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Abstract

Mendelian Randomization (MR), which utilizes genetic variants as instrumental variables (IVs),1

has gained popularity as a method for causal inference between phenotypes using genetic data.2

While efforts have been made to relax IV assumptions and develop new methods for causal3

inference in the presence of invalid IVs due to confounding, the reliability of MR methods4

in real-world applications remains uncertain. To bridge this gap, we conducted a benchmark5

study evaluating 15 MR methods using real-world genetic datasets. Our study focused on6

three crucial aspects: type I error control in the presence of various confounding scenarios7

(e.g., population stratification, pleiotropy, and assortative mating), the accuracy of causal8

effect estimates, replicability and power. By comprehensively evaluating the performance of9

compared methods over one thousand pairs of exposure-outcome traits, our study not only10
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provides valuable insights into the performance and limitations of the compared methods but11

also offers practical guidance for researchers to choose appropriate MR methods for causal12

inference.13

Introduction14

Understanding the causal relationships between exposures and outcomes is crucial in biomedical15

and social science research, as it enables discoveries in etiology, aids in drug development, and16

informs policy-making. While randomized controlled trials (RCTs) are considered the gold17

standard for assessing causality, they can be time-consuming, costly, and sometimes ethically18

challenging [1]. Causal inference based on observational data presents its own challenges,19

such as unmeasured confounding or reverse causality. Mendelian randomization (MR) offers a20

promising approach to performing causal inference using observed genetic data [2, 3]. According21

to Mendel’s law of inheritance, genotypes are randomly inherited from parents to offspring,22

thereby ideally being independent of environmental confounding factors. This characteristic23

motivates researchers to explore genetic data in order to study the causal effects of one phenotype24

(exposure) on another phenotype (outcome). In recent years, MR has gained popularity due25

to the availability of summary statistics from thousands of genome-wide association studies26

(GWAS) covering a wide range of phenotypes. Leveraging the rich genetic data resources27

available, researchers worldwide can investigate the potential causal relationships between28

exposures and outcomes of interest, encompassing diverse applications such as identifying disease29

risk causation [4], providing evidence for epidemiological associations [5], and prioritizing targets30

in drug development [6, 7].31

To perform causal inference using MR approaches, genetic variants (typically Single32

Nucleotide Polymorphisms, i.e., SNPs) serve as instrument variables (IVs). A valid IV should33

satisfy the following three IV assumptions [8, 9]: (1) it is associated with the exposure of34

interest; (2) it is not associated with the confounders of the exposure and outcome traits; and35

(3) it affects the outcome only through the exposure of interest. However, these assumptions36

underlying MR are often too strong to be satisfied in real applications. In recent years, much37

effort has been devoted to relaxing these assumptions and new MR methods have been designed38

to enable causal inference in the presence of invalid IVs. To name a few, MR-PRESSO [10],39

cML-MA [11], and MR-Lasso [12] use outlier detection to identify invalid IVs and remove them40

from the MR analysis. MR-Robust[12], weighted-median [13], and weighted-mode [14] use41

outlier-robust techniques to mitigate the effects of invalid IVs. Additionally, methods like Egger42

[15], RAPS [16], and BWMR [17] employ probabilistic models to correct for different types of43

pleiotropy, while CAUSE [18], MRAPSS [19], MRMix [20], MR-ConMix [21], and MR-CUE44

[22] employ mixture component models to characterize valid and invalid signals, enabling causal45

inference based on the component of valid signals.46

Although considerable progress has been made in the development of MR methods, their47

robustness to the violation of underlying assumptions in real-world applications remains48

largely unclear. Due to the complexity of human genetics, several factors can significantly49

impact the performance of existing MR methods. Firstly, complex traits often exhibit high50

polygenicity, meaning that individual SNPs have small effect sizes. To satisfy the IV assumption51

(1), researchers select SNPs as IVs from the exposure GWAS using a p-value threshold (IV52

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.24300765doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300765
http://creativecommons.org/licenses/by-nc-nd/4.0/


threshold). However, this selection process may inadvertently include weakly associated SNPs,53

which can introduce bias into MR estimates. Moreover, using the same exposure dataset for54

IV selection and MR estimation in two-sample MR settings can induce non-ignorable bias,55

known as selection bias [16]. Second, population stratification and family-level confounders56

(e.g., assortative mating and dynastic effects) are well-known issues in population-based GWAS,57

which can introduce associations between genetic instruments and unobserved confounders58

[23, 24, 25], leading to the violation of IV assumption (2). Despite the significance of population59

stratification and family-level confounders, many existing MR methods have not explicitly60

accounted for these. Third, pleiotropy is a ubiquitous phenomenon in human genetics, referring61

to a single genetic variant influencing multiple traits, thereby violating IV assumption (3) [26].62

Carefully accounting for pleiotropy is crucial for reliable causal inference using MR approaches.63

Given these complexities, it is crucial to conduct benchmarking studies to assess the reliability64

of existing MR methods when their model assumptions may be violated. Such studies would65

provide valuable insights into the performance and limitations of these methods in real-world66

scenarios.67

In this study, we present a benchmarking analysis of MR methods for causal inference68

with real-world genetic datasets. Our focus is on MR methods that utilize GWAS summary69

statistics as input, as they do not require access to individual-level GWAS data and are widely70

applicable. Specifically, we consider 15 MR methods, including the standard IVW (fixed) [27]71

and IVW (random) [28] and 13 other advanced MR methods: Egger, RAPS, Weighted-median,72

Weighted-mode, MR-PRESSO, MRMix, cML-MA, MR-Robust, MR-Lasso, MR-CUE, CAUSE,73

MRAPSS and MR-ConMix. To assess the performance of these MR methods, we utilized74

real-world datasets and focused on three key aspects: type I error control, the accuracy of75

causal effect estimates, and replicability. Particularly, in evaluating type I error control, we76

used GWAS summary-level datasets for over one thousand exposure-outcome trait pairs of no77

causal effect, serving as negative controls. These trait pairs were carefully selected to represent78

scenarios involving confounding factors, such as population stratification and pleiotropy. We79

conducted a comparison between population-based MR and family-based MR to evaluate the80

influence of family-level confounders. Through our comprehensive experiments using real-world81

datasets, we found that the performance of MR methods is heavily influenced by confounding82

factors that arise from various sources in practical scenarios. We also investigated the influence83

of summary-level data pre-processing steps, such as the inclusion of SNPs with different minor84

allele frequencies and the choice of reference genome panels. Our study offers practical guidelines85

for researchers in choosing appropriate MR methods and improving the reliability of causal86

inference in MR analyses.87

Results88

The experimental design for benchmarking MR methods89

We conducted a benchmarking of 15 summary-level data-based MR methods, which were90

categorized into four groups: IVW-class, outlier detection and removal methods, model-based91

methods, and outlier robust methods (Fig. 1-A, Table S1, section 1 of the supplementary note).92

