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ABSTRACT 33 

Response to immune checkpoint inhibition (ICI) in sarcoma is overall low and heterogeneous. 34 

Understanding determinants of ICI outcomes may improve efficacy and patient selection. One 35 

potential mechanism is epigenetic de-repression of transposable elements (TEs), which 36 

stimulates antitumor immunity. Here, we used transcriptomic data to assign immune-hot versus 37 

immune-cold status to 67 pre-treatment biopsies of sarcomas from patients treated on ICI trials. 38 

Progression-free survival and overall response was superior in the immune-hot group. Expression 39 

of TEs and epigenetic regulators significantly predicted immune-hot status in a regression model 40 

in which specific TE subfamilies and IKZF1, a chromatin-interacting transcription factor, were 41 

significantly contributory. TE and IKZF1 expression positively correlated with tumor immune 42 

infiltrates, inflammatory pathways, and clinical outcomes. Key findings were confirmed in a 43 

validation cohort (n=190). This work suggests that TE and IKZF1 expression warrant investigation 44 

as predictive biomarkers for ICI response and as therapeutic targets in sarcomas.  45 

  46 
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INTRODUCTION 47 

Sarcomas are a diverse group of more than 170 histologic entities1 that derive from tissues of 48 

mesenchymal origin. The underlying genetic causes of sarcomas2,3 are diverse and their biologic 49 

and pathologic behavior is highly varied4. The clinical management of metastatic sarcomas is 50 

generally palliative and relies upon systemic therapies including cytotoxic chemotherapy, targeted 51 

therapies, and in some instances immune checkpoint blockade5. The overall response rate to 52 

first-line chemotherapy in soft tissue sarcoma is approximately 20%6. Hence, there is a need for 53 

both new treatment modalities and improved methods to select patients most likely to respond to 54 

specific treatments.  55 

 56 

Immune checkpoint inhibition (ICI) has been studied in sarcomas, and activity has been noted 57 

with nivolumab (anti-PD-1) alone or in combination with ipilimumab (anti-CTLA-4)7 or with 58 

pembrolizumab (anti-PD-1) as a single agent8. Efforts to enhance the activity of ICI through 59 

combination with other immune-modulatory drugs or with cytotoxic therapies has revealed 60 

variable response rates, which likely depend on the drug combination and sarcoma subtype 61 

(recently reviewed9). In parallel, predictive biomarkers for ICI response in sarcoma are being 62 

explored. While microsatellite instability (MSI) and high tumor mutation burden (TMB) predict 63 

response in carcinomas10-16, TMB is relatively low in sarcomas and MSI is exceedingly rare17. 64 

Alternative biomarkers such as tertiary lymphoid structures and B cell and CD8+ T cell infiltrates 65 

correlate with ICI response in some soft tissue sarcomas such as undifferentiated pleomorphic 66 

sarcoma (UPS)2,18,19.  67 

  68 

Another potential determinant and predictor of antitumor immunity and ICI response are 69 

epigenetic states, which are determined by chemical modifications of DNA, RNA, and DNA- 70 

associated proteins together with their positioning relative to specific genomic sequences20. One 71 

key function of epigenetic states is to regulate transcriptional programs, including those that 72 
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influence immune signaling. Therefore, genetic or pharmacologic perturbation of the machinery 73 

that establishes or maintains epigenetic states can prime ICI response in preclinical models and 74 

correlates with ICI clinical response21-29. For example, epigenetic mechanisms can promote 75 

immune escape through repression of antigen-presenting machinery and transposable elements 76 

(TEs), epigenetically silenced sequences of viral origin that, when de-repressed, stimulate 77 

antiviral immune signaling22,24,30.  78 

 79 

We therefore hypothesized that sarcoma baseline immune infiltrates and clinical outcomes 80 

following immunotherapy treatment are influenced by expression of TEs and epigenetic 81 

regulators. To test this, we generated and analyzed transcriptomic profiles of pre-treatment 82 

biopsies from 67 unique patients enrolled in 3 ICI trials at our institution and an independent 83 

validation cohort. Here, we demonstrate that the efficacy of ICIs is linked to the de-repression of 84 

TEs that are normally silenced by epigenetic mechanisms and upregulation of the transcription 85 

factor IKZF1, which interacts with chromatin-modifying complexes. TE and IKZF1 upregulation in 86 

turn correlate with hallmarks of tumor-intrinsic innate immune activation such as type I interferon 87 

and antigen presentation, suggesting a potential mechanism for enhanced immune response 88 

mediated by tumor epigenetic states.  89 

 90 

Results 91 

 92 

Baseline immune cell populations predict response and progression-free survival in 93 

sarcoma patients treated with immune checkpoint inhibitors 94 

To study the influence of features linked to epigenetic states on antitumor immunity, we first 95 

characterized baseline immune infiltrates in tumor biopsies from 67 patients with a heterogeneous 96 

set of sarcomas (>10 subtypes) who were subsequently treated on ICI clinical trials (Extended 97 
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Data Table 1). Twelve patients responded to ICI and 55 did not (CR/PR=12, SD=21, PD=34). 98 

Baseline samples were analyzed to identify tumor characteristics that could be informative prior 99 

to treatment and to eliminate confounding by varying ICI drugs and combinations used across 100 

trials. We employed an RNA sequencing (RNA-seq)-based method to quantify the abundance of 101 

different immune populations, MCP-counter31. To obtain robust clustering of samples based on 102 

their profile of immune infiltrates, we used a hierarchical clustering of principal components 103 

(HCPC) approach32, which integrates principal components (PCA) and hierarchical clustering. 104 

