effect of Gj on the outcome through the exposure, αj ⊥⊥ γj represents

the effect of uncorrelated pleiotropy, η is a scalar, and ηγj represents the IV to outcome effect

that is mediated by a shared confounding factor, termed as correlated pleiotropy.
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Under the CAUSE model, all IVs are allowed to be invalid preserving an uncorrelated

pleiotropic effect (αj). However, only a small proportion of SNPs (less than 50%) could be

affected by correlated pleiotropy. This is essential to ensure the model’s identifiability. By

accounting for both uncorrelated and correlated pleiotropy, the CAUSE method tries to mitigate

the risk of false positives in MR and enhance the accuracy of causal inference.

For estimation, CAUSE adopts a two-step procedure. In the first step, the distribution

of IV to exposure effect (γj) and the uncorrelated pleiotropic effect (αj) are estimated using

genome-wide summary statistics where they are assumed to follow a mixture of bivariate normal

distribution. In the second step, CAUSE conducts a model comparison between a shared model

(β is fixed at zero) and a causal model (β allows to be nonzero). The shared model assumes

that there is no causal effect of the IV on the outcome through the exposure, while the causal

model allows for a nonzero causal effect. The model comparison is achieved by comparing the

expected log pointwise posterior density (ELPD) of the two models. The model with the higher

ELPD is selected as the better model with posteriors that predict the data better.

MR-CUE (MR with Correlated horizontal pleiotropy Unraveling shared Etiology and

confounding) is a method similar to CAUSE that accounts for correlated pleiotropy in MR.

Like CAUSE, MR-CUE also divides IVs into two groups based on the presence or absence of

correlated pleiotropy. However, MR-CUE differs from CAUSE in several key aspects.

First MR-CUE and CAUSE have different model specifications on correlated pleiotropy.

CAUSE models the effect of correlated pleiotropy as ηγj , i.e., the IV to outcome effect mediated

by shared confounder (Figure S?-a). This is based on the assumption of a common confounder

between the exposure and outcome. In contrast, MR-CUE aims to account for more complex

situations with multiple confounders by modeling the effect of a confounder set on the outcome

as a sum of two components, δγj + θj (δ is a scalar) (Figure S?-b). The first component

summarizes the IV-shared confounding effect, and the second component represents the IV-

specific perturbation effects of confounders. The assumed mixture model of MR-CUE is given

as follows,

• Γj = βγj + αj, if Gj is not affected by correlated pleiotropy;

• Γj = βγj + (δγj + θj) + αj, if Gj is affected by correlated pleiotropy.

where the pleiotropic effect terms θj and αj are assumed to independent of the IV-exposure

effect γj and are draw from a normal distribution with zero mean.

Additionally, MR-CUE allows for correlation between the IVs, while CAUSE and other

methods treat the IVs as independent. As a result, MR-CUE does not require a genome

reference panel to perform linkage disequilibrium (LD) clumping in data preprocessing. Instead,

to model the correlation between IVs, MR-CUE requires an LD reference panel, which is not

required by other methods.

Finally, MR-CUE estimates the parameters with a Bayesian hierarchical model and performs

inference via Gibbs sampling, while CAUSE estimates posterior distributions via adaptive grid

approximation and performs inference by model comparison.

MR-APSS is a unified approach to MR accounting for IV invalidity due to pleiotropy and

population stratification etc. The method uses a foreground-background model that separates

observed SNP effect sizes into background and foreground components. The background
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component accounts for confounding factors that could induce a genetic correlation between the

exposure and outcome, as well as factors that could lead to a correlation between estimation

errors. In contrast, the foreground component is used for causal inference while accounting for

uncorrelated pleiotropy. The assumed model for MR-APSS is given as follows:(
γ̂j
Γ̂j

)
= Zj

(
γj

βγj + αj

)
︸ ︷︷ ︸

Foreground

+

(
uj
vj

)
+

(
ej
ξj

)
︸ ︷︷ ︸

Background

, j = 1, . . . ,M.
(16)

where uj and vj are the polygenic effects of SNP j on X and Y , ϵj and ξj are the estimation

errors of SNP effect sizes, The sum of uj and ϵj corresponds to the background effect on X

and the sum of vj and ξj corresponds to the background effect on Y , γj is the remaining SNP

effect on exposure X as the instrument strength, αj is the direct SNP effect on outcome Y ,

Zj is a indicator that takes the value of 1 if Gj carries foreground effect and 0 otherwise. In

brief, MR-APSS assumes all IVs can be invalid having background effects but only a subset of

them carrying foreground effects, and the set of IVs carrying foreground effects will be used for

causal inference.

The MR-APSS model assumes that all instruments can be invalid, carrying background

effects, but only a subset of them carries foreground effects that can be used for causal inference.

The background model parameters are estimated using the LDSC assumption, which can be

pre-estimated using genome-wide summary statistics. The foreground model relies on the

InSIDE assumption, which ensures that IV strength and the direct effect on the outcome

are independent of each other. The causal effect and other foreground model parameters are

estimated using a variational EM algorithm. Importantly, MR-APSS is the only method among

these compared methods that correct for selection bias in the two-sample setting. This feature

allows for more accurate and reliable causal effect estimation in MR studies.
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Figure S2: Results from different MR methods using different MAF (Minor allele

frequency) thresholds for data-preprocessing. The X-axis represents estimates using

MAF threshold of 0.01, and The X-axis represents estimates using MAF threshold of 0.05.
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Figure S3: Results from different MR methods using different LD reference panel

for LD clumping. The X-axis represents estimates using 1000 genome samples of European

ancestry as a reference panel, and The X-axis represents estimates using 1000 samples of UK

biobank as a reference panel.
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* **

***** ** **

* **** *

* * * *** * *

* *** *** ** *

* * * ***** *

* ** *

Body size at 10: 1.09 (1.07,1.12)

Childhood aggression: 0.99 (0.98,1.01)

Childhood BMI: 1.00 (0.99,1.01)

Childhood intelligence: 1.00 (0.98,1.02)

Fetal birth weight: 1.08 (1.06,1.11)

Maternal birth weight: 1.05 (1.03,1.08)

Pubertal growth: 0.95 (0.94,0.97)
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Figure S4: LDSC results for the 77 negative control trait pairs
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