The procedure for running the MR methods is outlined in Fig. 1-B and described in detail in93
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the Method section. To ensure a comprehensive evaluation, we utilized real-world datasets and94

focused on three crucial aspects: type I error control, the accuracy of causal effect estimates,95

replicability and power (see Fig. 1-C).96

To assess type I error control, we applied the MR methods to GWAS summary statistics97

for three sets of exposure-outcome trait pairs with no causal effect. The three sets of trait98

pairs represented three different confounding scenarios, including (a) population stratification,99

(b) pleiotropy, and (c) family-level confounders. Specifically, in scenario (a), we used 1,130100

trait pairs between 226 exposures from UK Biobank and five negative control outcomes to101

investigate the influence of population stratification on MR methods (Supplementary data 1).102

The negative control study was designed carefully based on two criteria: First, the outcomes103

should not be causally affected by the exposures. Second, both the outcomes and exposures104

should be affected by population stratification. In this scenario, we chose four hair color-related105

traits and tanning ability as negative control outcomes. These traits are mainly determined at106

birth and are likely influenced by population stratification [24]. In scenario (b), we analyzed107

trait pairs between 11 exposures and seven negative control outcomes. The selected exposures108

included five adult behavior-related traits and six aging-related traits, while the negative109

control outcomes were seven childhood-related traits (Supplementary data 2). This choice110

was based on the convention that traits developed after adulthood are unlikely to affect traits111

developed before adulthood causally. These negative control outcomes exhibited non-zero112

genetic correlations with most of the exposures (SFig S4), indicating that pleiotropy is a major113

confounder here. In scenario (c), we analyzed 82 trait pairs using both population-based GWASs114

and family-based GWASs to examine the influence of family-level confounders (Supplementary115

data 3). Population-based GWAS estimates, which are derived from unrelated individuals, are116

known to be susceptible to bias due to the influence of family-level confounders. Conversely,117

family-based GWAS designs offer the advantage of accounting for the effects of family-level118

confounders when estimating GWAS effects [29, 30]. By comparing the results of MR analyses119

obtained from the population-based GWAS and family-based GWAS designs, we can assess120

the effectiveness of MR methods in controlling for type I errors in the presence of family-level121

confounding, such as assortative mating and dynastic effects. For this scenario, we required122

the trait pairs to be genetically uncorrelated. Based on the principle “no correlation implies123

no causal relationship”, we treated these trait pairs as negative controls. By applying MR124

methods to the three datasets representing different confounding scenarios, we investigated125

their ability to control type I errors in the presence of different confounding factors.126

In evaluating the accuracy of causal effect estimates, we examined six pairs of traits where127

each pair comprised the same trait as both the “exposure” and the “outcome” (Supplementary128

data 4). The UK Biobank dataset was divided equally to obtain exposure and outcome GWAS129

data. Importantly, the true causal effects in this analysis were known to be exactly one130

[16, 31]. This design allowed us to assess the accuracy of MR methods in estimating causal131

effects. To evaluate replicability and power, we focused on a positive control example involving132

low-density lipoprotein cholesterol (LDL-C) and coronary artery disease (CAD). We applied133

all the MR methods to six GWAS datasets for LDL-C obtained from five distinct studies134

(Supplementary data 5). By analyzing multiple GWAS datasets for the same trait, we assessed135

the replicability of the causal effect estimates across different study designs and sample sizes.136

Detailed information about the datasets used in this study can be found in the Method section,137
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and specific details regarding the sources of GWAS data are summarized in Stable 1-5.138

C

Step 2: Harmonise  SNP effects
• Ensure SNP-exposure and SNP-outcome effect estimates refer to the same allele

Steps of run MR methods
B

Input: GWAS summary-level data of exposure  and outcome

Step 1:  Conduct quality control
• Keep Hapmap3 SNPs

• Remove duplicates/missing/MHC /ambiguous /poor imputed / MAF <0.01 SNPs

Step 3: IV selection and extract IV effects
• SNPs associated with exposure ( p-value < IV threshold)

• Plink LD clumping: 𝑟! < 0.001, 1Mb

Step 4: Run MR methods
Change IV threshold from 5×10"#	, 	5×10"$	, 	5×10"%	to	5×10"&

A

1. IVW-class

l IVW (fixed)
l IVW (random)

2. Outlier detection
and removal 

l MR-PRESSO
l cML-MA
l MR-Lasso

4. Outlier robust 
l MR-Robust,
l Weighted-median
l Weighted-mode

3. Model-based
l Egger
l RAPS
l CAUSE
l MR-APSS
l MRMix
l MR-ConMix
l MRCUE

Summary-level data-based MR methods

Compared MR methods

Performance evaluation

1. Type I error control

l Confounding scenario (c)
Family-level confounders 

Dataset
82 exposure-outcome trait pairs

No causal effect 

l Confounding scenario (b)
Pleiotropy

Dataset
77 exposure-outcome trait pairs

No causal effect

l Confounding scenario (a)
Population stratification

Dataset
1130 exposure-outcome trait pairs 

No causal effect

2. Accuracy of causal effect estimates

Dataset
Six exposure-outcome pairs 

True casual effect = 1

3. Replicability & power 

Case study
LDL-C (six GWASs) and CAD

Figure 1: Experimental design for benchmarking MR methods. A We compared the

performance of 15 GWAS summary-level data-based MR Methods. B We designed a four-step

procedure for running MR methods. C We used real-world datasets to evaluate the performance

of MR methods on three aspects: Type I error control in three confounding scenarios, including

(a) population stratification, (b) pleiotropy, and (c) family-level confounders, the accuracy of

causal effect estimates, replicability and power.

