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Summary 

Background: Depressive symptoms are rising in the general population, but their 

associated factors are unclear. Although the link between sleep disturbances and depressive 

symptoms severity (DSS) is reported, the predictive role of sleep on DSS and the impact of 

anxiety and the brain on their relationship remained obscure.  

 

Method: Using three population-based datasets, we trained the machine learning models in 

the primary dataset (N = 1101) to assess the predictive role of sleep quality, anxiety, and 

brain structure and function measurements on DSS, then we tested our models’ 

performance in two independent datasets (N = 334, N = 378) to test the generalizability of 

our findings. Furthermore, we applied our machine learning model to a smaller longitudinal 

sample (N = 66). In addition, we performed a mediation analysis to identify the role of 

anxiety and brain measurements on the sleep quality-DSS link. 

 

Findings: Sleep quality could predict individual DSS (r = 0.43, R2 = 0.18, rMSE = 2.73), and 

adding anxiety, rather than brain measurements, strengthened its prediction performance (r 

= 0.67, R2 = 0.45, rMSE = 2.25). Importantly, out-of-cohort validations in other cross-

sectional datasets and a longitudinal sample provided robust results. Furthermore, anxiety 

scores (not brain measurements) mediated the association between sleep quality and DSS. 

 

Interpretation: Poor sleep quality could predict DSS at the individual subject level across 

three cohorts. Anxiety symptoms not only increased the performance of the predictive model 

but also mediated the link between sleep and DSS. 
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Research in Context 

Evidence before this study 

Depressive symptoms are prevalent in modern societies, but their associated factors are 

less identified. Several studies suggested that sleep disturbance and anxiety are linked with 

depressive problems in the general population and patients with major depressive disorder. 

A few longitudinal studies and meta-analyses also suggested that sleep disturbance plays a 

key role in developing depressive problems and clinical depression. However, those original 

studies mainly used conventional group comparison statistical approaches, ignoring the 

inter-individual variability across participants. Moreover, their data were limited to a single 

cohort, limiting the generalizability of their findings in other samples. Thus, large-scale multi-

cohort studies using machine learning predictive approaches are needed to identify the 

complex relationship between sleep quality, anxiety symptoms, and depressive symptoms at 

the individual subject level. We also focused on the neurobiological underpinning of their 

interplay.  

Added value of this study 

In this study, we used machine learning which enables individual-level predictions and can 

validate models on unseen data, thus providing a more robust analytical framework. This 

study used three independent cohorts, included a longitudinal sample, and performed careful 

complementary analyses to examine the robustness of our findings considering the impact of 

lifetime history of depression, effects of sleep-related questions of the depressive 

assessment, most important parameters of sleep quality in prediction of depressive 

symptoms severity, and testing the reverse direction i.e., predicting sleep quality based on 

depressive symptoms. We found that poor sleep quality could robustly predict depressive 

symptoms across three cohorts, but the reverse direction (prediction of sleep quality based 

on depressive symptoms) was less robust. Anxiety symptoms improved the performance of 

the predictive model and mediated the link between sleep and depressive symptoms. 

However, brain structure and function did not play an important role in their association. Our 

longitudinal data also highlighted the predictability of future depressive symptoms severity 

and the role of interventions (i.e., neurofeedback) in the prediction of future depressive 

symptoms based on sleep and anxiety. 

Implications of all the available evidence 

As depressive symptoms have a strong impact on public health, identifying their contributing 

factors such as poor sleep and anxiety is critical to decrease the burden of depressive 

symptoms and/or design better therapeutical approaches at the individual subject level. 
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Introduction 

In modern societies, about 25% of the general population presents depressive symptoms 

such as sadness, irritability, anhedonia, low motivation, distracted concentration, 

worthlessness, abnormal appetite, and sleep disturbance.1,2 Depressive symptoms have 

dramatically increased in general populations from 1991 to 2018, mainly in young women.3 

Recent findings during the COVID-19 pandemic observed that the prevalence of depressive 

symptoms increased about 3-fold compared to the earlier population-based estimates of 

mental health.4 Critically, depressive symptoms could predict major depressive disorder 

(MDD)  around 15 years later in white adults.5 Hence, screening subjects with depressive 

symptoms in the general population is essential for decreasing the rate, burden, and severity 

of depression.6 In addition, a high conversion rate of depressive symptoms to MDD 5 and the 

noticeable health-related and economic burden of depressive problems in the general 

population7 makes it imperative to identify the associated behavioral and brain factors of 

depressive phenotype. 