This HCPC revealed two highly distinct groups, which we deemed “immune-cold” and “immune-105 

hot” (Figure 1A, B; Extended Data Figure 1). Except for cancer-associated fibroblasts, all cell 106 

types defined by MCP-counter were significantly associated with cluster partitioning, with T cells 107 

(p= 3.41 x 10-10) contributing the most, followed by cytotoxicity score (representative of cytotoxic 108 

lymphocytes) (p=2.01 x 10-9), and CD8+ T cells (p=6.89 x 10-9), NK cells (p=3.54 x 10-8), B cells 109 

(p=3.58 x 10-8), neutrophils (p=9.12 x 10-8), myeloid dendritic cells (p=1.17 x 10-7), 110 

macrophage/monocytes (p=1.34 x 10-7), and endothelial cells (p=7.88 x 10-3). The immune-hot 111 

cluster displayed, on average, greater abundance of all immune cell types in comparison to the 112 

overall mean, and conversely the immune-cold cluster displayed lower abundance of the same 113 

immune cell types (Extended Data Table 2).  114 

 115 

Having assigned tumors to hot and cold immune groups, we next determined how these immune 116 

states correlated with clinical outcomes after the 67 patients in our cohort received ICI-based 117 

intervention in one of 3 clinical trials: pembrolizumab plus talmogene laherparepvec 118 

(NCT03069378)33 , nivolumab plus bempegaldesleukin (NCT03282344)2, and pembrolizumab 119 

plus epacadostat (NCT03414229)34. There were no significant differences between the 3 ICI trials 120 

with respect to the number of responders and non-responders or immune-hot and -cold patients 121 

(Extended Data Table 3). We compared overall response rates (ORR) by RECIST version 1.135 122 

in immune-hot (ORR=30% [9/30]) vs. immune-cold (ORR=8.1% [3/37]) tumors. The ORR in the 123 
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immune-hot group was significantly greater than in the immune-cold group (Fisher's Exact Test, 124 

95% CI 1.03-30.31, p=0.02). Furthermore, the immune hot samples were more prevalent than the 125 

immune cold samples in the complete response (CR) compared to progressive disease (PD) 126 

groups (Fisher's Exact Test, 95% CI 0.02-0.73, p=0.01), while there was no significant difference 127 

in the CR versus stable disease (SD) and SD versus PD. The expression levels of immune 128 

checkpoint-related genes were consistent with the patterns observed in immune infiltrates, with 129 

elevated expression of CD274 (PD-L1), CTLA4 (two-sided t-test, p= 1.83 x 10-6 and p=1.18 x 10-130 

4, respectively), and LAG3 (two-sided t-test, p=0.12) in immune-hot tumors (Figure 1C). 131 

 132 

To determine if the baseline immune type was prognostic for progression-free survival (PFS), we 133 

performed survival analysis including the histologic sarcoma subtype as a covariate (Figure 1D, 134 

Extended Data Figure 2). Median PFS among patients with immune-cold tumors was 1.7 months 135 

vs. 3.65 months for immune-hot. Tumor classification as immune-hot contributed to improved PFS 136 

(HR=0.43, 95% CI 0.22-0.84, p=0.01) (Extended Data Figure 2). The histologic subtypes of 137 

leiomyosarcoma, myxofibrosarcoma, osteosarcoma, and small blue round cell tumors had a 138 

significant effect on PFS in our cohort. 139 

 140 

Hot and cold immune types are analogous to previously identified sarcoma immune 141 

classes 142 

To determine how the two immune subtypes identified in this study relate to previously described 143 

sarcoma immune classes (SICs), which correlate with immune infiltrates and ICI response, we 144 

classified our samples according to those 5 SIC clusters (labeled A-E, Extended Data Figure 145 

3)19. In total, 47% (14/30) of the immune-hot samples from our study fell into immune-hot SICs D 146 

and E. The remaining 53% (16/30) of immune-hot samples were assigned to immune-cold SIC B. 147 

In contrast, the immune-cold samples from our study were almost exclusively classified into 148 

immune-cold SICs A and B, with only two samples matching SIC C (Extended Data Figure 3). 149 
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In summary, the two distinct immune clusters identified in this study between which we observe 150 

differences in PFS and ORR following ICI treatment are associated with SICs that are consistent 151 

with immune-high and immune-low states. 152 

 153 

In addition to the validation of our clustering through comparison with independently developed 154 

classifications, we also reasoned that if the immune type clusters identified in our approach via 155 

deconvolution of bulk RNA sequencing accurately reflected immune cell populations, then the 156 

immune-hot cluster should contain more immune infiltrates than the immune-cold cluster, 157 

resulting in lower tumor content. Concordantly, the immune-hot type displayed significantly lower 158 

purity compared to the immune-cold type (two-sided t-test; t=-3.11, df=64, p=2.7 x 10-3) 159 

(Extended Data Figure 4A). To further confirm this relationship, we performed a permutation test 160 

randomly assigning samples to immune groups and comparing the difference between purity 161 

estimates between the two groups, which was repeated 10,000 times to produce a null 162 

distribution. The observed data displayed significantly greater differences in tumor purity 163 

estimates compared with the null distribution (p=3.1 x 10-3) (Extended Data Figure 4B). Lastly, 164 

tumor purity was inversely correlated with lymphoid and myeloid cell content (Extended Data 165 