Throughout the evaluation process, our first step was to assess the performance of MR139

methods when IVs were selected based on the default p-value thresholds in the exposure GWAS.140

Specifically, among the compared methods, MR-APSS and MR-CUE utilized a default IV141

threshold of 5× 10−5, CAUSE employed a default IV threshold of 1× 10−3, and the remaining142

methods required strong IVs with a default IV threshold of 5× 10−8. All of the compared MR143
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methods, except for MR-CUE, require Plink LD clump (r2 = 0.001,1Mb) to obtain independent144

SNPs as IVs. Furthermore, we introduced variations in the p-value thresholds used for IV145

selection to examine the methods’ performance across a range of IV thresholds, including a146

stringent threshold of 5× 10−8, as well as more relaxed thresholds of 5× 10−7, 5× 10−6, and147

5× 10−5. As the IV thresholds become looser, the number of IVs, including both valid IVs and148

invalid IVs, may increase. Moreover, the number of IVs with weaker effects may also increase.149

This analysis allowed us to assess the robustness of these methods in handling invalid IVs due150

to confounding factors and determine whether they are sensitive to the choice of IVs used in151

MR analysis.152

MR-APSS, Egger, Weighted-mode, and CAUSE achieve better performance153

in type I error control154

We conducted a comprehensive evaluation to assess the effectiveness of 15 MR methods in155

controlling type I errors across various confounding scenarios. The evaluation utilized three156

real-world datasets and focused on three specific scenarios: population stratification, pleiotropy,157

and family-level confounders. To evaluate the performance of these methods, we generated QQ158

plots to visualize the p-values produced by each method for the three datasets, as shown in Figs.159

2-4. These QQ plots provide a visual tool to identify deviations from the expected diagonal160

line, which helps determine if the methods are generating systematically inflated or deflated161

p-values. In this analysis, we initially assessed the MR methods using their default setting for162

IV selection. Specifically, we first examined the performance of MR-APSS and MR-CUE at163

the IV threshold of 5× 10−5, the performance of CAUSE at the IV threshold of 1× 10−3, and164

the performance of other methods at the IV threshold of 5× 10−8.165

In scenario (a), characterized by the presence of strong population stratification, MR-APSS166

and Weighted-mode consistently generated well-calibrated p-values, using their default IV167

thresholds. However, Egger’s p-values were slightly inflated. The p-values of CAUSE initially168

showed deflation but later exhibited inflation. Further analysis of causal effect estimates169

reveals that CAUSE’s confidence intervals are more reliable compared to its p-values. On170

the other hand, the remaining 11 methods, including IVW (fixed), IVW (random), RAPS,171

Weighted-median, MR-PRESSO, MRMix, cML-MA, MR-Robust, MR-Lasso, MR-CUE, and172

MR-ConMix, exhibited highly inflated p-values at the default IV threshold of 5×10−8. Notably,173

IVW (fixed) demonstrated the most severe inflation, which is expected as it is a basic MR174

method that does not account for IV invalidity, leading to bias and inflation in the estimates.175

While other methods incorporated different assumptions to address invalid IVs, they still failed176

to effectively control type I error inflation. These findings highlight the limitations of existing177

methods in handling scenarios involving strong population stratification, where their model178

assumptions do not align well with real-world situations.179

In scenario (b), where pleiotropy is present, several methods exhibited effective control180

of type I errors. Notably, CAUSE, Egger, MR-APSS, and Weighted-mode demonstrated the181

absence of inflated p-values, indicating their capability to address pleiotropy. However, it was182

observed that CAUSE’s p-values were deflated. On the other hand, several other methods,183

including IVW (random), MR-Lasso, MR-PRESSO, RAPS, Weighted-median, IVW (fixed),184

cML-MA, MR-ConMix, and MR-Robust, exhibited inflated p-values at the default IV threshold.185
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Notably, IVW (fixed), cML-MA, and MR-ConMix showed more pronounced inflation compared186

to the other methods. Despite these methods’ primary focus on addressing pleiotropy, their187

performance in controlling type I errors was not entirely satisfactory. This observation indicates188

the ongoing challenge in effectively handling pleiotropy in MR analysis and the need for further189

methodological advancements.190

In scenario (c), we conducted a comparison between the results of MR methods using191

both population-based and family-based GWAS data for 82 negative control trait pairs. The192

objective was to assess the effectiveness of MR methods in controlling for type I errors in193

the presence of family-level confounders. The QQ plots for MR methods at their default IV194

thresholds, using both population-based GWAS and within-family-based GWAS summary-level195

data, are depicted in Fig. 4. When using population-based GWAS data, Egger, Weighted-mode,196

and MRMix did not yield inflated p-values. CAUSE produced deflated p-values, and MR-APSS197

exhibited very slight inflation in the p-values. On the other hand, other methods such as IVW198

(fixed), MR-Lasso, cML-MA, and MR-CUE produced inflated p-values, indicating challenges in199

adequately addressing family-level confounding using these methods. However, when utilizing200

family-based GWAS data, all MR methods produced well-calibrated p-values, demonstrating201

effective control of type I error inflation. Our results provide further evidence for the usefulness202

of family-based MR in mitigating the influence of family-level confounders in MR analysis.203

IV selection largely affects the performance of MR methods204

We conducted a comprehensive investigation into the performance of various MR methods by205

analyzing their behavior across a range of IV thresholds, including a stringent threshold of206

5× 10−8, as well as more relaxed thresholds of 5× 10−7, 5× 10−6, and 5× 10−5. The QQ plots207

in Figs. 2 and 3 depict the results obtained in confounding scenarios (a) and (b), respectively.208

From these plots, we can observe that MR-APSS, Egger, and weighted-mode consistently209

generated well-calibrated p-values across varying IV thresholds. However, it is worth noting210

that the p-values obtained from CAUSE were consistently deflated. On the other hand, the211

remaining 11 methods, including IVW (fixed), IVW (random), RAPS, Weighted-median, MR-212

PRESSO, MRMix, cML-MA, MR-Robust, MR-Lasso, MR-CUE, and MR-ConMix, exhibited213

substantially inflated p-values. Furthermore, the degree of p-value inflation tended to increase214

as the IV threshold became looser. MRMix was an exception with slightly inflated p-values215

at a less stringent IV threshold of 5× 10−5 but more inflated p-values at the IV threshold of216

5× 10−8, as observed in Fig. 3. This observation suggests that MRMix can be sensitive to the217

number of IVs used. It tends to produce more false positives when there is a limited number of218

IVs. Our results indicate that causal inference results obtained from most of the methods are219

sensitive to the IV threshold.220
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Figure 2: Evaluation of type I error control in confounding scenario (a) of population

stratification. Type I error is evaluated by quantile-quantile plots of − log10(p) values from

the 15 compared methods when testing the causal effect for 1130 negative control trait pairs at

different IV thresholds. The 15 compared methods include IVW (fixed), IVW (random), Egger,

RAPS, Weighted-median, Weighted-mode, MR-PRESSO, MRMix, cML-MA, MR-Robust,

MR-Lasso, MR-CUE, CAUSE, MRAPSS and MR-ConMix. Each distinct color on the plot

represents the results at a specific IV threshold and the results at the default IV thresholds

of the compared MR methods are marked by a cross symbol. The default IV thresholds for

MR-APSS and MR-CUE were set at 5× 10−5, while the default IV threshold for CAUSE was

set at 1× 10−3. The remaining methods utilized a default IV threshold of 5× 10−8.
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Figure 3: Evaluation of type I error control in confounding scenario (b) of pleiotropy.