Our life experiences highlight a significant mood impairment after night(s) of sleep 

disturbances, suggesting a robust link between poor sleep and depressive symptoms 8-10. In 

particular, several meta-analyses suggested that sleep disturbance, and particularly 

insomnia, are critical factors for developing depression11-14. Treatment of sleep problems 

reduces depressive symptoms and MDD,15-17 suggesting that targeting sleep quality is 

necessary for the management of depressive problems. On the other hand, 

insomnia/hypersomnia are among the diagnostic criteria of MDD, suggesting a bidirectional 

association between sleep and depression. Nevertheless, many individuals with sleep 

problems never develop depressive symptoms and some patients with depressive 

phenotype report normal sleep patterns, which makes the interrelationships between sleep 

disturbance and depressive profile very complex. The potential reasons could be due to 

inter-individual variability in emotional distress, anxiety, hyperarousal state, emotion 

regulation abilities, and coping strategies for stressful life events.18-22 The open question is 

whether depressive symptoms can be predicted based on sleep quality at the individual 

subject level and what underlying behavioral and brain factors contribute to their 

associations. 

Anxiety is the most prominent mental condition that co-occurs with both sleep 

disturbance and depression.10,23 Moreover, a growing body of neuroimaging evidence 

highlighted the structural and functional brain alterations, mainly in the default mode and 

salience networks, on the interplay between sleep and depressive symptoms.24 Using the 

Human Connectome Project in young adults (HCP-Young) cohort, Cheng and colleagues 25 
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demonstrated that increased functional connectivity between several brain regions mediates 

the association between depressive symptom severity (DSS) and sleep quality. The volume 

of the hippocampus mediates the association between sleep quality and depressive 

symptoms. 26 

Existing behavioral and neuroimaging studies on the link between sleep and 

depressive symptoms have used conventional statistical methods (mainly group 

comparisons and/or correlations) using a single cohort,24 which is prone to deliver poor 

generalizability in other samples. Thus, the “real world” challenge is a prediction of 

depressive symptoms in unseen data or independent samples to achieve generalization to 

future cases that cannot be answered in traditional statistical approaches based on a single 

sample. Advanced machine learning (ML) predictive models provide hope to identify the role 

of neurobehavioral factors in predicting depressive problems across various general 

population samples, which is crucial for precision psychiatry and ultimately guiding clinical 

practice.27,28  

Thus, aiming to address these gaps in the literature, we applied the ML approach in 

the HCP-Young dataset to predict DSS based on sleep quality, anxiety, and the brain’s gray 

matter volume (GMV). In addition, we assessed the role of functional brain measurements 

i.e., regional homogeneity (ReHo) or fractional amplitude of low-frequency fluctuations 

(fALFF) in the complementary analyses. Based on the trained ML models in the HCP-Young, 

out-of-cohort validation of our ML algorithm was conducted on two independent US 

population-based datasets (i.e., the lifespan Human Connectome Project (HCP-Aging) and 

enhanced Nathan Kline Institute-Rockland sample (eNKI)) to understand the generalizability 

of our models across different cohorts. Further, we applied our models on a small set of 

longitudinal samples from eNKI dataset to predict future DSS. In addition, we aimed to 

understand the mediatory role of anxiety and GMV in the association between sleep quality 

and DSS in the HCP-Young dataset.  

Methods 

Cohorts 

HCP-Young is a general population dataset acquired by the Washington University-

University of Minnesota (WU-Minn HCP) consortium (https://www.humanconnectome.org/).29 

Their inclusion criteria included healthy young adult (22–35 years) participants with no 

significant history of psychiatric disorder, substance abuse, neurological, or cardiovascular 

disease nor pharmaceutical or behavioral treatment. From this dataset, as our primary 

dataset, we included all participants who had 3T structural MRI images and phenotypic data 
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that we were interested in in this study, i.e., sleep quality, anxiety, and depressive 

symptoms. In a complementary analysis, we removed participants with a lifetime history of 

diagnosed depression. 

