Disentangling neurodegeneration from ageing in multiple sclerosis:

the brain-predicted disease duration gap

Supplementary Material

Supplementary Table 1. MRI acquisition protocols.

Centre		Ba	rcelona I	Barcelona I	I Base	el	Bochum	Graz	Mainz	Mil	an	Naples I	Naples II
Field strength			3 Tesla	3 Tesla	3 Tes	sla	3 Tesla	3 Tesla	3 Tesla	3 Te	esla	3 Tesla	3 Tesla
Vendor		S	liemens	Siemens	Sieme	ens	Philips	Siemens	Siemens	Phil	ips	Siemens	GE
Model		Tri	io/Prisma	Trio Sł		a	Achieva	Prisma	Trio	Inge	nia	Trio	Discovery
Years of recruitment		20	16-2022	2016-2019	2017-2	020	2011-2019	2021-2022	2017-2019	2017-	2020	2016-2022	2019-2022
Voxel dimensions (mm))		lxlxl	0.94x0.94x0.9	4 İxlx	:I	lxlxl	lxlxl	lxlxl	IxI	xl ().8x0.8x0.8	lxlxl
TR (ms)			2300	1800	230	0	10	1900	1900	7		3000	7
TE (ms)			3	3	2		4.6	2.7	2.5	3.	2	2.4	3
TI (ms)			900	800	900)	-	900	900	100	00	1000	650
FA (°)			9	9	9		8	9	9	8		9	9
Slices, Orientation		17	6, sagittal	240, sagittal	192, sag	gittal	180, sagittal	176, sagittal	192, sagitta	al 204, sa	igittal 2	24, sagittal	206, sagittal
Centre	Oslo				Oxford	Prague	Rome	Siena	Verona	Lo	ndon I	London II	
Field strength	3 Te	esla	3 Tesla	3 Tesla	1.5 Tesla	3 Tesla	3 Tesla	1.5 Tesla	3 Tesla	3 Tesla	I.5 Tesla	3 Tesla	3 Tesla
Vendor	G	E	GE	GE	Siemens	Siemens	Siemens	Siemens	Philips	Philips	GE	Philips	Philips
Model	Sig	na	Discovery	Signa	Avanto	Prisma	Skyra	Avanto	Achieva	Achieva	Signa	Achieva	Achieva
Years of recruitment	2012-	2014	2015-2019	2019-2022	2012-2017	2018-201	9 2012-202	2 2018-2021	2017-2021	2015-2017	1999-2008	2014-2015	2014-2023
Voxel dimensions (mm)	1.2x0.	5x0.5	lxlxl	0.8x0.8x0.8	1.2x1.25x1.25	lxlxl	lxlxl	lxlxl	lxlxl	lxlxl	1.5×1.5×0.9	lxlxl	lxlxl
TR (ms)	10	.2	8.2	2356	2400	2040	2300	2200	10	8.2	10.9	6.8	7
TE (ms)	4.	2	3.2	3	3.6	4.7	3	3.4	4	3.8	4.2	3.0	3.2
TI (ms)	45	50	450	950	1000	900	900	950	-	-	450	-	-
FA (°)		3	12	8	8	8	9	8	8	8	20	8	8
Slices, Orientation	124, :	axial	186, sagittal	240, sagittal	160, sagittal	192, sagit	al 176, sagitt	al 176, axial	256, sagittal	180, sagittal	124, corona	180, sagitta	176, sagittal

mm = millimetre; ms = milliseconds; TE = echo time; TR = repetition time; FA = flip angle.

Supplementary Table 2. Models for the prediction of EDSS. Coefficient estimates (with standard errors in

parentheses) and model statistics for the linear regression analyses predicting EDSS.

		Dependent variable:			
	EDSS				
	(1)	(2)	(3)		
Brain-age gap	0.026***		0.023***		
	(0.005)		(0.005)		
MS-age gap		0.031****	0.017		
		(0.010)	(0.011)		
Age	13.786***	12.898***	14.483***		
	(1.656)	(1.687)	(1.709)		
Age ²	2.093	2.226	2.279*		
	(1.337)	(1.354)	(1.340)		
DD	0.023***	0.031***	0.023***		
	(0.006)	(0.006)	(0.006)		
Sex	-0.094	-0.046	-0.100		
	(0.096)	(0.096)	(0.096)		
Constant	1.900***	1.987***	1.912***		
	(0.091)	(0.090)	(0.091)		
Observations	867	867	867		
R ²	0.187	0.171	0.189		
Adjusted R ²	0.182	0.166	0.184		
Residual Std. Error	1.318 (df = 861)	1.331 (df = 861)	1.317 (df = 860)		
F Statistic	39.531**** (df = 5; 861)	35.577*** (df = 5; 861)	33.445 ^{***} (df = 6; 860)		

Note: MS = multiple sclerosis; DD = disease duration; df = degrees of freedom. *p<0.1; **p<0.05; ***p<0.01

Supplementary Table 3. Growth models of EDSS and age and disease duration gaps in the early multiple sclerosis

cohort. EDSS, brain-age gap, disease duration gap, and MS-age gap are the dependent variables of multilevel linear models with timepoints nested within subjects and random intercept and slope of follow-up time per subject, including also the fixed effects of age, age² (to account for the non-linear effect of age), and sex. When modelling the disease duration gap, the fixed effect of disease duration was also included in the model to correct for disease duration-related bias (i.e., the underestimation of disease duration in long-standing pwMS and vice versa). Shown are the coefficient estimates (with standard errors in parentheses) and model statistics.

