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Abstract 20 

Hematophagous arthropods occupy a pivotal role in ecosystems, serving as vectors for a wide 21 

array of pathogens with significant implications for public health. Their capacity to harbor 22 

and transmit viruses through biting actions creates a substantial risk of zoonotic spillover. 23 

Despite the advancements in metagenomic approaches for virus discovery in vectors, the 24 

isolation and cultivation of viruses still pose significant challenges, thereby limiting 25 

comprehensive assessments of their pathogenicity. Here, we curated two datasets: one with 26 

294 viruses, characterized by 37 epidemiological features, encompassing virus information 27 

and host associations; the second with 71,622 sequences of hematophagous arthropod 28 

vector-borne viruses, annotated with 33 sequence features. Two XGBoost models were 29 
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developed to predict arbovirus human pathogenicity—one integrating macroscopic 30 

eco-epidemiological data, the other incorporating virus-related sequence features. The 31 

macroscopic model identified non-vector host transmission as a key determinant, especially 32 

involving Perissodactyla, Artiodactyla, and Carnivora Order. The sequence-based model 33 

demonstrated that viral adhesion and viral invasion had distinct trends with consistent 34 

increase and decrease in the likelihood of virus pathogenicity to humans, respectively. With 35 

validated through an independent dataset, the model exhibited a congruous alignment with 36 

documented pathogenicity outcomes. Together, the models offer a holistic framework for 37 

assessing the pathogenic potential of viruses transmitted by hematophagous arthropods. 38 

 39 

 40 

Introduction 41 

Hematophagous arthropods, such as mosquitoes and ticks, play a pivotal role in ecosystems as 42 

blood consumers and crucial disease vectors (Cuthbert et al., 2023; Touray et al., 2023). These 43 

arthropods can harbor a myriad of pathogens, including bacteria, fungi, and viruses. Notably, 44 

viral infections in these organisms are classified under the umbrella terms of Arthropod-Borne 45 

Viruses (arboviruses) and insect-specific viruses (ISVs) (Calisher & Higgs, 2018; Gould et al., 46 

2017; Nouri et al., 2018; Zhao et al., 2022). The potential for these arthropods to harbor and 47 

disseminate a diverse array of pathogens poses a grave threat to both human and animal 48 

health, with the ominous potential to trigger outbreaks and result in a substantial number of 49 

annual fatalities (Batson et al., 2021; Roth et al., 2018). Vector-borne diseases contribute 50 

significantly to infectious diseases (Chala & Hamde, 2021), with notable arboviruses 51 

including the Zika virus (Khongwichit et al., 2023; Weaver et al., 2018), Japanese encephalitis 52 

virus (JEV) (Kampen & Werner, 2014), and the incessant menace of Dengue virus (DENV) 53 

(Fournet et al., 2023).  54 

In recent years, propelled by the widespread adoption of Viral Metagenomics sequencing 55 

technologies, the identification of a wide range of established and emerging viruses within 56 

hematophagous vectors, such as mosquitoes and ticks, has become feasible (Ni et al., 2023; X. 57 

Yang et al., 2023). This technological progress presents an unprecedented opportunity to 58 
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comprehensively explore the distribution and transmission patterns of arboviruses and ISVs 59 

across a spectrum of hosts, including both vectors and non-vectors. Such advancements are 60 

crucial for supporting early warning systems, facilitating the anticipation and mitigation of 61 

disease spread before its onset (Birnberg et al., 2020; Brinkmann et al., 2016). Despite these 62 

achievements in viral metagenomics, current bioinformatic methods for virus recognition still 63 

face limitations (Fang et al., 2019). Accurate identification of a significant number of 64 

unknown contigs remains challenging. Even when identifying known or novel viruses, the 65 

direct isolation and cultivation of these viruses from vectors proves to be formidable tasks, 66 

hindering in-depth exploration of their pathogenesis and immune response (Lewis et al., 67 

2021). 68 

In general, the close phylogenetic relatedness among viruses can offer insights into their 69 

potential for human infectivity, as closely related viruses are generally presumed to share 70 

common phenotypes and host ranges (Geoghegan & Holmes, 2018). However, despite being 71 

a common rule of thumb for virus risk assessment, the extent to which evolutionary proximity 72 

to viruses with known human infectivity accurately predicts zoonotic potential remains 73 

unexamined in the current literature (Behl et al., 2022). Furthermore, the specific model is 74 

designed to be trained on sequence features of closely related viruses (i.e., strains of the same 75 

species) to discern viruses with human infectivity (Zhang et al., 2019). Unfortunately, this 76 

method often overlooks critical functional characteristics of the viral genome, resulting in a 77 

model that is less inclined to identify universally applicable pathogenic features across 78 

diverse viruses. Consequently, predictions derived from such a model may be highly 79 

susceptible to substantial biases (Mollentze et al., 2021). 80 

The epidemiological characteristics of virus transmission encompass not only the virus itself 81 

and information about its vector host (Zaid et al., 2021; Y.-J. S. Huang et al., 2019a; Viglietta 82 

et al., 2021) but also factors such as geographical and climatic variations, as well as 83 

interactions with non-vector hosts (Ciota & Keyel, 2019; Conway et al., 2014; Forrester et al., 84 