The HCP-Aging (https://www.humanconnectome.org/) 30 cohort recruited more than 

1200 healthy adults aged 60 to above 100.31  However, we included participants aged 36 to 

59 who filled out questionnaire forms since the DSS questionnaires had been designed for 

young and middle-aged adults. The eNKI is also a large-scale community representative 

dataset of the general population with cross-sectional and longitudinal samples 

(http://fcon_1000.projects.nitrc.org/indi/enhanced/).32 From this dataset, we included 

participants (age range 18–59 years) with cross-sectional records for predictive ML 

assessment and those who had longitudinal records to forecast future depression.  

Behavioral measures 

Sleep quality: Sleep quality assessment was based on the self-reported PSQI 

questionnaire [27], which has 19 questions assessing sleep quality over one month. The 

PSQI comprises seven components, namely subjective sleep quality, sleep latency, sleep 

duration, habitual sleep efficiency, sleep disturbances, use of sleep medicine, and daytime 

dysfunction. The total PSQI score is a sum of these components. Of note, the higher total 

PSQI score (> 5) reflects poor sleep quality.  

Depressive symptom severity: Depressive symptoms were measured based on the DSM-

IV-oriented depressive problems portion of the Achenbach Adult Self-Report (ASR) for ages 

18-59.33 This questionnaire has 123 items in general, and a total depressive score obtained 

from 14 depressive-related items, ranges from 0 to 28 points. The higher score reveals 

severe depressive symptoms and the sex-/age-adjusted t-score above 69 reveals the clinical 

range. Notably, there are two sleep-related items in this questionnaire, which have been 

removed in our primary ML and mediation analyses. These questions were “I sleep more 

than most other people during the day and/or night” and “I have trouble sleeping”. We 

calculated the total score of depressive problems after removing sleep-related items and 

used this total score in our analyses. Further, as a complementary analysis, we examined 

the original DSS (we refer to it as DSS'), which involves these two sleep-related items. 

Anxiety: Anxiety score was measured using six relevant items of DSM-IV-oriented ASR for 

the age range 18-59. None of these items are related to sleep or depressive problems. 

Similar to DSS, the total score of anxiety has been used in our study and a higher anxiety 

score shows more anxiety problems. 

Neuroimaging measures 
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In this study, we used parcel-wise whole-brain GMV to assess the role of brain structure in 

the link between sleep quality and DSS across three cohorts. Further, we assessed resting-

state fMRI features of the brain (i.e., ReHo and fALFF of the same parcels) in the HCP-

Young dataset as confirmatory analyses to assess the role of the brain at the functional level 

(see more details in the supplementary material). 

Calculation of gray matter parcel volume: T1 structural MRI images were acquired by 

Siemens 3T Skyra scanner and preprocessed using the WU-Minn HCP consortium 

pipelines.34 We performed voxel-based morphometry (VBM) using the Computational 

Anatomy Toolbox (CAT12),35 implemented in the Statistical Parametric Mapping (SPM12, 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). During this process, we corrected bias-

field distortions and after noise removal and skull striping, the images were normalized to 

standard space MNI-152. Then, we segmented the brain tissue into gray matter, white 

matter, and cerebrospinal fluid. Subsequently, we modulated the gray matter segments for 

the non-linear transformations performed during normalization to obtain the actual volumes. 

GMVs of the cortical, subcortical, and cerebellar areas were assessed using functionally-

informed in-vivo atlases (400 cortical parcels from Schaefer atlas,36 36 subcortical parcels 

from Brainnetome,37 and 37 cerebellar parcels from Buckner 38), resulting in 473 brain 

parcels, as applied previously.39  

Statistical analyses 

Prediction analysis in the HCP-Young dataset 

Ensemble decision tree methods were employed to structure predictive models using 

MATLAB R2020a software.40 Ensemble methods of these models were LS-boost and 

bagging, which were applied as a hyperparameter to be selected automatically by the 

algorithm (see below). First, we performed nested 10-fold cross-validation considering the 

family structure of subjects, in which twins and siblings were not separated in the training, 

validation, and test sets to avoid potential leakages. We used training sets to construct 

models, validation sets to select hyperparameters and feature numbers, and unseen test 

sets to finally evaluate the models’ performance (Figure 1). Then, regression models were 

made to regress out age, sex, and total GMV from features of training sets and 

subsequently, these models were used for regressing out control variables of test sets. 