Figure 4C), which is consistent with immune cell content contributing to the non-tumor cell 166 

fraction.  167 

 168 

TE and Ikaros (IKZF1) expression predict immune types in sarcoma 169 

Although the activation of immune response through increased expression of transposable 170 

elements (TEs) and the involvement of epigenetic genes in the regulation of TE expression has 171 

been established in many cancers23,24,36-39, these processes have not been well studied in 172 

sarcoma. Our analysis of expression of 1,002 intergenic TEs across the two immune types shows 173 

heterogenous expression (Extended Data Figure 5). Thus, we next asked if expression of TEs 174 

and epigenetic regulators is predictive of tumor immune types in sarcoma. Lasso logistic 175 
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regression models including expression of TEs (R2=0.29), epigenetic regulators (R2=0.19) had 176 

higher R2 values, indicating that the models including these features are a better fit for the 177 

prediction of immune type than a basic model that included only sarcoma subtypes and 178 

sequencing batch or models of TE and epigenetic regulator expression with randomized immune 179 

type sample labels (R2 TE shuffled=0.02, R2 epigenetic regulators shuffled=0.01) (Figure 2A). 180 

Furthermore, the selected models identified a small set of informative epigenetic regulator 181 

genes and TEs associated with the identified immune types from a large number of genes and 182 

TEs that were part of the model, i.e. signature features. Signature features with the highest 183 

contribution to the model included the MER57F (ERV1), MER45A (DNA transposon), Tigger17a 184 

(DNA transposon), MER61F (ERV1), LTR104_Mam (Gypsy), HERVL74.int (ERVL) 185 

TE subfamilies, expression of which was significantly greater in the immune-hot cluster (Figure 186 

2B and 2C). In addition, IKZF1, a chromatin-interacting transcription factor40 which regulates 187 

three-dimensional chromatin structure41, was the only epigenetic regulator of 532 genes tested 188 

as single genes to significantly contribute to the immune type prediction model and was 189 

associated with B cell infiltrates (Figure 2B, 2C and Extended Data Figure 6A).  190 

 191 

We next fitted a logistic regression model using the signature features (i.e., IKZF1 and TE score) 192 

to predict their effect on immune type. To calculate a TE score, we combined the expression 193 

values of the 6 signature feature TEs, for which expression of each of which was also positively 194 

correlated (Extended Data Figure 6B). After adjusting for sequencing batch and histology, we 195 

found that both TE score (p=2.2 x 10-3), and IKZF1 expression (p=5.8 x 10-3), were significantly 196 

associated with immune type. This suggests that IKZF1 and TE affect immune type. We used a 197 

conditional independence approach (see Methods) to further investigate the potential causal 198 

relationships between IKZF1, TEs, and immune type. Our analysis revealed that: a) given IKZF 199 

expression, TE expression (TE score) is not conditionally independent of immune type (p=1.17 x 200 

10-5), b) given TE expression, IKZF1 expression is conditionally independent of immune type 201 
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(p=0.14), and c) TEs and IKZF1 do not have an independent impact on immune type (p=2.35 x 202 

10-6). This analysis suggests that TEs play a significant role in determining immune type, and that 203 

they interact with IKZF1 in a complex way to modulate the immune response. 204 

 205 

High expression of TEs and IKZF1 is associated with immune and inflammatory pathway 206 

signatures and progression free survival 207 

We next determined whether IKZF1 and TE expression correlated with activation of immune and 208 

inflammatory pathways using a partial Pearson correlation. Both IKZF1 and TE score were 209 

positively correlated with multiple immune pathways, while pathways related to non-immune 210 

function were either significantly inversely correlated or not significantly correlated, suggesting a 211 

distinct relationship between TEs and IKZF1 expression and immune activity in sarcomas (Figure 212 

3A). Specifically, TE score and IKFZ1 expression were significantly correlated with antiviral 213 

response pathways such as cGAS-STING (TE score, r2=0.64, p=7.90 x 10-9; IKZF1, r2=0.67, 214 

p=1.03 x 10-9), type I interferon (TE score, r2=0.38, p= 1.55 x 10-3, IKZF1, r2=0.32, p=7.89 x 10-3), 215 

and type II interferon (TE score, r2=0.68, p= 2.66 x 10-10, IKZF1, r2=0.55 p=1.28 x 10-6). Moreover, 216 

we observed positive correlations between TE score and IKZF1 expression and the upregulation 217 

of antigen-processing machinery (TE score, r2=0.49, p=2.99 x 10-5, IKZF1, r2=0.27, p=2.44 x 10-218 

2) as well as the CD8+ T cell effector pathway (TE score, r2=0.54, p=2.94 x 10-6, IKZF1, r2=0.45, 219 

p=1.17 x 10-4).  220 

 221 

Because CD274 (PD-L1) expression was significantly higher in the immune-hot group (Figure 222 

1C), we also investigated the association between immune checkpoint-related genes and immune 223 

activity and found a significant positive correlation between CD274 and immune and inflammatory 224 

pathways (CD8+ T cell effector, r2=0.36, adjusted p= 3.21 x 10-3, cGAS-STING, r2=0.71, p= 1.53 225 

x 10-11; type II interferon, r2=0.54, p=2.51 x 10-6). TE score and IKZF1 also positively correlated 226 

with CD274 expression (p=4.40 x 10-9 and p= 2.5 x 10-10 respectively) (Figure 3B). We next tested 227 
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whether the TE score and IKZF1 expression were predictive of PFS. Both high TE score (p=1.65 228 

x 10-3) and IKZF1 expression (p=9.28 x 10-3) correlated with prolonged PFS (high TE 4.4 months 229 

vs. low TE 1.8 months; high IKZF1 5.3 months vs. low IKZF1 1.8 months) (Figure 3C). The ORR 230 

based on IKZF1 expression was 54.5% (6/11) in the high-expressing group and 10.7% (6/56) in 231 

the low-expressing group (p=2.72 x 10-3; Fisher’s exact test). ORR in the TE-high group was 40% 232 

(6/15) and 11.53% (6/52) in the TE-low group (p=0.13; Fisher’s exact test). Taken together, these 233 

findings suggest that both IKZF1 expression and TE score, which were identified in model that 234 

considered subtypes as a variable, could be explored as predictive biomarkers for ICI outcomes. 235 