2014; Tabachnick, 2016). Moreover, for specific viruses, their nucleotide sequence 85 

information may reflect actual pathogenic details (Bartoszewicz, Genske, et al., 2021). 86 

Therefore, through a comprehensive analysis that integrates both macroscopic and 87 

microscopic perspectives, our objective is to identify the epidemiological features and viral 88 
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sequence characteristics that have the greatest impact on the potential pathogenicity to 89 

humans. 90 

Based on the global data of arthropod-borne virus compiled by Huang et al. (Y. Huang et al., 91 

2023) as a foundation, we carefully curated the contents to extract pertinent information 92 

concerning hematophagous arthropod-borne viruses. Additionally, to augment our analysis, 93 

we utilized SeqScreen for insightful functional details of the viral sequences (Balaji et al., 94 

2022). Employing the XGBoost algorithm with ensemble learning, we developed both 95 

regression and classification prediction models. This facilitated the identification of factors 96 

with the most significant impact on human pathogenicity and enabled the construction of 97 

ensemble learning for predicting the pathogenicity of virus sequences carried by 98 

hematophagous arthropods. 99 

 100 

Materials and methods 101 

Database restructuring and epidemiological feature retrieval 102 

The initial dataset comprised 101,094 virus sequences sourced from NCBI, spanning the 103 

period from March 11, 1991, to January 28, 2023 (Y. Huang et al., 2023). To enhance the 104 

reliability and specificity of our analysis, a stringent screening process was applied, 105 

systematically excluding records lacking host information, sampling location details, and 106 

those with ambiguous vector-host relationships. It is important to note that this dataset 107 

excludes data from Antarctica. Subsequently, we identified 11 species of hematophagous 108 

arthropods, including mosquitoes and ticks (Table supplement 1), while excluding 109 

non-blood-feeding species such as Tipulidae and Chironomidae. Following this, we 110 

systematically screened the entire dataset, retaining records exclusively related to hosts 111 

classified as hematophagous arthropods. This refined dataset, derived through meticulous 112 

curation, forms the foundation for our research, ensuring the integrity and accuracy of 113 

subsequent analyses. Nevertheless, due to inaccuracies in the classification of vectors within 114 

the database, a Python script was developed to scrape taxonomic directory. This script 115 

retrieved detailed order, family, and genus information for each hematophagous arthropod and 116 

non-vector host classification. To reveal the distinct composition of non-vector hosts, host 117 
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counts underwent logarithmic transformation (Figure 1A). For a more comprehensive 118 

presentation, host classifications with fewer than 100 occurrences were amalgamated into an 119 

“others” category, resulting in a total of 10 host classifications (Figure 1C).  120 

In terms of additional epidemiological features, Köppen climate classification data for each 121 

vector were acquired based on their discovery locations. This information was sourced from 122 

both the Weather and Climate website (https://weatherandclimate.com/) and the Mindat 123 

website (https://www.mindat.org/).  Concurrently, continental data for each country were 124 

obtained from the World Population Review (https://worldpopulationreview.com/continents), 125 

and Baltimore classification data were sourced from the International Committee on 126 

Taxonomy of Viruses (ICTV) (https://ictv.global/report/genome).  127 

The development of a regression model for macroscopic characteristics 128 

Firstly, among the 8,468 datasets in this study, We employed an R script to transform it into a 129 

dataset comprising 294 distinct virus types, each characterized by 37 unique features (Table 1). 130 

Subsequently, we utilized the XGBoost ensemble learning model to establish regression 131 

models. The dataset was divided into training and validation sets at a ratio of 7.5:2.5. Given 132 

the balanced ratio of positive to negative samples (1:1) in the model's database, addressing 133 

imbalance was not deemed necessary. The training set was employed to train the model based 134 

on the specified parameters (Table supplement 2). After determining the optimal number of 135 

iterations through 10-fold cross-validation, we proceeded to construct the final model using 136 

this identified count. 137 

Development and validation of a macroscopic features classification model 138 

In the microscopic pathogenicity classification model, we annotated the aforementioned 139 

database uniformly using SeqScreen, resulting in a total of 71,622 virus sequences. After 140 

excluding viruses from hosts submitted to NCBI after 2022, we obtained a final dataset of 141 