Type I error is evaluated by quantile-quantile plots of − log10(p) values from the 15 compared

methods when testing the causal effect for 77 negative control trait pairs at different IV

thresholds. The 15 compared methods include IVW (fixed), IVW (random), Egger, RAPS,

Weighted-median, Weighted-mode, MR-PRESSO, MRMix, cML-MA, MR-Robust, MR-Lasso,

MR-CUE, CAUSE, MRAPSS and MR-ConMix. Each distinct color on the plot represents the

results at a specific IV threshold and the results at the default IV thresholds of the compared

MR methods are marked by a cross symbol. The default IV thresholds for MR-APSS and

MR-CUE were set at 5× 10−5, while the default IV threshold for CAUSE was set at 1× 10−3.

The remaining methods utilized a default IV threshold of 5× 10−8.
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Figure 4: Evaluation of Type I error control in the confounding scenario (c) of

family-level confounders. Quantile-quantile (Q-Q) plots illustrating the − log10(p) values

for testing causal effects on 82 trait pairs using 15 different methods at their default IV

thresholds. The comparison includes results from both population-based GWASs (depicted as

red triangles) and sibling-based GWASs (depicted as green dots). The evaluated methods consist

of IVW-fixed, IVW-random, Egger, RAPS, Weighted-median, Weighted-mode, MR-PRESSO,

MRMix, cML-MA, MR-Robust, MR-Lasso, MR-CUE, CAUSE, MRAPSS, and MR-ConMix.

MR-APSS and MR-CUE employ an IV threshold of 5 × 10−5, CAUSE uses a threshold of

1× 10−3, while the remaining methods use a threshold of 5× 10−8.

Accuracy of causal effect estimates221

To assess the accuracy of MR methods in estimating causal effects, we examined six pairs of222

traits, where each pair involved the same trait being considered as both the “exposure” and223

the “outcome” [16, 31]. In this specific scenario, the true causal effects for these trait pairs224

were precisely known to be equal to one. This knowledge enabled us to compare the accuracy225

of causal effect estimates given by different MR methods. We included three continuous traits:226

Height, Waist Circumference (WC), and Educational Attainment (EA), as well as three binary227

traits: Hypertension, High cholesterol, and Asthma. For each trait, we divided the UK Biobank228

samples into two halves, representing the exposure GWAS and the outcome GWAS. We utilized229

the Bolt-LMM software [32] to obtain GWAS summary statistics from these subsets. The230

exposure GWAS summary statistics were used for both IV selection and causal effect estimation.231

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 4, 2024. ; https://doi.org/10.1101/2024.01.03.24300765doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.03.24300765
http://creativecommons.org/licenses/by-nc-nd/4.0/


We varied the IV thresholds, starting with a stringent threshold of 5× 10−8, and progressively232

relaxed the thresholds to 5× 10−7, 5× 10−6, and 5× 10−5. As such, we can investigate the233

robustness of MR methods to weak IV bias and selection bias. However, it is important to234

note that in this analysis, we cannot assess the robustness of MR methods to pleiotropy or235

other forms of confounding when testing the effect of the trait on itself using data from the236

same population. The causal effect estimates and their confidence intervals for 15 MR methods237

at different IV thresholds are presented in Fig. 5.238

Our study found that MR-APSS outperformed other MR methods and produced more239

accurate causal effect estimates that were closer to the true value. Importantly, all of the240

confidence intervals produced by MR-APSS at different IV thresholds covered the true value.241

This indicates that MR-APSS is a promising method for accurately estimating causal effects in242

MR analyses, robust to weak IV bias and selection bias. Furthermore, MR-APSS produces243

narrower confidence intervals as the IV selection threshold was relaxed and weaker IVs were244

included in the MR analysis. These findings highlight the potential advantages of including245

more weak IVs in MR analysis to increase statistical power. Weighted-mode, at its default246

IV threshold of 5 × 10−8, delivered estimates comparable to those of MR-APSS in terms of247

accuracy and coverage of true causal effects within the confidence intervals. Egger, while248

producing larger estimation errors, provided unbiased estimates when a stringent IV threshold249

was applied (5 × 10−8). However, it tended to overestimate causal effects when a looser IV250

threshold was used. CAUSE, on the other hand, produced confidence intervals covering the251

true causal effect only at a stringent threshold of 5× 10−8.252

The majority of existing MR methods, including IVW (fixed), IVW (random), MR-Lasso,253

cML-MA, MR-PRESSO, RAPS, Weighted-median, MR-Robust, MRMix, and MR-ConMix,254

displayed limitations in estimation accuracy in the presence of weak IV bias and selection255

bias. As the IV threshold became looser and weaker instruments were included, these methods256

produced estimates that were biased toward the null effect. Moreover, their confidence intervals257

failed to cover the true causal effects in most cases. This indicates that these methods are not258

capable of dealing with weak IV bias and selection bias, which compromises the accuracy of259

the causal effect estimates. It is crucial to acknowledge that the current strategy of using a260

stringent IV threshold for IV selection, such as 5× 10−8, is not a foolproof solution to address261

weak IV bias and selection bias. This approach has its limitations, including reduced power262

due to a limited number of IVs and susceptibility to weak IV bias and selection bias even with263

a stringent threshold. Our findings highlight the need for more robust MR methods that can264

effectively handle weak instruments and mitigate selection bias to accurately estimate causal265

effects.266

In addition to biased causal effect estimation, methods such as MRMix and MR-Lasso have267

their specific limitations. MRMix exhibited some instability when varying IV thresholds. For268

instance, when examining the effect of height on itself, MRMix estimated the causal effect as269

0 with a standard error of 0.015 using 302 IVs at a threshold of 5 × 10−8. Similarly, at an270

IV threshold of 5 × 10−6 with 666 IVs, MRMix again estimated the causal effect as 0 with271

a standard error of 0.017. However, the estimation result by MRMix at an IV threshold of272

5× 10−7 was much more reliable. In this case, the causal effect of height on itself was estimated273

as 0.93 with a standard error of 0.055, utilizing 517 IVs. MR-Lasso failed to report causal274

estimates in some cases. For example, when testing the causal effect of WC on itself at the275
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IV threshold of 5× 10−7 and that of EA on itself at the IV threshold of 5× 10−6, MR-Lasso276

detected all IVs as invalid outliers and did not report any causal estimates.277
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Figure 5: Evaluation of the accuracy of causal effect estimation of 15 MR methods

for six trait pairs. Each pair comprised the same trait as both the “exposure” and the

“outcome” Analyzed traits include three continuous traits, i.e., Height, Waist Circumference

(WC), and Educational Attainment (EA), and three binary traits, i.e., Hypertension, High

cholesterol, and Asthma. The top panel shows the number of IVs selected using different IV

thresholds with/without LD clumping. The bottom panel shows the point estimates and 95%

confidence intervals of different methods at different IV thresholds for the three continuous

traits (bottom left) and the three binary traits (bottom right). The vertical dashed gray line

represents the true causal effect size 1. Each of the 15 MR methods is represented by a distinct

color.
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Figure 6: MR analysis results of LDL-C and CAD from 15 MR methods at different

IV thresholds. Six GWAS datasets for LDL-C were used, each represented by a distinct color.