Then, features of training sets were ranked and sorted (from the maximum importance to the 

minimum importance) by the relief method to enable the algorithm to select features based 

on the maximum rank.41 After putting aside the validation sets, models were constructed and 

trained in each remained training set ten times by ten different feature numbers so that the 

number of features also was able to be selected automatically based on the minimum error 
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of prediction of the validation sets. In this stage, hyperparameters were optimized using the 

Bayesian method,42 with 100 iterations. Then, models with the minimum error of prediction of 

validation sets were selected and fitted on the entire training sets (training + validation) and 

finally used to predict unseen test sets. Thus, in the end, we had ten models (one model for 

each test set), and our ML pipeline could select different algorithms LS-Boost/bagging along 

with its hyperparameters and different feature numbers for each fold. These predictive 

models had 19 input features consisting of PSQI questions. Subsequently, we added anxiety 

(total score) and whole-brain GMV (n = 473) features to measure the role of anxiety and 

GMV in DSS prediction. Of note, against models with a combination of features of GMV, we 

did not perform a feature section for models with just sleep quality and/or anxiety features 

because the number of features was not too high that needed feature selection. More details 

of these ML analyses, hyperparameters, and feature numbers are provided in the 

supplementary materials. 

Complementary analyses in the HCP-Young dataset: 

In several follow-up analyses, we controlled for potential issues to examine the robustness of 

our findings and to cover different aspects of the interplay between behavioural and brain 

variables as follows: 1) we assessed correlation between sleep quality features to test 

feature redundancy (eFigure 1); 2) to test the role of functional brain scores in our main 

predictive ML analyses, we calculated ReHO and fALFF of 473 parcels from resting-state 

fMRI images in the primary database (HCP-Young) (eFigure 2); 3) we assessed the 

predictive role of anxiety (alone) and combination of GMV and anxiety features separately 

(eFigure 3); 4) in order to test multicollinearity between variables, we performed cross-

prediction of anxiety and DSS and also tested collinearity between all phenotypic parameters 

using variance inflation factor (eFigure 4); 5) we removed 103 participants with a lifetime 

history of diagnosed depression to assess the confounding role of history of clinical 

depression in some individuals (eFigure 5); 6) we used seven components of PSQI, instead 

of individual PSQI items (eFigure 6); 7) and their feature importance (eFigure 7); 8) 

critically, in order to assess the reverse direction of prediction, we assessed the predictability 

of sleep quality based on depressive symptoms (eFigure 8), 9) we examined the 

predictability of sleep quality based on GMV (alone) (eFigure 9); 10) we also used original 

DSS questionnaire including two sleep-related items (of note, we deleted those items in our 

main analyses) (eFigure 10); 11) compared the results with and without sleep-related items 

of in the DSS questionnaire (eFigure 11); and 12) we tested the role of anxiety and GMV in 

the link between sleep quality and DSS by several mediation analyses (eFigure 12). Details 

of these complementary analyses are described in the supplementary material.  
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Out-of-cohort validation in two independent datasets 

We used two independent large-scale datasets to test whether the results of ML models 

using the HCP-Young dataset are generalizable to other independent datasets (i.e., the 

eNKI and HCP-Aging). After training ML models on the HCP-Young dataset, we achieved 

ten models for each prediction, froze them, and used them to predict the individual DSS in 

other datasets and averaged the results of all ten models for each person. Of note, we did 

not tune our models nor performed cross-validation for these independent datasets, to keep 

the original model parameters steady. Put differently, we used these independent datasets 

solely for prediction and used the regression model of the primary dataset (HCP-Y) for 

regressing out age, sex, and total GMV in these datasets as well. All the phenotypic data 

(sleep quality, anxiety, and DSS) were obtained from the same questionnaires across the 

three datasets. Further, we used a small longitudinal sample of the eNKI dataset to predict 

future individual DSS based on present sleep quality and anxiety. We used the sleep quality 

and anxiety of their first records as features and the DSS of their second records as the 

targets. Then, we calculated the correlation between the predicted DSS and the DSS of the 

second record. Finally, as the complementary analyses, we separated participants who had 

either received or not received neurofeedback therapy intervention between their first and 

second visits and assessed their predictive performance to identify the role of therapeutical 

interventions in longitudinal predictions (eFigure 13).    