71,593 sequences for this model. Due to the imbalance in positive and negative samples in the 142 

database (positivity rate of 79.3%), we adjusted the sample sampling rate to balance the 143 

dataset. The specific parameters employed in this model are meticulously detailed in Table 144 

supplement 3. Utilizing the training set, the model was trained in accordance with these 145 

parameters, determining the optimal iteration count through rigorous 5-fold cross-validation. 146 

Subsequently, the final model was constructed utilizing the identified optimal iteration count. 147 
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To constitute an additional validation dataset, we retrieved Ebinur Lake Virus with arthropods 148 

as hosts from NCBI, incorporating these samples with those previously excluded. Following a 149 

consistent application of the specified parameters, we trained the model using functional 150 

features from the entire dataset. Subsequently, predictions were generated on the additional 151 

validation dataset. The obtained results underwent a meticulous comparative analysis with 152 

findings from established pathogenic studies. 153 

 154 

 155 

Results 156 

Global overview of hematophagous vector-virus distribution, diversity, and host 157 

interactions 158 

This study has curated a comprehensive dataset of 8,468 hematophagous vector-virus pairs, 159 

shedding light on their geographical distribution, diversity, and interactions with hosts. In 160 

terms of distribution, these vectors were classified into two principal classes: Insecta and 161 

Arachnida, spanning seven distinct families (Figure 1A). The records cover all six continents 162 

except Antarctica, spanning across 102 countries globally and representing 24 diverse climate 163 

types (Figure 1B). Regarding diversity, among the hematophagous vectors, Culicidae (64%, 164 

5,445 sequences) predominates, constituting over half of all records, followed by Ixodidae 165 

(32%, 2,703 sequences). Globally, the United States exhibits the highest diversity and 166 

abundance of vectors, hosting five distinct families, followed by China with four. In terms of 167 

virus records associated with vectors, the United States (1,977) leads the list, followed by 168 

Russia, China, and Japan. 169 

Turning to non-vector hosts, the dataset includes an additional 54,789 pairs of non-vector 170 

hosts and viruses, with the non-vector hosts categorized into 15 groups. Among these hosts, 171 

humans are the most prevalent, accounting for 40,078 records, followed by Artiodactyla and 172 

Aves, constituting nearly 20% of the total (Figure 1C). The interactions between viruses and 173 

non-vector hosts are distinct. The majority of viruses are associated with a single host. 174 

Notably, West Nile virus (WNV) and Tick-borne encephalitis virus (TBEV), both belonging 175 

to the Flaviviridae, exhibit the most widespread cross-host transmission, being detected in 176 
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nine non-vector host species. Moreover, as viruses expand their capacity to infect a wide 177 

range of non-vector hosts, a noticeable reduction in viral diversity is observed. Specifically, 178 

viruses capable of infecting only one host encompass 10 distinct virus families, while those 179 

exhibiting infectivity across two to four hosts are confined to five families. Remarkably, 180 

viruses with the ability to infect five, six, or seven hosts are prominently represented by 181 

families such as Flaviviridae and Togaviridae. Among viruses capable of infecting seven 182 

hosts, Dabie bandavirus stands out as a unique case. Belonging to the Phenuiviridae, this 183 

virus is predominantly found in Asia (China, Japan, and South Korea). Infection with Dabie 184 

bandavirus poses a significant health risk, causing a severe febrile illness accompanied by 185 

thrombocytopenia, known as Severe Fever with Thrombocytopenia Syndrome (SFTS), 186 

leading to its alternate nomenclature as the SFTS virus. The Japanese encephalitis virus 187 

exhibits the highest degree of cross-vector host diversity, being detectable in three distinct 188 

vector families: Culicidae, Ixodidae, and Ceratopogonidae. The previously mentioned WNV 189 

and TBEV demonstrate transmission capabilities across both vector families, Culicidae and 190 