The vertical dashed gray line represents the zero causal effect size. Compared methods include

IVW-fixed, IVW-random, Egger, RAPS, Weighted-median, Weighted-mode, MR-PRESSO,

MRMix, cML-MA, MR-Robust, MR-Lasso, MR-CUE, CAUSE, MRAPSS and MR-ConMix

represented by different colors. The IV threshold is varied from 5× 10−5, 5× 10−6, 5× 10−7

and 5× 10−8. The result of CAUSE at its default IV threshold 1× 10−3 is also presented.
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Replicability and power278

To assess the replicability and power of the MR methods, we applied all the compared methods279

to infer the causal effect between LDL-C and CAD using six LDL-C GWAS datasets collected280

from five separate studies. By comparing the causal effects estimated from different GWAS281

datasets of the same trait, we were able to assess the reliability and generalizability of their282

causal effect estimates across different study designs and sample sizes. We also considered the283

IV thresholds varied from the stringent 5× 10−8 to the relaxed 5× 10−7, 5× 10−6, and 5× 10−5
284

to examine the sensitivity of the methods to different levels of instrument strength. The causal285

effect estimates, their 95% confidence intervals, and p-values produced by each method for286

different datasets and different IV thresholds are shown in Fig. 6.287

Among all the compared methods, CAUSE and MR-APSS achieved outstanding performance288

in terms of replicability. Both CAUSE and MR-APSS are capable of producing confidence289

intervals that reject the null causal effect. The causal effect estimates and confidence intervals290

produced by both methods were highly consistent across different studies and different IV291

thresholds. The high consistency and generalizability of the results produced by these methods292

are particularly noteworthy, as they suggest that the causal effect estimates obtained using293

CAUSE and MR-APSS are likely to be more accurate and reliable than those obtained using294

other methods. However, we note that the p-values produced by CAUSE do not agree well with295

its confidence intervals. Consistent with previous results, the p-values produced by CAUSE are296

likely to be deflated. Therefore, caution should be exercised when interpreting the p-values297

produced by CAUSE.298

Most of the MR methods we compared detected a significant causal relationship for299

all 24 tests between LDL-C and CAD using six datasets of LDL-C at four different IV300

thresholds. However, Egger, Weighted-mode, Weighted-median, and MRMix were unable to301

detect significant causal relationships in some cases. Specifically, among the 24 tests, Egger,302

Weighted-mode, Weighted-median, and MRMix failed to detect significant causal effects for303

five, four, two, and one test between LDL-C and CAD at the nominal level of 0.05, respectively.304

Although Egger and Weighted-mode showed good performance in terms of type I error control,305

our analysis revealed that Egger tended to produce estimates with large estimation errors, and306

Weighted-mode may have low power. Moreover, Weighted-median and MRMix, which are likely307

to produce false positives as shown in our previous analysis, can also lead to causal effects being308

wrongly shrunk to zero in some cases. However, we found that all methods, including Egger,309

Weighted-mode, Weighted-median, and MRMix, were able to detect significant causal effects310

in the cases of LDL-C(n ∼ 843k) and LDL-C(n ∼ 1, 320k), indicating improved performance311

with large sample sizes. This suggests that larger sample sizes may lead to more accurate and312

reliable causal inference in MR analyses.313

Consistent with previous findings, our analysis showed that most MR methods produced314

causal effect estimates that were sensitive to the choice of IV thresholds. Specifically, we found315

that causal effect estimates produced by most MR methods were closer to zero at a looser316

IV threshold of 5 × 10−5 compared to a more stringent IV threshold of 5 × 10−8. However,317

we observed better consistency in the causal estimates produced by the MR methods across318

IV thresholds for the cases of LDL-C(n ∼ 843k) and LDL-C(n ∼ 1, 320k). Importantly, as319

GWAS sample sizes increase to the scale of millions, the influence of weak IV bias and selection320
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bias may be greatly alleviated. Our analysis highlights the potential benefits of larger sample321

sizes for improving the accuracy and reliability of MR analyses. Therefore, researchers should322

consider using larger sample sizes in MR studies to improve the robustness of their causal323

inference.324

Discussion325

We present a benchmarking study of 15 two-sample summary-level data-based MR methods326

for causal inference. Our evaluation focuses on three crucial aspects: type I error control327

in the presence of various confounding scenarios (e.g., population stratification, pleiotropy,328

and assortative mating), the accuracy of causal effect estimates, replicability and power.329

Additionally, we explored the robustness of MR methods by evaluating their performance across330

a range of IV thresholds, assessing their ability to handle invalid IVs, and their sensitivity to331

IV selection. What sets our study apart is that our benchmark study is based on real-world332

datasets. Rather than relying on simulated or synthetic data, we carefully curated five diverse333

genetic datasets containing over one thousand trait pairs. The utilization of real-world datasets334

provides a more realistic and comprehensive evaluation of the performance of MR methods in335

practical scenarios.336

Through the innovative designs of experiments that include a wide range of scenarios337

using real-world datasets, our study revealed that the performance of MR methods depends338

on underlying confounding factors that are very prevalent in real-world scenarios. Among339

the methods analyzed, Egger, weighted mode, and MR-APSS consistently demonstrated340

effective control of type I error across all three datasets representing different confounding341

scenarios, including population stratification, pleiotropy, and family-level confounders. However,342

CAUSE failed to control type I error using its default IV threshold of 1 × 10−3 in the343

presence of strong population stratification, although it exhibited deflation in other confounding344

scenarios. The remaining 11 MR methods displayed varying performances across the datasets345

representing different confounding scenarios. In the dataset representing strong population346

stratification (confounding scenario a), all 11 methods exhibited significant inflation of type347

I error. Conversely, in the datasets representing confounding scenarios of pleiotropy and348

family-level confounders (scenarios b and c), some methods, such as IVW (random), MR-Lasso,349

MR-PRESSO, RAPS, Weighted-median, IVW (fixed), cML-MA, MR-ConMix, and MR-Robust,350

demonstrated less severe inflation. Notably, MRMix displayed effective control of type I error351

in the dataset representing family-level confounders (confounding scenario c) but exhibited352

inflation in the dataset representing population stratification (confounding scenario a) and353

pleiotropy (confounding scenario b). These findings underscore the necessity of considering354

the characteristics of the datasets when selecting an appropriate MR method for analysis.355