 236 

TE and IKZF1 expression associate with immune infiltrate and inflammatory pathway 237 

activation in a separate validation cohort of sarcoma patients 238 

To assess the replicability of our findings, we applied our analysis to gene expression data from 239 

190 sarcoma samples from the TCGA3. This group was chosen as it includes 5 sarcoma subtypes, 240 

DDLPS (n=49), MFS (n=17), LMS (n=80; 53 STLMS; 27 ULMS), and UPS (n=44), which were 241 

prevalent in our original cohort. The immune signatures in the validation cohort segregated into 242 

two distinct clusters marked by high (immune-hot) and low (immune-cold) immune infiltrates and 243 

expression of immune checkpoints (Figure 4A-C, Extended Data Figure 7). The immune-hot 244 

cluster was associated with improved overall survival (p=1.09 x 10-2), at a median of 37.5 months 245 

vs. 25.5 months for the immune-cold cluster (Figure 4D).  246 

 247 

As in the original cohort, expression of TEs and epigenetic regulators predicted immune type 248 

(Extended Data Figure 8A) and specific TEs and IKZF1 were identified as signature features 249 

that positively correlated with immune-hot classification (Extended Data Figure 8B, C). 250 

Furthermore, expression of IKZF1 and TEs (again defined as a composite TE score) correlated 251 

with that of immune pathways including type I and II interferon (p<0.001), antigen-processing 252 

machinery (p<0.001), and immune checkpoint genes (p<0.001) including CD274, but not non-253 
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immune pathways (Extended Data Figure 9A, B). Overall survival was greater for patients whose 254 

tumor had a high TE score (p=1.26 x 10-3) or IKZF1 (p=4.94 x 10-3) expression (Figure 4E, F).  255 

 256 

 257 

Discussion  258 

To address the pressing need to identify predictive biomarkers of response to ICI-based therapy 259 

in sarcomas, we identified the minimal number of immune clusters that represent immune-hot and 260 

-cold sarcomas and showed that the former is associated with higher ORR and longer PFS 261 

following ICI treatment independent of subtype. This finding corroborates prior studies that have 262 

shown a correlation between high baseline immune infiltrates and response to immune therapy19. 263 

Importantly, our work demonstrates that these findings apply in a cohort with a broad spectrum of 264 

sarcoma subtypes and in the setting of 3 combination ICI trials with diverse mechanisms. 265 

Moreover, our analysis shows that a binary classification of tumors is sufficient to correlate with 266 

clinical outcomes, indicating that immune clustering can be simplified compared to previous 267 

approaches that involved more groups19. Such a simplified system could be helpful in smaller 268 

studies with limited numbers of cases. 269 

 270 

To identify specific tumor-intrinsic features that contribute to differences in immune states, we 271 

focused on epigenetic regulation. Epigenetic mechanisms are known to suppress antitumor 272 

immune responses and targeting epigenetic pathways has emerged as a promising therapeutic 273 

strategy21,30,42. Specifically, we examined the expression of epigenetic regulators and TEs, the 274 

latter of which are normally epigenetically silenced (e.g., via establishment of heterochromatin) 275 

and can stimulate innate immune responses when de-repressed27-29,43. We observed increased 276 

expression of TEs in immune-hot tumors. This is consistent with the ability of TEs to activate 277 

dsRNA-sensing pathways, as has been observed in the setting of genetic lesions in epigenetic 278 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.24300710doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.24300710


 
 

12 
 

regulators or pharmacologic treatment that lead to their de-repression23,24,30,44. Our observation 279 

of upregulated antiviral immune responses (including cGAS and type I interferon signaling) and 280 

antigen-presenting pathways is consistent with this mechanism. Further investigation is needed 281 

to determine whether the presentation of TE-derived neoantigens via MHC-I, as observed in the 282 

loss of epigenetic TE silencing, could also contribute to the immune-hot state27,38.  283 

 284 

In addition to TEs, our analysis revealed that expression of IKZF1 was significantly greater in 285 

immune-hot tumors and associated with PD-L1 expression and B cell infiltrates, which was 286 

validated in a separate cohort of 190 sarcoma samples from the TCGA. Notably, greater 287 

infiltration of B lineage immune cells associates with overall survival in soft tissue sarcomas19. 288 

Although Ikaros, the IKZF1 gene product, is primarily studied as a transcription factor in 289 

hematologic lineages40, it was included in our list of epigenetic regulators given the inherent 290 

interaction of transcription factors and chromatin. Recent reports also suggest an important role 291 

for Ikaros in regulating higher order chromatin structure41. Notably, previous studies have 292 

determined that if IKZF1 is expressed in tumor cells and not only in immune populations, it 293 

contributes to upregulation of immune infiltration and enhances the efficacy of anti-PD-1 and anti-294 

CTLA-4 immunotherapies in murine models45. Our findings raise the possibility of a similar effect 295 

in sarcomas.  296 

 297 

It is unclear whether TE de-repression and IKZF1 expression are directly linked mechanistically. 298 

One possibility is that IKZF1 regulates TE expression, as several TE families contain an IKZF1-299 

binding motif46. It is also possible that the mechanism for loss of epigenetic silencing at TEs 300 

creates a permissive chromatin state for IKZF1 binding that allows for activation of nearby genes 301 

involved in innate immune activation. Alternatively, de-repression of TEs, which can act as cis-302 

regulatory elements, could promote IKZF1 expression. In our study, conditional independence 303 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.24300710doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.24300710


 
 

13 
 

analysis supports a model in which IKZF1 regulates TE expression, which in turn 304 

determines immune types. However, functional studies are needed to test this hypothesis. 305 