Mediation analysis 

The structural equation modeling (SEM) using Amos 24.0 software43 was applied to 

statistically model the underlying mechanisms of the link between total sleep quality and 

DSS scores. In this analysis, a latent variable from brain GMV has been made and used in 

models. Mediation analysis investigates how much of the covariance between two variables 

can be explained by the mediator variable(s). Age, sex, and total GMV were controlled in 

mediation analyses as well. More details of mediation analysis are provided in the 

supplement. 

 

Results 

Demographics 

The primary dataset of this investigation (HCP-Young) included 1101 participants (22–35 

years, mean age = 28.79 ± 3.69, 54.3% female), 103 of whom (9%) had a history of DSM-IV-

based depression episodes during their lifetime. The detailed demographic characteristics of 
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participants are provided in Table 1. We had two other different datasets for out-of-cohort 

validation analysis i.e., the HCP-Aging and eNKI. We found 378 participants (36–59 years, 

mean age = 47.3 ± 7, 57.9% female) from the HCP-Aging dataset and 334 participants that 

had cross-sectional data (18–59 years, mean age = 37 ± 13.8, 62% female) from the eNKI 

dataset. From the eNKI dataset, we found 66 participants (20–56 years, mean age = 42 ± 

9.7, 77.3% female) who had longitudinal records and there was one to five years gap 

between the two records across those individuals. Among them, there were 26 subjects (20–

45 years, mean age = 34 ± 8.2, 73.1% female) who received neurofeedback therapy 

between their first and second records and there was in average a 653-day gap between 

their records. While, the other 40 participants (36–56 years, mean age = 47 ± 6.1, 80% 

female), who had not received neurofeedback therapy, had an average of 847 days gap 

between their first and second visits. 

 

Sleep and anxiety predicted DSS in the HCP-Young dataset 

The details of ML pipeline for training and evaluation of models in the HCP-Young dataset 

are presented in Fig. 1. ML models based on sleep quality could predict DSS (unseen data 

during model training, r = 0.43, rMSE = 2.73, R2 = 0.18) (Fig. 2A). Adding anxiety score to 

sleep quality features improved the prediction drastically (r = 0.67, R2 = 0.45, rMSE = 2.25) 

(Fig. 2B). Whereas adding GMV features to the sleep quality (r = 0.41, R2 = 0.16, rMSE = 

2.76) and combination of sleep quality and anxiety (r = 0.66, R2 = 0.44, rMSE = 2.26) did not 

improve their prediction (Fig. 2C,D). Based on the designed method, the ML algorithm 

automatically selected different feature numbers in each fold, but the selected 

hyperparameter of the method for all folds of all models was LS-boost.  

Our complementary analyses demonstrated that brain morphological and functional 

features cannot predict DSS in general populations (eFigure 2). Removing participants with 

a history of depression showed robust predictive results e.g., a combination of sleep quality 

and anxiety predicted DSS similarly (r = 0.61, R2 = 0.37, rMSE = 2.18) (eFigure 5). 

Moreover, repeating the analyses based on seven components of PSQI (instead of 19 

questions of the self-reported Pittsburgh sleep quality index (PSQI)) also revealed robust 

results in predicting DSS (r = 0.64, R2 = 0.41, rMSE = 2.32, based on a combination of sleep 

quality and anxiety) (eFigure 6). The feature importance in the ML model demonstrated that 

sleep-related daytime dysfunction, sleep disturbance, and subjective sleep quality were 

more important than other sleep components in predicting DSS (eFigure 7). Importantly, the 

reverse direction of prediction (prediction of sleep quality based on DSS) revealed a weaker 

result (r = 0.33, R2 = 0.11, rMSE = 2.61) (eFigure 8), indicating the sleep quality is a better 

predictor of DSS than another way around. Further, using the original DSS’ scores (not 
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excluding two sleep-related questions from the depressive questionnaire) provides better 

prediction results (e.g. based on a combination of sleep quality and anxiety r = 0.71, R2 = 

0.50, rMSE = 2.42) (eFigure 10). Then, we found that about 62% of the covariance between 

sleep quality and DSS’ is because of those two sleep-related items (eFigure 11). Moreover, 

we observed that 52.6% of the covariance between sleep quality and DSS is because of 

anxiety, while GMV could not mediate their association (eFigure 12).  For more details, see 

the supplementary file. 