Researchers should carefully assess the specific confounding factors present in their data and356

choose a method that has demonstrated robustness in handling those confounders.357

Our study emphasized the significant impact of IV selection on the performance of MR358

methods. We found that using a looser threshold for IV selection resulted in inflated type359

I errors and increased bias in causal effect estimates for most methods. This highlights the360

limitations of certain MR methods in handling invalid or weak IVs and emphasizes the need to361

mitigate the potential bias associated with IV selection.362
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Based on our findings, we put forward the following recommendations as guidelines for best363

practices, aiming to assist researchers in choosing the most suitable summary-level MR methods364

for studying causal relationships between specific exposure-outcome trait pairs. By adhering365

to these guidelines, researchers can enhance the reliability and validity of their MR analyses.366

Firstly, we recommend conducting an analysis using negative controls. By incorporating367

negative controls, such as using hair colors as negative control outcomes, researchers can368

detect the presence of confounding bias and evaluate the robustness of different methods to369

confounding. This helps in selecting methods that can effectively handle confounding and370

provide more reliable results. Secondly, we advocate for adopting multiple standards for IV371

selection. Instead of relying solely on a single p-value threshold, researchers should consider372

various criteria and adjust the threshold accordingly to select IVs. By employing multiple373

standards, researchers can assess the sensitivity of MR methods to IV selection and invalid IVs.374

This allows for a more thorough evaluation of the methods’ performance and helps prioritize375

methods that are robust to IV selection. Lastly, whenever feasible, we encourage researchers376

to gather data from multiple independent sources for the exposure and outcome of interest.377

This could involve incorporating data from different study populations, cohorts, or databases.378

By considering data from diverse sources, researchers can prioritize methods that demonstrate379

high replicability across multiple sources. This increases the reliability of the findings and380

strengthens the credibility of the robustness of the selected MR method.381

While our benchmark study provides valuable insights into the performance of summary-382

level MR methods, it does have certain limitations. Firstly, the selection and measurement of383

confounding factors in real-world datasets can be a challenging task. Although we made careful384

efforts to include datasets that represented specific confounding scenarios, it is important to385

recognize that different types of confounders may coexist in these datasets. Secondly, due386

to the difficulty in collecting true positive cases from real data, we assessed the estimation387

accuracy of causal effect by treating the same trait as both exposure and outcome and examined388

replicability with a case study by employing multiple GWASs of the same exposure trait. While389

these strategies indirectly reflect the performance of MR methods in terms of power, a more390

comprehensive power analysis using multiple positive cases would provide valuable insights into391

the methods’ ability to detect causal effects under different conditions. Thirdly, our evaluation392

of the estimation accuracy of MR methods utilized trait pairs where the exposure and outcome393

were the same trait. This design choice is currently the only possible way to ensure the true394

causal effects between trait pairs are known. However, we have to admit that the downside of395

this design is that this example does not test the methods’ robustness to confounding factors396

like pleiotropy because the exposure and outcome are the same traits. Lastly, our benchmark397

study focused solely on summary-level MR methods, but it is important to recognize the398

availability of individual-level MR methods such as GENIUS[33] and GENIUS-MAWII [34] and399

MR-MiSTERI [35]. Although these methods are beyond the scope of our study, researchers400

should consider exploring them when they align with the study design and data availability, as401

they may provide additional insights and benefits in specific research contexts.402
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Methods403

Datasets for evaluation of type I error control in different confounding404

scenarios405

Confounding scenario (a): Population stratification406

We aim to assess the effectiveness of MR methods in controlling type I errors in the presence of407

population stratification. To achieve this, we chose four hair color-related traits (Hair color:408

black, Hair color: blonde, Hair color: light brown, Hair color: dark brown) and skin tanning409

ability (Tanning) as our negative control outcomes. The GWAS summary statistics for the410

negative control outcomes were obtained from the GWAS ATLAS resource [30], which contains411

GWAS data from 600 traits in the UK Biobank. These traits were selected based on their412

characteristics: they are primarily determined at birth and thus are unlikely to be influenced413

by traits occurring after birth, and they are susceptible to confounding due to population414

stratification as indicated by LDSC intercept values of 1.678 (se = 0.017) for Hair color: black,415

1.206 (se = 0.016) for Hair color: blonde, 1.335 (se = 0.013) for Hair color: light brown, 1.510416

(se = 0.018) for Hair color: dark brown, and 1.916 (se = 0.020) for Tanning.417

Next, we focused on selecting suitable exposure traits from the remaining 555 traits available418

in the GWAS ATLAS. We applied specific criteria to identify traits that were unrelated to419

hair or skin, had LDSC heritability estimates greater than 0.01, and possessed a minimum of420

four IVs. Through this process, we identified 226 traits that met these criteria, which we then421

utilized as exposure traits in our MR analysis.422

We then applied MR methods to the 1130 exposure-outcome trait pairs formed by the423

selected exposure and negative control outcome traits (Supplementary data 1) and evaluated424

the effectiveness of MR methods in controlling for type I errors in the presence of population425

stratification.426

Confounding scenario (b): Pleiotropy427

We aim to assess the type I error control of MR methods in the presence of confounding factors,428

such as pleiotropy, which can induce genetic correlation between trait pairs that are not causally429

linked. To accomplish this, we analyzed trait pairs consisting of 11 exposures and seven negative430

control outcomes. The selected exposures included five adult behavior-related traits, namely431

Coffee consumption [36], Instant coffee consumption [36], Ground coffee consumption [36],432

automobile speeding propensity [37] and risk [37], as well as six aging-related traits, including433

Self-rated health (http://www.nealelab.is/uk-biobank/, Phenotype Code: 2178), Longevity434

[38], Parental lifespan [39], Health span [40], Perceived age [41], and Frailty Index [42]. On the435

other hand, the negative control outcomes comprised seven childhood-related traits, such as436

Childhood aggression [43], Childhood BMI [44], Childhood intelligence [45], Fetal birth weight437

[46], Maternal birth weight [46], Pubertal growth (a single height measurement at age 10 in438

girls and 12 in boys) [47], and Comparative body size at age 10 [30]. We chose negative control439

outcomes based on the convention that traits developed after adulthood are unlikely to affect440

traits developed before adulthood causally. Consequently, causal effects between the selected441

exposures and negative control outcomes were considered implausible.442
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To conduct our analysis, we collected GWAS summary statistics for the exposure and443

outcome traits from multiple GWAS sources (detailed information can be found in Supplementary444

data 2). Subsequently, we examined the LDSC intercept estimates of the outcomes and445

calculated the genetic correlation estimates between the trait pairs (see SFig. S4). The LDSC446

intercepts for the outcomes were found to be approximately one, suggesting that population447

stratification was not a prominent confounding factor among these trait pairs. Out of the 77448

trait pairs analyzed, 49 pairs exhibited significant genetic correlations at the nominal level of449