 306 

There are several limitations of this study including the relatively small sample size (n=67), the 307 

heterogeneity in sarcoma subtypes, and that patients were included from 3 trials of ICI-based 308 

regimens with different mechanisms. However, while this heterogeneity may have decreased our 309 

ability to identify signals related to specific epigenetic genes or TE families, we were reassuringly 310 

able to classify tumors into immune classes that were predictive of clinical outcomes and confirm 311 

prior classification systems. Furthermore, our key findings were confirmed in a larger validation 312 

cohort (n=190), which included common sarcoma subtypes also represented in the original 313 

sample set. However, the validation cohort differed in that samples were from patients who had 314 

not received systemic therapy, it was composed of nearly all primary tumors, and outcome was 315 

overall survival and not PFS or response following ICI-based treatment. Another caveat of the 316 

study is that we selected polyadenylated transcripts for RNA sequencing, which would limit 317 

detection of theoretically transcribed but non-polyadenylated TEs. We were also potentially limited 318 

by considering epigenetic genes as independent, when many encode proteins that form 319 

complexes or functional pathways.  320 

 321 

Increasing the effectiveness of immunotherapies and identifying predictors of ICI response would 322 

both represent important advances in sarcoma. Our work presents several possibilities for 323 

achieving these goals using data from pretreatment biopsies. We confirm earlier studies showing 324 

that pretreatment immune status can predict ICI outcomes and propose IKZF1 expression and 325 

TE score as potential predictive biomarkers for ICI response, both of which require validation. In 326 

addition, this work reveals potential avenues to enhance ICI response through stimulation of 327 

immune responsiveness of baseline immune-cold tumors to convert them into an immune-hot 328 
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phenotype. Based on this work, promoting the de-repression of TEs by pharmacologic targeting 329 

of epigenetic regulators could be explored in preclinical models.  330 

 331 

 332 

Materials and Methods 333 

Clinical data were collected and DNA and RNA sequencing of pre-treatment biopsy samples was 334 

performed under Institutional Review Board oversight of 3 clinical trials performed at the Memorial 335 

Sloan Kettering Cancer Center. These include pembrolizumab plus talmogene laherparepvec 336 

(NCT03069378)33, nivolumab plus bempegaldesleukin (NCT03282344)2, and pembrolizumab 337 

plus epacadostat (NCT03414229)34. Details regarding each study’s design, safety oversight, and 338 

interventions can be found in referenced publications for each study.  339 

 340 

Samples  341 

A total of 67 baseline samples from twelve sarcoma subtypes (angiosarcoma (ANGS) =4, alveolar 342 

soft part sarcoma (ASPS)=1, chondrosarcoma (CHS)=6, epithelioid hemangioendothelioma 343 

(EHE)=8, leiomyosarcoma (LMS)=11, liposarcoma (LPS)=8, myxofibrosarcoma (MFS)=2, 344 

osteosarcoma (OS)=4, Other=7, sarcoma not otherwise specified (SARCNOS)=2, small blue 345 

round cell sarcoma (SBRC)=4, and undifferentiated pleomorphic sarcoma (UPS)=8, representing 346 

twelve responders and 55 non-responders (CR/PR=12, SD=21, PD=34) were transcriptionally 347 

profiled (Extended Data Table 1). 348 

 349 

RNA sequencing, and quantification of TEs and genes 350 

After quantification of RNA using RiboGreen and quality control using the Agilent BioAnalyzer, 351 

469-500 ng of total RNA with RNA integrity values ranging from 6.8–10 underwent polyA selection 352 

and TruSeq library preparation following the instructions provided by Illumina (TruSeq Stranded 353 
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mRNA LT Kit, catalog #RS-122-2102), with 8 cycles of PCR. The resulting samples were 354 

barcoded and run on a HiSeq 4000  at 100 paired-end reads, using the HiSeq 3000/4000 SBS 355 

Kit (Illumina), generating an average of 41 million paired reads per sample. Ribosomal reads 356 

represented 0.9–5.9% of the total reads generated and the percent of mRNA bases averaged 357 

64%. 358 

 359 

The obtained FASTQ files were processed using the REdiscoverTE38 workflow, which allowed for 360 

quantification based on transcript levels. Gene transcripts were aggregated to obtain individual 361 

gene quantification. Read counts for each individual transposable element (TE) were then 362 

gathered to the level of TE subfamily, family, and class, as defined by the human Repeatmasker 363 

Hg38. TE expression was further divided into inter- and intragenic regions as defined by Gencode 364 

GTF/GFF and implemented in REdiscoverTE. Downstream analysis considered only intergenic 365 

expression of 1002 out of a total of 1052 TE subfamilies that were expressed. Gene-based 366 

normalization factors were calculated using the 'RLE' algorithm in edgeR47, as determined by 367 

REdiscoverTE. The data was further variance-stabilized using the voom function from edgeR. 368 

 369 

RNAseq deconvolution and generation of immune clusters 370 

We quantified immune cell populations from variance-stabilized RNAseq data using the 371 

immunedeconv R package and its deconvolute function, along with the MCPcounter option 372 

3.6.331. Batch effects due to sequencing run were removed using removeBatchEffect() function 373 

from the limma R package48. To reduce the dimensionality of the immune cell proportion data, we 374 

first performed a principal component analysis, followed by hierarchical clustering on principal 375 

components (HCPC) using the FactoMineR package 49. Cluster types were visualized using the 376 

factoextra R package (https://CRAN.R-project.org/package=factoextra). 377 

 378 
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Heatmaps of expression in each cluster were generated based on the scaled (Z-scores) immune 379 

cell proportions. Z-scores were calculated using the formula z = (x-μ)/σ, where x is the raw cell 380 

fraction, μ is the mean of all samples, and σ is the standard deviation for all samples. 381 