Sleep and anxiety predicted DSS in the independent datasets 

Interestingly, we were able to predict DSS in both HCP-Aging and eNKI cohorts using 

models that were trained by the HCP-Young dataset (Fig. 3A&B). In the HCP-Aging dataset, 

sleep quality features could predict DSS robustly (r = 0.57, R2 = 0.27, rMSE = 2.64, CI = 

3.27 – 3.54). Further, adding anxiety score to sleep quality features could improve the 

prediction in this dataset (r = 0.72, R2 = 0.50, rMSE = 2.19). Adding GMV features to the 

sleep quality (r = 0.56, R2 = 0.27, rMSE = 2.65) and a combination of sleep quality and 

anxiety score (r = 0.72, R2 = 0.49, rMSE = 2.21) provided similar results to the primary 

(HCP-Young) dataset.  

Similarly, in the eNKI dataset, sleep quality predicted DSS (r = 0.50, R2 = 0.16, rMSE 

= 2.70), and a combination of sleep quality and anxiety score predicted DSS (r = 0.66, R2 = 

0.38, rMSE = 2.34). Adding GMV features to the sleep quality could not improve the 

prediction (r = 0.51, R2 = 0.18, rMSE = 2.68), and a combination of sleep quality, anxiety, 

and GMV (r = 0.68, R2 = 0.40, rMSE = 2.29) revealed the same result as the HCP-Young 

dataset. 

Finally, applying ML models on the longitudinal sample of the eNKI dataset resulted 

in the prediction of future depressive symptoms (Fig. 4) based on sleep quality (r = 0.61, R2 

= 0.33, rMSE = 3.01) and combination of sleep quality and anxiety (r = 0.66, R2 = 0.44, 

rMSE = 2.73). Furthermore, results of confirmatory analyses in the longitudinal sample 

revealed that the predictability of DSS in subjects who had not received neurofeedback 

therapy between their first and second visits was strong (eFigure 13A). Interestingly, ML 

models were unable to predict future DSS when participants had received neurofeedback 

therapy between their first and second visits (eFigure 13B).  

 

Discussion 

The main findings of this study highlighted that sleep quality could predict DSS in three 

independent datasets and adding anxiety to the sleep quality enhanced such prediction. 

(Figure 2). Structural and functional brain measurements neither predict DSS nor mediate 

the link between sleep quality and DSS. Our ML models provided similar results in other 
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independent cohorts using cross-sectional (Fig 3), suggesting the generalizability of our ML 

models. Additionally, ML models’ performance was strong in the prediction of future 

individual DSS based on baseline sleep quality and anxiety in longitudinal samples (Fig 4). 

Our complementary analyses consider the impact of a lifetime history of depression, 

confounding effects of two sleep-related questions on the depressive assessment, the 

potential multicollinearity between variables, and lower predictive performance of the reverse 

direction (i.e., predicting sleep quality based on depressive symptoms) highlighted the 

robustness of our main findings. In addition, anxiety scores could mediate the association 

between sleep quality and DSS (eFigure 12).  

Our findings are consistent with a body of literature showing that sleep disturbance 

and depressive problems are associated with each other in previous meta-analyses.11-14 In 

large-scale population cohorts, it has also been shown that sleep quality is associated with 

depressive symptoms 9,25. However, our study aimed to predict DSS based on sleep quality 

in different samples instead of investigating only the correlation between them. Animal 

models revealed that neonatal sleep disturbance could lead to adulthood depressive 

symptoms.44,45 Longitudinal human studies showed that people with sleep initiation problems 

might experience depression over the next 3-6 years of their life.46,47 Interestingly, toddlers’ 

sleep problems at the age of 18 months predicted depressive symptoms at the age of 8 

years old.48 Several large-scale longitudinal studies49-52 demonstrated that short sleep 

duration and sleep disturbance should be considered risk factors for developing future 

depressive symptoms. Although these studies have not used ML models to be able to 

predict individual DSS within the same sample or other samples, they suggest that poor 

sleep could be a critical predictor for DSS. A recent ML study 53 demonstrated that sleep 

disorder is one of the most important features to predict depression, particularly in 

individuals with hypertension. They predicted a binary definition (existence/nonexistence) of 

depression among adults with hypertension, while our study predicted a wide (0-28) 

continuous range of severity of depressive symptoms in three databases. Another large-

scale ML-based study found that sleep duration is one of the top five predictors of DSS 

among home-based older adults.54 Our findings support this hypothesis, although they do 

not claim to show any causality between sleep and DSS. The cross-sectional nature of our 

study precludes the assessment of the long-term causal pathways in the general population. 