Ixodidae. 191 

 192 

 193 

Pathogenicity of hematophagous arthropod vector-borne viruses: a macroscopic 194 

regression analysis of epidemiological characteristics 195 

Through transforming the mentioned database and enhancing it with additional 196 

epidemiological characteristics, we constructed a comprehensive dataset for the model. This 197 

dataset comprises 294 distinct viruses, each characterized by 37 diverse features, broadly 198 

categorized into viral characteristics, vector host features, and non-vector host features. To 199 

unpack the crucial factors underlying human pathogenicity, we constructed and rigorously 200 

trained an XGBoost model. This model leverages human infection status as the dependent 201 

variable and incorporates 36 diverse features as independent variables, pinpointing the key 202 

determinants of human infection. The model exhibits robust performance on the testing set, 203 

with minimal prediction errors reflected in low MSE (0.01) and MAE (0.05) values, 204 

highlighting its accuracy. Additionally, high R2 (94.20%) and Explained Variance (94.29%) 205 

values underscore the model's comprehensive ability to explain the variance in the dependent 206 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2023. ; https://doi.org/10.1101/2023.12.30.23300660doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.30.23300660
http://creativecommons.org/licenses/by-nc/4.0/


variable. 207 

The detection of viruses in non-vector hosts significantly influences human pathogenicity 208 

(Figure 2), surpassing the impact of both vector hosts and the viral agents themselves. 209 

Notably, the characteristics “Cross_host”, representing the total diversity of non-vector hosts 210 

in which the virus has been detected, carries a weight of 52 in the model. This underscores the 211 

critical role of the diversity of non-vector hosts in determining human pathogenicity. 212 

Specifically, when considering potential human-pathogenicity, the order of importance is as 213 

follows: Perissodactyla, Artiodactyla Carnivora and Aves. The higher the diversity of virus 214 

detections in these animals, the greater the likelihood of the virus being pathogenic to humans. 215 

After non-vector host factors, the subsequent important set of characteristics relates to the 216 

vector hosts. Among these, “Cross_vector_g”, representing interspecies transmission among 217 

diverse vector genus, emerges as the most critical factor. If a virus can propagate within 218 

diverse vector genus, there is a substantial likelihood of viral spillover. The third set of 219 

characteristics relates to the intrinsic characteristics of the virus itself. The closer the viral 220 

phylogenetic relationship, the higher the likelihood of inducing similar immune responses, 221 

thereby leading to diseases. 222 

 223 

Relationship between viral genomic function and human pathogenicity: a microscopic 224 

machine learning approach 225 

In our research, we employed SeqScreen to functionally annotate all viral sequences in our 226 

comprehensive dataset. After excluding sequences without successful annotations, our refined 227 

dataset comprised 71,622 arboviruses and ISV sequences, each accompanied by their 228 

respective functional, host, and pathogenic features. The largest category within our dataset 229 

consists of mosquito-borne arboviruses, with Dengue virus 1 (9,194 sequences), Dengue virus 230 

2 (8,999 sequences), and West Nile virus (4,656 sequences) being the most prevalent. 231 

Tick-borne arboviruses, including African swine fever virus (3,915 sequences) and 232 

Crimean-Congo hemorrhagic fever orthonairovirus (3,771 sequences) closely follow in 233 

quantity.  234 

Our functional annotation revealed a total of 10 distinct pathogenic features. The results 235 

indicated that “viral adhesion” is the most prevalent function, accounting for 62% (44,482 236 
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sequences). This function facilitates virus adhesion to host cells, initiating infection and 237 

paving the way for subsequent invasion and replication. Following closely are the “viral 238 

counter-signaling” (49%) and “host xenophagy” (47%), which are typically associated with 239 

immune evasion. These mechanisms enable the virus to survive, replicate within host cells, 240 

and successfully transmit to other cells (Table 1). 241 

Among known non-pathogenic viruses to humans, “viral invasion” stands out as the most 242 

prevalent function, despite its relatively lower overall count compared to other functions. 243 

Notably, within these viruses, the primary hosts targeted are hematophagous arthropod 244 

vectors, with non-vector hosts predominantly represented by Artiodactyla and Aves (Figure 245 

3A). Conversely, within the known human-pathogenic viruses, “viral adhesion” ranks as the 246 

most prevalent function in terms of annotation quantities. In this context, excluding human 247 

hosts, hematophagous arthropod vectors continue to be predominant, followed by Aves 248 

(Figure 3B). This observation suggests a potential genomic similarity in the pathogenicity of 249 

arboviruses among humans, hematophagous arthropod vectors and Aves. 250 

We developed a binary classification XGBoost model using 33 features, which included 251 

functional annotations for all viruses in the database and viral size (length of virus). The 252 

model's dependent variable denotes whether a virus is pathogenic to humans. After excluding 253 

the viruses in the extra validation dataset, the remaining viruses in the database were allocated 254 

to a training set and a testing set in a 7.5:2.5 ratio. While achieving a high accuracy (95.36%), 255 

we incorporated additional metrics, such as Precision (97.57%), Recall (96.55%), and F1 256 

score (97.06%), for a more nuanced assessment. Furthermore, we generated an ROC curve 257 