 382 

To obtain the cellularity enrichment scores for 64 cell types, from which lymphoid and myeloid cell 383 

type proportions can be derived, we used the xCellAnalysis function in the xCell R package 384 

(https://github.com/dviraran/xCell). Total lymphoid content was calculated as the sum of 21 385 

lymphoid cell scores, including CD8 + T cells, NK cells, CD4 + naive T cells, B cells, CD4+ T cells, 386 

CD8+ Tem, Tregs, plasma cells, CD4 + Tcm, CD4+ Tem, memory B cells, CD8+ Tcm, naive B-387 

cells, CD4+ memory T cells, pro B cells, class-switched memory B cells, Th2 cells, Th1 cells, 388 

CD8+ naive T cells, NKT, and Tgd cells. Total myeloid content was expressed as the sum of 13 389 

cell scores, including monocytes, macrophages, dendritic cells (including activated, conventional, 390 

interstitial, and plasmacytoid), neutrophils, eosinophils, M1 macrophages, M2 macrophages, 391 

basophils, and mast cells. 392 

 393 

To test if immune type predicts survival in sarcoma, we performed Cox regression analysis that 394 

included histology to control for subtype-specific differences in outcomes. We compared survival 395 

between groups using the Kaplan-Meier survival curve and the Cox proportional-hazards 396 

regression mode. Differences were considered significant if the p-value was less than 0.05 for the 397 

tested group.  398 

 399 

Exome sequencing and purity estimation  400 

Viably frozen cells were thawed and pelleted and incubated for at least 30 min in 360 μL Buffer 401 

ATL + 40 μL proteinase K at 55°C. DNA was isolated using the DNeasy Blood & Tissue Kit 402 

(QIAGEN catalog #69504) according to the manufacturer’s protocol with 1 h of incubation at 55°C 403 

for digestion. DNA was eluted in 0.5X Buffer AE. 404 
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 405 

After PicoGreen quantification and quality control by Agilent BioAnalyzer, 100-250 ng of DNA was 406 

used to prepare libraries using the KAPA Hyper Prep Kit (Kapa Biosystems KK8504) with 8 cycles 407 

of PCR. After sample barcoding, 100-500 ng of library DNA was captured by hybridization using 408 

the xGen Exome Research Panel v1.0 (IDT) according to the manufacturer’s protocol. Post-409 

capture libraries were amplified using 8 PCR cycles. Samples were run on a HiSeq 4000 at 100 410 

paired-end reads using the HiSeq 3000/4000 SBS Kit (Illumina). Normal and tumor samples were 411 

covered to an average of 102X and 219X, respectively. 412 

 413 

FASTQ files were aligned and processed using the in-house workflow Tempo 414 

(https://github.com/mskcc/tempo)50. Briefly, reads were aligned using Burroughs-Wheeler Aligner 415 

(BWA)-MEM 51 to the GRCh37 reference genome and base recalibration was performed using 416 

Genome Analysis Toolkit (GATK) best practices. Somatic genome variants were called using the 417 

union of Mutect2 and Strelka2. Variants were then filtered based on the following criteria: tumor 418 

read depth of 20, variant allele frequency <0.5 x the tumor alternate read count of 3, and normal 419 

read depth of 10. In addition, repeated regions from RepeatMasker52 and variants that appear at 420 

allele frequencies >0.01 in GNOMAD53 were filtered out. Somatic copy number alterations were 421 

analyzed using FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumor 422 

Sequencing) v0.5.1454. Each tumor and matched normal pair was processed in two steps: a first 423 

run for ploidy and purity estimation followed by a second run for detection of focal events. Each 424 

fit was reviewed manually to minimize false positives and to estimate the quality of the fit. Purity 425 

estimates from facets were used in the subsequent analysis. 426 

 427 

Lasso association between immune types and genomic features 428 
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To identify genomic features that significantly differed between the two immune types, we used 429 

lasso logistic regression via penalized maximum likelihood using the R package glmnet55. To 430 

account for potential variations due to sequencing batch or subtypes, we included these 431 

parameters in the basic model. Other models were further built with either normalized expression 432 

of 1002 intergenic TEs, shuffled TE expression, normalized expression of epigenetic modulators 433 

(532 genes), or shuffled epigenetic modulator expression.  434 

1. Basic model: Immune types∼ batch + sarcoma subtypes 435 

2. Basic model + TE: Immune types∼ batch + sarcoma subtypes + 1002 TEs 436 

3. Basic model + TE shuffled: Immune types∼ batch + sarcoma subtypes + 1002 TEs 437 

shuffled 438 

4. Basic model + epigenetic genes: Immune types∼ batch + sarcoma subtypes + 532 439 

epigenetic genes  440 

5. Basic model + epigenetic genes shuffled: Immune types∼ batch + sarcoma subtypes + 441 

532 epigenetic genes shuffled 442 

TEs in the models represent intergenic TEs, and shuffled TE or epigenetic genes data represents 443 

randomly assigned TE or epigenetic genes expression to the samples.  444 

 445 

Tenfold cross-validation was performed for each regression, and lasso coefficients at one 446 

standard error of the minimum mean cross-validation errors (lambda 1se) were used. Each lasso 447 

fit returned a small number of predictors, i.e. variables with non-zero coefficients, matching 448 

genomic features with significant contributions to difference between the two immune types. 449 