0.05. These analyses allowed us to evaluate the performance of the MR methods in the presence450

of pleiotropy or other types of confounding that could induce genetic correlation between trait451

pairs. By considering these factors, we gained valuable insights into how well the MR methods452

controlled type I errors in the presence of confounders, thereby enhancing our understanding of453

their performance in such scenarios.454

Confounding scenario (c): Family-level confounders455

To assess the type I error control of MR methods in the presence of family-level confounders like456

assortative mating or other indirect genetic effects, we conducted an analysis using summary457

data obtained from a recent within-sibship GWAS study [30]. This dataset provided summary458

statistics for 25 traits, encompassing both within-sibship and population-based GWAS estimates.459

Details on these GWASs are summarized in Supplementary data 3. To ensure that the trait460

pairs analyzed in our study were suitable for evaluating type I errors, we required them to be461

genetically uncorrelated. This criterion was established to ensure that pairs with zero genetic462

correlation are unlikely to be causally linked, indicating the absence of a causal effect. To463

achieve this, we utilized LDSC [48] to estimate the genetic correlation between trait pairs464

among the 25 phenotypes using both population-based GWAS and within-sibship GWAS. Our465

selection process involved identifying 82 trait pairs (Supplementary data 3) with insignificant466

genetic correlation at the nominal level of 0.05 in both types of GWAS analyses. Subsequently,467

we applied MR methods to these selected trait pairs using both population-based GWAS and468

within-sibship GWAS. By comparing the results obtained from each method based on the two469

types of GWAS designs, we were able to examine the ability of MR methods to control for the470

effects of family-level confounders.471

Datasets for evaluation of the accuracy of causal effect estimates472

To evaluate the accuracy of the causal effect estimates of each method, we consider a special473

setting where the exposure and outcome are the same traits. Under a linear model setting,474

the genetic effects of IVs on the exposure and the outcome are the same but the effect size475

estimates are different. Therefore, there is no pleiotropy or other forms of confounding, and we476

could expect the true causal effect known to be exactly one [16, 31, 49]. Specifically, we used477

six traits in this setting including three continuous traits, i.e. Height, Waist Circumference478

(WC), and Educational attainment (EA), and three binary traits, i.e. Hypertension, High479

cholesterol, and Asthma. To obtain the exposure GWAS and outcome GWAS, we split the UK480

Biobank samples into two halves. One half was used as the exposure GWAS and the other481

half was used as the outcome GWAS. The sample sizes of the GWASs ranged from 121,194 to482

168,300 (see details in supplementary data 4). The GWAS summary statistics are obtained483
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using the BOLT-LMM software [50]. In our analysis, GWAS estimates for the binary traits are484

also obtained using linear models through BOLT-LMM and are then used as input for MR485

analysis. We could thus expect the true causal effect between the same binary exposure and486

binary outcome also equal one.487

Datasets for evaluation of replicability and power488

We used the example of low-density lipoprotein cholesterol (LDL-C) and coronary artery disease489

(CAD) for evaluation of the replicability and power of MR methods. The use of the LDL-C and490

CAD example in our case study provides several benefits. First, it serves as a positive control for491

comparing the performance of MR methods. High-level LDL-C is a well-established important492

risk factor for CAD. Several randomized control trials have consistently shown that lowering493

LDL-C levels with statins is effective in the prevention of CAD [51, 52, 53, 54, 55, 56, 57]. This494

allows us to evaluate the accuracy and replicability of different MR methods in a setting where495

we have high confidence in the existence of the positive causal effect. Second, the availability496

of multiple GWAS summary datasets for LDL-C provides a rich source of data for evaluating497

the performance of MR methods. We can thus assess the replicability of different MR methods498

using datasets with varying sample sizes and study designs. In our analysis, we gathered six499

European ancestries GWAS summary datasets for LDL-C i.e., LDL-C (n ∼ 20k) [58], LDL-C500

(n ∼ 95k) [59], LDL-C (n ∼ 188k) [60], LDL-C (n ∼ 343k) by the Neale Lab, LDL-C (n ∼ 843k)501

(without UK biobank samples) and LDL-C(n ∼ 1, 320k) (with UK biobank samples) [61]. The502

GWAS sample size increased from 19,840 in 2009 to 1.35 million in 2022. We used the same503

outcome GWAS for CAD which was obtained from the CARDIoGRAMplusC4D Consortium504

[62]. More details for the GWAS sources can be found in Supplementary data 5.505

Steps of running MR methods506

Step 1: quality control of GWAS summary statistics507

The aim of the quality control step is to identify a candidate set of SNPs with high quality for508

IV selection and MR analysis. In our analysis, we adopted several common QC measures for509

GWAS summary statistics, including510

• Checking missingness. For each SNP, the required data information for performing MR511

analysis includes SNP identifier (we use rs number), effect allele, none effect allele, effect512

size, standard error, sample size (N), and p-value. SNPs missing any of the required513

information should be removed.514

• Checking duplicates. Duplicated SNPs are SNPs with the same SNP identifier. We515

removed SNPs with duplicates to avoid any potential errors.516

• Keeping unambiguous SNPs. We only involved unambiguous SNPs in our analysis, i.e.,517

SNPs with the allele types A/G, A/C, T/G, or T/C.518

• Removing poorly imputed SNPs. The imputed information score (Info) is a measure of519

the quality of the imputed SNPs. SNPs with Info < 0.9 are likely to be poorly imputed520
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and were excluded from analysis. This QC step is applicable as long as the imputed521

information is available in GWAS summary statistics.522

• Removing low minor allele frequency (MAF) SNPs. Low MAF SNPs are those with MAF523

below a certain threshold (e.g., 0.01 or 0.05). SNPs with low MAF were excluded from524

analysis as they are more prone to error. The QC threshold for MAF was chosen as 0.01525

in our analyses. We will show later that the MR analysis results from different methods526

are not sensitive to the QC threshold for MAF. This QC step is applicable as long as527

MAF is available in GWAS summary statistics.528

• Keeping SNPs in the set of HapMap 3 list. Because MAF or imputed information may529

be missing from the GWAS summary statistics, like LDSC, we restricted the analysis to530

a set of common and well-imputed SNPs in the HapMap 3 reference panel.531

• Removing SNPs in the complex Major Histocompatibility Region (Chromosome 6, 26Mb532