Thus, the longitudinal role of poor sleep (using both subjective and objective sleep 

assessments) in developing clinical MDD has to be examined in the future. 

In the present study, anxiety improved the prediction of DSS by sleep quality features (Fig 

2). As it is described in eFigure 3, although anxiety alone could predict DSS (r = 0.62), the 
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correlation coefficient between anxiety and DSS itself was already robust (r = 0.63) (eFigure 

11), which means the ML model based on anxiety features (alone) was not superior. 

However, while the baseline correlation between sleep quality and DSS was r = 0.24 

(eFigure 11), ML models could predict DSS based on sleep quality with r = 0.34 (Fig 2) 

which shows the better performance of the ML model based on sleep quality. So, we can 

suggest that sleep quality is the predictor of DSS and anxiety strengths it’s prediction. 

Anxiety scores had also an indirect effect (51.2%) in mediating the link between sleep quality 

and DSS. The strong interplay between sleep disturbances, anxiety, and depression has 

been well-documented earlier,23,55 and our study supports such findings. For example, short 

and long sleep duration are predictors of depression and anxiety in a large cohort.56 The 

additive role of anxiety to sleep in DSS prediction is further supported by the notion 

that sleep loss increases preemptive responding in the amygdala and anterior insula during 

affective anticipation.57    

Previous studies have shown that poor sleep loss is linked to abnormal activity in the 

medial prefrontal cortex, amygdala, insula, and anterior cingulate cortex, which were 

associated with higher levels of next-day anxiety.58 An earlier study using the HCP-Young 

sample indicated that functional connectivity between the lateral orbitofrontal cortex, 

dorsolateral prefrontal cortex, anterior and posterior cingulate cortices, insula, 

parahippocampal gyrus, hippocampus, amygdala, temporal cortex, and precuneus mediated 

the effect of sleep quality on DSS.25 Structural brain alterations in the postcentral gyrus and 

superior temporal gyrus mediate the link between sleep disturbance and depressive 

symptoms in a small group of shift-working nurses.59 Other studies observed that the GMV 

of the right insula mediates the relationship between sleep quality and anxiety/depressive 

symptoms among young students.26,60 However, these studies have mainly assessed the 

association between sleep quality and depressive symptoms and the brain and have not 

focused on inter-individual prediction. In the present study, GMV did not predict DSS in any 

dataset, could not improve prediction performance when combined with sleep and anxiety 

features, and did not have any mediatory effect on the link between sleep and DSS. One 

explanation could be the link between sleep disturbance and depressive symptoms 

anchored in the functional level rather than GMV.24 However, our complementary analyses 

showed that ReHo and fALFF features of brain function could not predict DSS as well. 

Although a previous study found that functional connectivity across the brain is a better 

predictor for behavioral measures than anatomical and diffusion features, they did not 

assess the predictability of depressive problems.61 In this study, the brain measurements 

were associated with sleep quality (eFigure 11) but were not predictors or mediators of DSS 

and were not correlated with DSS, which according to the amount of sleep quality (mean = 
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4.79, SD = 2.76 the average of total scores is close to the threshold of poor sleep quality 5) 

and DSS (mean t-score = 53.89, SD t-score = 5.69 the average of t-scores is far less than clinical 

range 69) in the HCP-Young dataset (Table 1), in average the level of poor sleep quality and 

DSS in this dataset was not so prominent to be appearing in the brain. Another important 

point of this study is that we excluded two sleep-related items from the DSS questionnaire. 

As it is shown in eFigure 11, when we included sleep-related items, the association between 

sleep quality and DSS score increased, and we found some brain areas correlated with DSS 

scores (similar to previous studies) which were mainly due to those sleep-related items of 

depressive problems questionnaire. The brain-related results of our study were similar to 

previous large-scale neuroimaging meta-analyses studies which failed to identify a robust 

regional abnormality in clinical insomnia disorder, MDD, and late-life depression.62-64 

Similarly, the ML classification model failed to separate healthy individuals from subjects with 

insomnia based on brain volumes 65 or to differentiate healthy individuals from patients with 

depression based on brain structure and function values,66 indicating that the neurobiological 

underpinning mechanism of sleep disorders and depression is still under debate and needs 

further elaboration.  