(Figure 4A) and a confusion matrix (Figure 4B) to gain a holistic view of the model's 258 

strengths and weaknesses. 259 

The model’s results clearly demonstrate that, in terms of average gain, “viral adhesion” 260 

exhibits the highest value, significantly enhancing the model's predictive accuracy. “Host 261 

xenophagy” and “viral invasion” closely follow suit (Figure 5A). Regarding the model's 262 

coverage, “viral invasion” and “host ubiquitin” occupy the top two positions due to their 263 

capability to impact a wide array of viral sequences (Figure 5B). In terms of the model's 264 

weights, the size of the viral sequence takes precedence over other features, indicating its 265 

frequent utilization in the model construction and its vital role in making supplementary 266 
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assessments on the virus pathogenicity based on functional insights (Figure 5C). 267 

In our conclusive analysis, we employed SHAP (SHapley Additive exPlanations) to gain 268 

deeper insights into the individual feature contributions to the model. Notably, the top-ranking 269 

feature— “viral size” —does not exhibit a discernible trend in pathogenicity to humans. 270 

However, other features reveal intriguing patterns. Specifically, both “viral adhesion” and 271 

“host xenophagy”, although slightly less significant than size, individually demonstrate 272 

distinct trends: viral sequences annotated with either of these functions consistently increase 273 

the likelihood of virus pathogenicity in humans. Conversely, “viral invasion” demonstrates an 274 

inverse relationship, wherein sequences possessing this trait tend to reduce the probability of 275 

virus pathogenicity. The majority of remaining features, on the other hand, positively 276 

correlate with pathogenicity. In summary, most features contribute towards determining the 277 

likelihood of virus pathogenicity in humans (Figure 6). 278 

To delve deeper into the intricate interactions among these features, we conducted a thorough 279 

analysis. Our results highlight that among all features, “viral counter signaling” exhibits the 280 

most significant interaction with viral size. However, its impact on pathogenicity remains 281 

inconclusive, lacking a definitive directional trend (Figure 7A). Additionally, we observed a 282 

noteworthy interaction between “host xenophagy” and “viral adhesion”. The concurrent 283 

presence of these features substantially enhances the virus's pathogenicity towards humans 284 

(Figure 7B). Interestingly, “viral invasion” demonstrates a strong but contrasting interaction 285 

with “viral counter signaling”. Specifically, “viral counter signaling” seems to function as a 286 

protective factor against human pathogenicity when “viral invasion” is present, leading to a 287 

reduced likelihood of the virus being pathogenic to humans (Figure 7C).  288 

In our comprehensive analysis of interactions across all features, significant insights emerged. 289 

While viral size lacks a clear discernible trend in its interaction with other features, the 290 

interplay of 'host xenophagy' with both “viral adhesion” and 'viral counter signaling' guides 291 

the model toward non-pathogenicity predictions, acting as a protective feature (Figure S1). 292 

To assess real-world performance, we compiled an additional dataset consisting of 29 viruses 293 

carried by hematophagous vectors, submitted after 2022. This dataset comprises 24 strains of 294 

SFTS virus, 3 of Restan viruses, 3 of Tataguine viruses, 1 of Japanese encephalitis virus 295 

(JEV), and 1 of Nairobi sheep disease virus (NSDV). Furthermore, 25 sequences of Ebinur 296 
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Lake virus (EBIV) borne by arthropods were downloaded from the NCBI, resulting in a total 297 

of 54 virus sequences. To ensure independence, the content of the additional dataset was 298 

excluded from the original model database. The train and test datasets were merged to train 299 

the ultimate model. Validation was then conducted using the additional dataset. Model 300 

predictions indicated that all sequences of SFTSV, a specific strain of JEV, a particular variant 301 

of Tataguine virus, and one isolate of Ebinur Lake Virus potentially exhibit pathogenicity to 302 

humans. 303 

 304 

 305 

Discussion 306 

The intricate interplay between hematophagous arthropods and the viruses they harbor forms 307 

a dynamic ecosystem with profound implications for public health. Ticks and mosquitoes, 308 

integral components of ecosystems, serve as potent disease vectors capable of transmitting 309 

various pathogens, including arboviruses and ISVs. Recent advancements in Viral 310 