− 34Mb).533

• Removing SNPs with extremely large χ2. We removed SNPs with χ2 > max{80, N/1000}534

to reduce the undue influence of outliers on MR analysis results535

After the QC step, GWAS datasets were formatted by retaining only the necessary data536

information for a set of SNPs that meet pre-determined quality control criteria. The retained537

data information typically includes the rs number, effect allele, non-effect allele, effect size,538

standard error, and p-value. It is important to note that we assume the phenotype and539

genotypes in GWASs are scaled to have a mean of zero and a variance of one. This scaling540

allows for the effect size and standard error to be calculated from z-scores and sample size,541

which can be more easily obtained from GWAS summary statistics.542

The QC step is also important for methods like MR-APSS and CAUSE, which use SNPs543

across the genome to estimate nuisance parameters for their model.544

Step 2: harmonizing SNP effects of the exposure and outcome545

Performing MR analysis for an exposure-outcome trait pair requires harmonizing the effect546

estimates of each SNP to refer to the same allele. This is crucial for accurate MR analysis, as it547

ensures that the effect estimates for each SNP are comparable and can be combined to estimate548

the causal effect of the exposure on the outcome. To achieve this, we first checked the strands549

of the exposure and outcome alleles and flipped the outcome allele to the same strand as the550

exposure allele if they differ. We then checked the effect alleles of the exposure and outcome,551

and if they differed, we flipped the direction of the SNP-outcome effect to ensure that all effect552

estimates were aligned to the same allele. For example, if an SNP had an effect/non-effect553

allele of A/G in the exposure GWAS and C/T in the outcome GWAS, we first flipped the554

outcome allele to G/A. As the outcome GWAS presents the effect for the non-effect allele in555

the exposure GWAS, we then flipped the direction of the outcome effect to its opposite. Note556

that only unambiguous SNPs with allele types A/G, A/C, T/G, or T/C were considered, and557

any ambiguous SNPs were discarded from the analysis.558
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Step 3: IV selection and extract IV effects559

After obtaining the harmonized summary dataset for each exposure-outcome trait pair, we560

began selecting instrumental variables (IVs) by identifying SNPs that were reliably associated561

with the exposure trait using a p-value threshold. To examine the robustness of MR methods562

to weak IV bias, we varied the p-value threshold for IV selection from 5× 10−8 to 5× 10−5. For563

those methods that require independence, we further used the Plink LD clumping procedure564

with a threshold of r2 = 0.001 and a window size of 1 Mb to obtain a set of nearly independent565

SNPs from the initial set of SNPs that passed the p-value threshold. It is important to note566

that we required each trait pair to be analyzed with a minimum of five IVs. The final dataset567

containing the summary data for the selected IV set was used as input for performing MR568

analysis, with the goal of estimating the causal effect of the exposure on the outcome.569

While it is common practice to select independent IVs from the exposure dataset and570

obtain summary data from the outcome GWAS, we perform IV selection after harmonizing the571

exposure and outcome datasets. This approach may reduce IV loss due to LD clumping, as572

selected IVs may be absent from the outcome GWAS.573

Step 4: run MR methods574

The implementation details of the 15 compared methods are described as follows:575

• IVW-fixed, IVW-random, Egger, Weighted-median, and Weighted-mode were performed576

using the legacy version of the TwoSampleMR R package with default options (https:577

//github.com/MRCIEU/TwoSampleMR).578

• RAPS wass performed using the mr.raps package without diagnostics by setting diagnostics=F.579

• MRMix was performed using the MRMix package with defalut option (https://github.580

com/gqi/MRMix).581

• MR-PRESSO was performed using the MRPRESSO package (https://github.com/582

rondolab/MR-PRESSO) using OUTLIERtest = TRUE, DISTORTIONtest = TRUE,583

SignifThreshold = 0.05, seed = 1234, and NbDistribution = 1000 options.584

• MR-Robust was performed with lmrob in robustbase R package.585

• MR-Lasso and MR-ConMix are performed using the mr lasso and mr conmix functions,586

respectively, with their default options in MendelianRandomization R package.587

• cML-MA wad performed using R function of mr cML with default options in the MRcML588

R package. It is important to note that we did not compare the results of the Data589

perturbation (DP) versions of cML-MA in our analysis. This decision was based on the590

consideration that the default cML-MA version (without DP) is more time-efficient.591

• MR-APSS was performed using the MR-APSS (https://github.com/YangLabHKUST/592

MR-APSS) R package.593

• CAUSE was performed using the CAUSE (https://github.com/jean997/cause) R594

package.595
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• MR-CUE was performed using the MR.CUE (https://github.com/QingCheng0218/MR.596

CUE) R package.597

The choice of minor allele frequency threshold in quality control step598

One of the QC measures for GWAS summary statistics was to exclude low MAF SNPs with599

the concern that they are more prone to error. Typically, studies use MAF thresholds of 0.01600

or 0.05. To assess the impact of the MAF threshold and to determine an appropriate MAF601

threshold for MR, we conducted an analysis to explore the effect of the MAF threshold by602

varying the MAF threshold. Specifically, we considered the analysis of the six UK Biobank603

trait pairs used to evaluate causal effect estimation. We used MAF thresholds of 0.01 and 0.05604

in the QC step for the summary statistics, and we then applied MR methods to the formatted605

summary datasets with different MAF QC thresholds. Results from different MR methods606

using different MAF thresholds are given in Sfig. S2. Our analysis shows that MR methods are607

generally not sensitive to the choice of MAF thresholds. However, to obtain more candidate608

IVs, we chose a threshold of 0.01 for MAF QC in our MR analysis.609

The choice of reference panel for LD clumping610

All of the compared MR methods, except for MR-CUE, require independent or weakly correlated611

IVs. For those methods, an LD reference panel was used to perform LD clumping in the IV612

selection step. In contrast, MR-CUE allows for correlated IVs, and an LD reference panel is613

used to model the correlation between SNPs. To examine whether MR methods are sensitive to614

the choice of LD reference panel, we conducted a sensitivity analysis by comparing the results615

obtained using different reference panels. Specifically, we used an in-sample UK Biobank LD616

reference panel and the 1000 Genomes reference panel of European ancestry for the six UK617

Biobank trait pairs used to evaluate causal effect estimation. Both reference panels are of the618

same ancestry as the study population. We present the results from different MR methods619

using different LD reference panels in Supplementary Figure Sfig. S3. Our analysis shows that620

MR methods are generally not sensitive to the choice of LD reference panel as long as the621

panels are from the same ancestry.622

Data availability623

The UK Biobank data are from UK Biobank resources under application number 30186. All624

GWAS summary statistics used in this study are downloadable at https://github.com/625

YangLabHKUST/MRbenchmarking. Supplementary Data 1-3, and 5 provide the references of626

these datasets.627

Code availability628

The source codes to reproduce all the analyses can be accessed at the following location:629

https://github.com/YangLabHKUST/MRbenchmarking.630
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