	Dependent variable:					
	EDSS	BAG	DD gap	MS-age gap		
	(I)	(2)	(3)	(4)		
Follow-up time	0.058***	0.472***	0.057	0.016		
	(0.016)	(0.089)	(0.046)	(0.052)		
Age	6.614***	-33.343**	26.833***	-39.314***		
	(1.764)	(13.972)	(4.650)	(8.781)		
Age ²	2.736*	-32.054***	-7.353**	-18.157***		
	(1.397)	(9.026)	(3.177)	(5.371)		
DD			-0.825***			
			(0.042)			
Sex	0.086	3.544***	0.540*	I.163 [*]		
	(0.127)	(1.002)	(0.298)	(0.627)		
Constant	1.153***	3.65 I ***	2.800****	0.189		
	(0.080)	(0.631)	(0.209)	(0.405)		
Observations	678	749	749	749		
Log Likelihood	-964.876	-2,445.987	-1,578.271	-2,098.721		
Akaike Inf. Crit.	۱,949.75۱	4,911.975	3,178.543	4,217.443		
Bayesian Inf. Crit.	1,994.943	4,958.162	3,229.349	4,263.630		

Note: BAG = brain-age gap; DD = disease duration; MS = multiple sclerosis. *p<0.1; **p<0.05; ***p<0.01

Supplementary Table 4. Models for the prediction of annualised EDSS change. Coefficient estimates (with standard errors in parentheses) and model statistics for the linear regression analyses predicting annualised EDSS.

		Dependent variable:			
	EDSS annualised change				
	(1)	(2)	(3)		
Brain-age gap annualised change	0.177***		0.193***		
	(0.023)		(0.026)		
MS-age gap annualised change		0.162	-0.152		
		(0.104)	(0.100)		
Constant	-0.027**	0.054***	-0.032**		
	(0.012)	(0.006)	(0.013)		
Observations	195	195	195		
R ²	0.228	0.012	0.238		
Adjusted R ²	0.224	0.007	0.230		
Residual Std. Error	0.069 (df = 193)	0.078 (df = 193)	0.069 (df = 192)		
F Statistic	57.158*** (df = 1; 193)	2.430 (df = 1; 193)	29.917**** (df = 2; 192)		

Note: MS = multiple sclerosis; df = degrees of freedom. p<0.1; p<0.05; p<0.01

Supplementary Figure 1. Conceptual framework for the MS-age modelling strategy. Chronological age is modelled as a function of brain MRI scans in PwMS, to estimate a reference trajectory of multiple sclerosis-specific brain ageing (MS-age). The error associated with the model predictions (the brain-predicted MS-age gap), quantifies the extent to which a patient deviates from typical multiple sclerosis-specific brain ageing.

Supplementary Figure 2. Modelling multiple sclerosis-specific brain ageing. In (A), scatterplot showing the relationship between chronological age in the test set (N = 878) and the values predicted by the model of multiple sclerosis-specific ageing. In (B), scatterplot showing the relationship between the MS-age gap and the brain-age gap (obtained with the DeepBrainNet model) in the test set; marginal density plots are also shown, portraying the distribution of the two variables. Linear fit lines are shown as solid lines (with corresponding 95% confidence intervals in grey), while dashed lines represent the line of identity (A), and horizontal and vertical zero reference lines (B), respectively.

Supplementary Figure 3. Guided backpropagation analysis to interrogate brain regions influencing the model for the prediction of MS-age. Lightbox view of selected slices from the quasi-raw T1w volumes (on the left) and corresponding guided backpropagation-derived saliency maps (on the right) of the same subjects presented in Figure 3. For saliency maps, both positive (positively correlated with the output, in *red*) and negative (negatively correlated with the output, in *shue*) magnitudes are shown. In both cases, the model focuses mostly on regions that appear to be related to (the widening of) the cerebrospinal fluid spaces.

Supplementary Figure 4. Correlations between MS-age gap and regional brain and lesion volumes. Plots showing the correlations between MS-age gap values and cortical (A) and subcortical/lesion (B) volumes. Shown are the Pearson correlation coefficients resulting from partial correlation analyses correcting for age, age², disease duration, sex, and estimated total intracranial volume.

Figure 5. Impact of MS lesions on age predictions. Bland-Altman plot of brain-predicted MSage (A) and age (B) from unfilled and filled T1w scans. The plots show the mean value from the 2 measures for each participant (x-axis) and the difference between the 2 measures (y-axis). The mean difference lines are solid, and the corresponding limits of agreement (\pm 1.96 * standard deviation of difference) are dashed lines.

Supplementary Figure 6. Relationships between brain-age and MS-age gaps and physical disability. Scatterplots showing the marginal effects on EDSS of the brain-age (A) and MS-age (B) gap metrics. Regression models were corrected for the effects of age, age², disease duration, and sex. Linear fit lines are shown as solid lines (with corresponding 95% confidence intervals in grey).

Supplementary Figure 7. Growth models of EDSS and age and disease duration gaps in the early multiple sclerosis cohort. Scatterplots showing the marginal effects of follow-up time on EDSS (A), brain-age gap (B), disease duration gap (C), and MS-age gap (D). Both EDSS and brain-age gap significantly increased over time, while disease duration and MS-age gaps only exhibited a slight, non-significant, upward trend. In (C), the apparent descending trend corresponding to raw data points is to be noted, mainly reflecting the bias in the disease duration prediction model (i.e., the underestimation of disease duration in long-standing pwMS and vice versa). Linear fit lines are shown as solid lines (with corresponding 95% confidence intervals in grey).

Supplementary Figure 8. Relationships between longitudinal changes of brain-age and MS-age gaps and physical disability. Scatterplots showing the relationship between annualised changes of EDSS and brain-age (A) and MS-age (B) gaps. Linear fit lines are shown as solid lines (with corresponding 95% confidence intervals in grey).