Metagenomics sequencing technologies have significantly transformed our investigation of 311 

the virome within hematophagous vectors, providing unparalleled access to comprehensive 312 

viral genetic information. Although technological advancements have been made, 313 

bioinformatic methods for virus recognition still face inherent limitations, particularly in 314 

identifying unknown contigs, which hinders comprehensive virome characterization. The 315 

isolation and cultivation of known or novel viruses from vectors remains challenging, 316 

impeding in-depth exploration of their pathogenesis and immune response. The common 317 

approach to assessing pathogenicity relies on viral phylogenetic analysis, assuming that 318 

viruses with significant phylogenetic distance share similar pathogenic properties. However, 319 

the extent to which phylogenetic relatedness accurately predicts the potential for zoonotic 320 

diseases remains a critical aspect requiring deeper exploration. Existing models, often tailored 321 

for closely related viruses, may inadvertently overshadow crucial functional characteristics, 322 

introducing biases in predictions. To address these challenges, this study innovatively adopts 323 

an ensemble learning algorithm in machine learning. Our objective is to comprehensively 324 

explore the human-pathogenicity of viruses borne by hematophagous vectors, considering 325 
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both macro and micro-level characteristics, with the ultimate aim of identifying key viral 326 

features associated with pathogenicity. 327 

Based on the curated dataset, the distribution and abundance of hematophagous arthropods 328 

suggest that the United States, Russia, and China harbor the highest number of vector insects, 329 

notably mosquitoes and ticks, acting as primary carriers for arthropod-borne viruses (Y.-J. S. 330 

Huang et al., 2019b; Wu et al., 2023). Among the viruses carried by these arthropods, RNA 331 

viruses, specifically those classified as dsRNA under the third Baltimore group, dominate. 332 

Phlebotominae and Ceratopogonidae share virus families, while distinct mosquito genera 333 

harbor a diverse array of viruses, primarily belonging to the Flaviviridae, Togaviridae, and 334 

Peribunyaviridae (Figure supplement 1). The abundance of viruses is influenced by various 335 

factors, prompting a correlation analysis on the dataset. The results reveal strong correlations 336 

for most viruses, excluding Asfarviridae, Zirqa virus, and Wallerfield virus, with six key 337 

characteristics, including vector family and weather conditions. Within the community of 338 

vector-borne viruses, Flaviviridae, Togaviridae, Bunyaviridae, Rhabdoviridae, and 339 

Phenuiviridae are commonly co-detected and considered as core virome(Coatsworth et al., 340 

2022) (Figure supplement 2).  341 

Within the cyclic dynamics of arboviruses, numerous factors intricately influence the 342 

transmission to humans, impacting pathogenic outcomes. Variations in the intrinsic nature of 343 

viruses yield diverse levels of human pathogenicity, commonly associated with phylogenetic 344 

proximity. Moreover, an increased diversity of viruses within vectors may foster co-infection, 345 

thereby facilitating viral evolution and spill-over (Vogels et al., 2019). Consistent with these 346 

observations, our results highlight the significant influence of viral intrinsic factors on human 347 

pathogenicity. These viruses primarily propagate diseases through hematophagous vectors, 348 

predominantly mosquitoes, The species and behaviors of these vectors, collectively termed 349 

“Vector capacity” (Conway et al., 2014), along with environmental shifts (Hermanns et al., 350 

2023; Weissenböck et al., 2010), play a pivotal role in shaping vector composition and 351 

consequentially impact viral transmission. Notably, our research reveals that the impact of 352 

vector hosts is equivalent to that of viral intrinsic factors. Both the diversity across vector 353 

genera and the quantity of vector genera exert a substantial influence on human pathogenicity. 354 

Interactions between viruses and non-vector hosts drive viral evolution (Sen et al., 2016), 355 
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with interspecies interactions being the primary driver for viral spill-over (Y.-J. S. Huang et 356 

al., 2019a). The interplay between vectors and Aves hosts enables long-distance viral 357 

transmission (Forrester et al., 2014), while interactions with vertebrates also emerge as pivotal 358 

determinants(García-Romero et al., 2023; Golnar et al., 2014; Stephenson et al., 2019). Our 359 

results align with these insights, highlighting that, beyond interspecies categories, viruses 360 

infecting Perissodactyla and Artiodactyla pose the most significant risk for human 361 

pathogenicity, increasing the likelihood of transmission to humans and subsequent disease 362 

outbreaks. 363 

Capitalizing on the ability to analyze viral genomic data for predicting viral pathogenicity to 364 

humans (Bartoszewicz, Seidel, et al., 2021), we conducted an exhaustive investigation into 365 

the genetic functionalities of arboviruses and ISVs within the database. Utilizing the ensemble 366 

learning algorithm, we meticulously developed and trained a predictive model. Furthermore, 367 

an additional dataset comprising arboviruses submitted to NCBI after 2022 was incorporated 368 

for validation and prediction purposes. Our model demonstrates superior performance, 369 

showcasing distinctive contributions from individual functional features that collectively 370 

shape the overarching trend in viral pathogenicity. Specifically, “viral adhesion”, representing 371 

a pivotal mechanism for viral infection and entry into host cells, emerges not only as the 372 

predominant feature but also significantly enhances the overall performance of the model. 373 