In conclusion, we found that sleep quality could predict DSS across cross-sectional 

and longitudinal samples. Anxiety symptoms, rather than brain features, improved the 

performance of the predictive model and mediated the link between sleep and DSS. 

Although the sample size of our samples (mainly for our longitudinal analyses) was small, 

our ML models have shown the generalizability of their outcomes in different cohorts. Future 

large-scale longitudinal datasets are needed to assess the role of sleep and anxiety on the 

development of depressive symptoms and clinical MDD in the general population. We hope 

that our findings incentivize clinicians to consider the importance of screening and treating 

subjects with sleep disturbance and anxiety problems to reduce the burden of depressive 

symptoms in the general population. 
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Table 1. The demographic characteristics of 1101 participants from the HCP-Young dataset 

Characteristic     No (%) 

Age, mean (SD), year 28.79 (3.69) 

Female 598 (54.3) 

Total brain volume, mean (SD) mm3  

    Gray matter 686330 (67003) 

    White matter 444980 (56169) 

Twin status  

    Monozygotic 285 (25.89) 

    Dizygotic 170 (15.44) 

    Not twin  646 (58.67) 

Pittsburg sleep quality index, mean (SD)  

    Total score 4.79 (2.76) 

    Subjective sleep quality 0.89 (0.64) 

    Sleep latency 0.97 (0.82) 

    Habitual sleep efficiency 0.57 (0.82) 

    Sleep duration 0.45 (0.79) 

    Sleep disturbance 1.09 (0.48) 

    Use of sleep medications 0.23 (0.67) 

    Daytime dysfunction 0.59 (0.64) 

Adult self-report DSM-IV depressive problem scale, mean (SD)  

    Raw score 4.14 (3.44) 

    Sex-adjusted, age-adjusted t-score 53.89 (5.69) 

Adult self-report DSM-IV anxiety problem scale, mean (SD)  

    Raw score 3.87 (2.67) 

Major depressive episode  

    No 966 (87.74) 

    Yes  103 (9.36) 
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Figure 1. ML pipeline for prediction of DSS (depressive symptoms severity) considering family

structure. First of all, 10-fold cross-validation was performed so that siblings were not separated in

training/test sets. After putting aside the test set (of the first fold from now), we performed a 10-fold

cross-validation on the training set (of the first fold) considering family structure. In this stage, we

split validation sets and trained models on the remaining training sets. On each fold, we trained

models and optimized hyper-parameters ten times with ten different feature numbers. Hence, we

had ten folds and ten models for each fold and the algorithm had to select the model with the best

performance and minimum error across all folds. Subsequently, the selected model was fitted on the

entire training set and then evaluated on the test set. This process repeated for all other nine folds

(Note: all units in the figure are arbitrary, DSS: depressive symptoms severity after excluding two

sleep-related items). 
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Figure 2. Prediction of DSS in HCP-Young dataset. A) prediction based on sleep quality; B)

prediction based on a combination of sleep quality and anxiety; C) prediction based on a

combination of sleep quality and GMV D) prediction based on a combination of sleep quality and

anxiety and GMV (GMV: gray matter volume, DSS: depressive symptoms severity after excluding

two sleep-related items, r: correlation coefficient between real and predicted DSS, rMSE: root mean

squared error, R2: determination coefficient) 
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Figure 3. Out-of-cohort validation of ML results in two independent datasets. A) prediction of DSS in

HCP-Aging dataset based on sleep quality, a combination of sleep quality and anxiety, a

combination of sleep quality and GMV, a combination of sleep quality and anxiety, and GMV; B)

prediction of DSS in eNKI dataset based on sleep quality, a combination of sleep quality and anxiety,

a combination of sleep quality and GMV, a combination of sleep quality and anxiety, and GMV

(GMV: gray matter volume, DSS: depressive symptoms severity after excluding two sleep-related

items, r: correlation coefficient between real and predicted DSS, rMSE: root mean squared error, R2:

determination coefficient) 
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Figure 4. Prediction of future DSS based on sleep quality and anxiety. There were 66 participants in

the longitudinal sample of the eNKI dataset (DSS: depressive symptoms severity after excluding two

sleep-related items, r: correlation coefficient between real and predicted DSS, rMSE: root mean

squared error, R2: determination coefficient) 
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