R2 values for each model were calculated from the fraction of deviance explained and averaged 450 

across the 10 rounds of cross-validation. R2 values were then used to determine the model with 451 

the best performance. To identify notable features associated with immune type, we extracted 452 

non-zero coefficients of the final best models. 453 

 454 
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To further test the relationship between significant TE and epigenetic features determined by the 455 

glmnet model, we used logistic glm regression in which immune type represented a dependent 456 

variable, while TE score and IKZF1 expression represented independent variables. The model 457 

was corrected for batch and histology covariates. The TE score was calculated by generating a 458 

z-score for the expression of 8 TEs found to be significant in the glmnet analysis and that exhibited 459 

positive correlation with each other (Extended Data Figure 6B). Z-score was generated using 460 

the gsva function of the GSVA package56.  461 

 462 

Logistic regression and conditional independence test  463 

To further confirm the relationship between selected TEs and IKZF1 expression with respect to 464 

immune cluster, we performed a logistic regression test. TE score and IKZF1 were used as 465 

independent variables to assess their association with immune type. Bach and histology were 466 

used as covariates in the model.  467 

 468 

Conditional independence (mutual information) tests to identify causal relationships between TEs, 469 

IKZF1, and immune-hot/-cold phenotype were performed using the bnlearn package in R 470 

(https://www.bnlearn.com/). Three hypotheses were tested:  471 

a) TE score -> IKZF1-> Immune type: Immune type is conditionally independent of TE given 472 

IKZF1; TEs regulate IKZF1 and do not directly regulate immune type. 473 

b) IKZF1-> TE score -> Immune type: Immune type is conditionally independent of IKZF1 474 

given TE; IKZF1 regulates TEs and does not directly regulate immune type. 475 

c) IKZF1-> Immune type <- TE score: IKZF1 and TEs are conditionally independent of 476 

immune type. 477 

 478 

Gene signature calculations 479 
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Genes for immune/inflammatory and other signatures used to determine the correlation of 480 

significant features found to be predictive of immune type were defined as previously described 481 

in literature and summarized in Kong et al.38 (except the cGAS pathway, which was downloaded 482 

from KEGG  483 

https://www.gseamsigdb.org/gsea/msigdb/cards/). The ssGSEA algorithm was used to 484 

comprehensively assess gene signature expression of each57. The correlation between gene 485 

signatures and normalized expression of significant features was assessed by partial Pearson 486 

correlation analysis with batch and histology as covariates. P values were corrected using the 487 

Benjamini-Hochberg correction.  488 

 489 

Comparison with previously reported immune classes 490 

To compare our immune clusters with formerly derived 5 sarcoma immune classes (SIC) 491 

previously defined by Petitprez et al.,19 we obtained centroid infiltration scores for each of 4 cell 492 

types (i.e. T cells, cytotoxic scores, B lineage, endothelial cells) of the 5 clusters derived from 493 

MCP-counter analysis from the authors of the paper. We then calculated Euclidian distance 494 

(distance = √Σ(Ai-Bi)2 ) between centroids of four cell types (i.e. T cells, cytotoxic scores, B lineage, 495 

endothelial cells) from each SIC (i.e. A,B,C,D,E) and the Z-score scaled MCP-counter proportions 496 

from the same four cell types in our data. Each sample was assigned to SIC type based on the 497 

lowest Euclidian distance with the 4 centroid infiltration scores for each SIC. Z-score-scaled 498 

immune cell proportions were then plotted using the Complex heatmap package in R, and the 499 

comparison with our Immune hot and cold clusters was performed.  500 

 501 

TCGA data analysis  502 

RNA sequencing data and phenotypic information were obtained from dbGaP for 190 TCGA 503 

samples from 5 sarcoma subtypes, including DDLPS (n=49), MFS (n=17), LMS (n=80; 53 STLMS 504 

+27 ULMS), and UPS (n=44). The REdiscoverTE pipeline was used to quantify gene and TE 505 
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expression. Batch effect information was downloaded from the TCGA Batch Effects Viewer 506 

(https://bioinformatics.mdanderson.org/public-software/tcga-batch-effects/) and considered in the 507 

subsequent data analysis. RNA sequencing was deconvoluted, immune clusters identified, and 508 

lasso associations between immune types and genomic features and overall survival were 509 

analyzed as described above. For the Kaplan- Meier analysis of this dataset our Cox regression 510 

analysis included histology and tumor size. The latter was included since the TCGA dataset 511 

comprises nearly all primary cases in which tumor size can be an more important prognostic 512 

factor. 513 

 514 

Data Availability 515 

All RNA sequencing data, where informed consent has been obtained from the patient, is publicly 516 

available via dbGaP (accession number: phs003284). Three samples are not publicly available 517 

due to lack of consent for their release. All exome recapture sequencing data will be available via 518 

dbGaP under accession number phs001783 by the time of publication.  519 

 520 

Code Availability 521 

Custom code used for analysis is publicly available here: 522 

https://github.com/BradicM/Sarcoma_TE_paper_analysis 523 
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Extended Data Tables 569 

 570 

Extended Data Table 1. Patient and sample characteristics. 571 

 572 

Extended Data Table 2. Summary of cell type contribution to two immune clusters  573 

resulting from hierarchical clustering of principal components (HCPC) analysis. Overall 574 

mean of cell proportion per cluster.  575 

 576 

Extended Data Table 3. Summary of immune type counts and clinical responses per 577 