Empirical evidence affirms that the presence of this feature in viral sequences, subsequent to 374 

transmission to humans by hematophagous vectors, consistently indicates an elevated risk of 375 

pathogenicity. For instance, viruses within the Flaviviridae, such as DENV, WNV, and ZIKV 376 

(Begum et al., 2019; Cruz-Oliveira et al., 2015; Faustino et al., 2019; Hasan et al., 2017; 377 

Martins et al., 2019), utilize E and capsid proteins to enter receptor cells. Likewise, the 378 

Chikungunya virus, a member of the Togaviridae, facilitates the fusion with receptor cells 379 

through trimeric E1/E2 spikes (Ciota & Keyel, 2019). 380 

While “viral invasion” plays a pivotal role in the initial phase of viral entry, it is notably 381 

scarce among this dataset (Table 1). Furthermore, most viruses with this feature are presently 382 

classified as non-pathogenic to humans (Figure 3). The high abundance of Flavivirus in the 383 

dataset could explain the limited occurrence of “viral invasion”, given their unique infection 384 

mechanisms that may not require this specific feature. Additionally, SeqScreen might not 385 
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have detected “viral invasion” in these sequences. Despite its relatively low occurrence in the 386 

dataset, this feature exhibits the highest cover value in the XGBoost model, indicating its 387 

significant impact on the model's performance. Interestingly, contrary to expectations, its 388 

presence predominantly acts as a “protective factor” in predicting pathogenicity, as revealed 389 

by SHAP explanations. This phenomenon may be attributed to the prevalence of this feature 390 

among non-pathogenic viruses in our dataset. However, since we balanced the samples during 391 

model training, it could also be a result of interactions among different features. A more 392 

in-depth exploration of interactions related to this trait revealed a robust interplay with “viral 393 

counter signaling”. When both features coexist, the model significantly leans towards 394 

predicting non-pathogenicity in humans. Importantly, these two processes are not mutually 395 

exclusive factors in actual virus infections. This observation implies potential distinctive 396 

invasion mechanisms of arboviruses, indicating unconventional pathways for entering host 397 

cells that facilitate immune evasion. 398 

In this dataset, “viral counter signaling” and “host xenophagy” are prevalent features actively 399 

enhancing virus pathogenicity and triggering host infection. They play a crucial role in the 400 

pathogenicity to humans (Costa et al., 2013; King et al., 2020). Notably, “host xenophagy”, 401 

similar to “viral adhesion”, significantly influences the model results. In terms of interactions, 402 

it has the strongest interaction with “viral adhesion”, leading to a positive inclination towards 403 

pathogenicity. 404 

The feature of “size”, representing the length of viral sequences, while not directly associated 405 

with pathogenic functions, plays a crucial role in refining the final results, as indicated by the 406 

model's weight (Figure 5C). Training the model with only 33 functional features resulted in 407 

unreliable accuracy (82%) and a high false-positive rate. However, the inclusion of “size” 408 

substantially improved the model's performance. Notably, the influence of “size” on viral 409 

pathogenicity lacks a discernible trend (Figure 6), resulting in predictive outcomes that tend 410 

towards a more stochastic distribution. Interaction analysis revealed that “viral counter 411 

signaling” has the strongest interaction with “size” (Figure 7). Even with these interactions, 412 

determining the direction of pathogenicity remains challenging. In summary, 'size' appears to 413 

fine-tune the model's final predictions. When combined with functional features, it facilitates 414 

a more accurate assessment of the likelihood of pathogenicity to humans. 415 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2023. ; https://doi.org/10.1101/2023.12.30.23300660doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.30.23300660
http://creativecommons.org/licenses/by-nc/4.0/


In the validation results using an additional dataset, we identified four viruses with the 416 

potential to infect humans and induce diseases. Firstly, all sequence of Dabie bandavirus were 417 

predicted to be pathogenic. These viruses collected from ticks in Miyazaki Prefecture, Japan, 418 

exhibited a high degree of homology through phylogenetic analysis with a virus previously 419 

isolated from an SFTS patient, providing strong evidence for its potential pathogenicity (Sato 420 

et al., 2021). The model also predicted the pathogenicity of a strain of JEV, detected in 421 

mosquitoes in the Qinghai-Tibet region of China (Li et al., 2011). Despite the elevated 422 

altitude of the region, the presence of antibodies against the virus in both the indigenous 423 

population and swine suggests a localized occurrence of virus transmission, thereby 424 

challenging the initial presumption that the virus would not be prevalent at higher elevations. 425 