clinical protocol. P values derived by Fisher’s exact test.  578 

  579 
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Figure 1. Clustering of immune cell fractions groups tumors into two distinct types. A. Color bars at the top of the 
heatmap label samples by response (SD, stable disease; PD, progressive disease; CR, complete response; PR, 
partial response), and histological subtype. Angiosarcoma, ANGS; alveolar soft part sarcoma, ASPS; 
chondrosarcoma, CHS; epithelioid hemangioendothelioma, EHE; leiomyosarcoma, LMS; liposarcoma, LPS; 
myxofibrosarcoma, MFS; osteosarcoma, OS; sarcoma not otherwise specified, SARCNOS; small blue round cell 
sarcoma, SBRC; undifferentiated pleomorphic sarcoma, UPS. B. Heatmap of immune and stromal cell fractions 
and cytotoxicity score determined by MCP-counter Z-scores. C. Immune checkpoint gene expression Z-scores. 
D. Kaplan-Meier plot representing progression-free survival (PFS) probability of immune-hot and -cold types. Tick 
marks indicate censoring. The P values on the Kaplan-Meier plots represent that output from cox proportional 
model that includes histology as a covariate.
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Figure 2. Transposable element and IKZF1 expression predict tumor immune groups. A. Comparison of lasso logistic 
regression model performances (R2) of the 5 tested models for prediction of immune type. P values determined by t-test; 
*** <2.2 x 10-16. B. Contribution of significant features from the TE and epigenetic models (models with the highest R2) 
represented as non-zero coefficients. The size and sign of contribution (coefficients) indicate the direction and strength of 
the feature’s effect on the outcome (immune cluster). C. Violin plots of normalized expression of transcripts identified as 
significant features in the regression model in immune-hot and -cold clusters. ***, p<0.001 as determined by one sided t-
test.
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Figure 3. Immune pathway activation and progression-free survival following ICI treatment are associated with 
increased expression of multiple TE families and IKZF1. A. Heatmap of partial Pearson correlation including 
batch and histology as covariates. Scale from -1 (inverse correlation, blue) to 1 (positive correlation, red). 
Asterisks indicate Benjamini-Hochberg-corrected p-values: *p<0.05, ** p<0.01, *** p<0.001. B. Correlation 
between CD274 (PD-L1) gene expression and TE score, and CD274 and IKZF1 expression. C. Kaplan-Meier 
curves representing progression-free survival probability according to high vs. low TE scores and IKZF1 
expression. The P values on the Kaplan-Meier plots represent that output from cox proportional model that 
includes histology as a covariate.
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Figure 4. TE score and IKZF1 expression associate with improved survival in a validation cohort. A. 
Clustering of samples into immune-hot and immune-cold types. Color bar at top labels samples by histological 
subtype. DDLPS, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; UPS, 
undifferentiated pleomorphic sarcoma. B. Heatmap of immune and stromal cell fractions and cytotoxicity score 
determined by MCP-counter Z-scores. C. Immune checkpoint gene expression Z-scores. D. Kaplan-Meier plot of 
overall survival probability of patients with immune-hot and -cold type tumors. E-F. Kaplan-Meier curves 
representing overall survival probability of high (red) and low (blue) E. TE scores and F. high (red) and (low) IKZF1 
expression. The P values on the Kaplan-Meier plots represent that output from cox proportional model that includes 
histology and tumor size as covariates. 
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Extended Data Figure 1. Determination of immune clusters from MCP-counter-based immune-deconvoluted 
cell proportions. Factor map representing two clusters based on hierarchical clustering of principal components. 
Each dot represents an individual patient sample.
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Extended Data Figure 5. TE expression is heterogenous across sarcoma samples. Expression of all 1002 intergenic 
TEs expressed in the studied samples. Color bars at top of heatmap label the samples by response and histological 
subtype. Color bar at right labels repeat classes; LINE- Long interspersed nuclear elements, LTR-long terminal repeats, 
SINE- short interspersed nuclear elements. TE expression represented as Z- score; batch effect was removed. 
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Extended Data Figure 6. Correlation between IKZF1 expression and B cell infiltrates and between eight significant TEs 
detected in our model. A. Correlation between IKZF1 expression and B cell infiltrates. B. Pearson correlation among 
expression of 6 TEs. Scale from -1 (inverse correlation, blue) to 1 (positive correlation, red). Areas of circles represent 
the absolute value of corresponding correlation coefficients.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.24300710doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.02.24300710


−3

−2

−1

0

1

2

−6 −3 0 3

Dimension 1 (53.3%)

D
im

es
io

n 
2 

(1
3.

4%
)

cluster

1

2

Extended Data Figure 7. Determination of immune clusters from MCP-counter-based immune deconvoluted cell 
proportions in the TCGA cohort. Factor map representing two clusters based on hierarchical clustering of principal 
components. Each dot represents an individual patient sample. 
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Extended Data Figure 8. TEs and IKZF1 expression predict immune groups in the TCGA cohort. A. Comparison of 
performances (R2) of 5 lasso logistic regression model models. Each boxplot represents a different model (basic model, 
bootstraped basic model + TE, and bootstraped basic model + Epigenetic genes (EPI), and error bars represent 95% 
confidence intervals. Shuffled models for TE and EPI are also shown. Difference between bootstraped and shuffeled 
model is shown as result of t-test (***, p-value < 2.2e-16). B. Contribution of significant features from the TE and 
epigenetic models (models with the highest R2) represented as non-zero coefficients. Significant TE families and 
epigenetic genes (italicized) are shown. C. Violin plots of normalized expression of transcripts identified as significant 
features in the regression model in immune-hot and -cold clusters. *** represents p<0.001 as determined by two-sided 
t-test.
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Extended Data Figure 9. TEs and IKZF1 expression correlate with immune 
pathway expression in the TCGA cohort. A. Heatmap of partial Pearson 
correlation including batch and histolotgy as covariates. Scale from -1 (inverse 
correlation, blue), to 1 (positive correlation, red). Asterisks indicate Benjamini-
Hochberg-corrected p-values: * p<0.05, ** p<0.01, *** p<0.001. B. Correlation 
between CD274 (PD-L1) gene expression and TE score (top) and IKZF1 
expression (bottom).).
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