Tataguine virus (Kapuscinski et al., 2021), isolated from Anopheles sp. in Gambia, belongs to 426 

the Peribunyaviridae. While its pathogenicity to humans remains inconclusive, there is a high 427 

likelihood of infection symptoms if transmitted through hematophagous vectors. Among the 428 

25 strains of Ebinur Lake Virus, one isolated from Hyalomma marginatum in the Volgograd 429 

region of Russia in 2023 was predicted to be capable of infecting humans. This virus, 430 

commonly found in China's prevalent vector host, Culex modestus, has been studied 431 

extensively for its ability to infect BALB/c mice, resulting in pronounced clinical symptoms 432 

(Zhao et al., 2020). Recent studies have substantiated the capacity of Aedes aegypti to serve as 433 

a vector for such viruses (C. Yang et al., 2022). Although antibodies have been detected in 434 

human serum samples, the lack of positive RT-PCR results prevents a conclusive 435 

determination of the virus's ability to infect humans and induce diseases (Xia et al., 2020). 436 

This aligns with the model's prediction, as the six viruses isolated from Culex modestus, 437 

included in the model, are unlikely to be pathogenic to humans. 438 

This study endeavors to leverage machine learning methodologies for discerning overarching 439 

factors influencing the pathogenicity of hematophagous vector-borne viruses in humans. Our 440 

developed predictive model, focused on gene function, has successfully demonstrated the 441 

capability to predict virus pathogenicity in humans. However, it is crucial to acknowledge 442 

certain limitations in our study. In the global dataset of vector-borne viruses, there exists an 443 

uneven distribution, particularly with an overabundance of viruses such as DEV. This 444 

imbalance may result in an unavoidable bias that impacts the accuracy of the model. 445 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2023. ; https://doi.org/10.1101/2023.12.30.23300660doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.30.23300660
http://creativecommons.org/licenses/by-nc/4.0/


Furthermore, the selected machine learning algorithms, while effective, may not match the 446 

efficacy of neural networks, posing challenges in optimizing for the current abundance of data. 447 

Notably, variations in blood-feeding habits among hematophagous vectors were not 448 

considered, which can significantly contribute to the spread of viruses. Different vector 449 

species may exhibit distinct preferences and behaviors in their blood-feeding patterns, 450 

influencing the transmission dynamics of viruses. Future research should incorporate these 451 

behavioral nuances to provide a more comprehensive understanding of virus dissemination. In 452 

summary, our model provides a novel perspective and serves as a valuable tool for the further 453 

analysis of virus sequences, providing effective information for the monitoring and early 454 

warning of hematophagous arthropod vector-borne transmission. 455 

In this investigation, our primary objective is to discern both macroscopic and microscopic 456 

factors influencing the risk of human pathogenicity in hematophagous vector-borne viruses. 457 

Employing ensemble learning standpoint, we uncovered key characteristics associated with 458 

viral pathogenicity from an epidemic perspective. Simultaneously, we delved into pivotal 459 

functional features impacting human pathogenicity at a molecular level, with a specific focus 460 

on the functional aspects of viral sequences. Moreover, we deploy our developed model to 461 

forecast the human infectivity of viral sequences within an additional validation dataset. The 462 

model's performance in predicting the pathogenicity of these viruses at the genetic level not 463 

only enriches our comprehension of established and emerging virus risks but also broadens 464 

the scope of hematophagous arthropods detection. Importantly, it contributes substantively to 465 

the mitigation of present and future risks associated with vector-borne diseases. 466 
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Table 1: Summary of Epidemiological characteristics in regression model. A detailed 719 

summary of the 37 epidemiological characteristics considered in our regression model. 720 

Classification  Name of characteristics Detailed description of characteristics 

virus Virus_Group Arboviruses or ISVs 

virus virus name 

vi_G virus genus 

vi_F virus family 

Count virus counts 

baltimore virus baltimore classification 

vector hosts vector_G vector genus 

vector_F vector family 

vector_O vector order 

vector_C vector class 

continent vector continent 

country vector country 

climate vector climate 

cross_vector_G Counts of cross-vector host genera 

cross_vector_F Counts of cross-vector host families 

cross_vector_O Counts of cross-vector host orders 

cross_vector_C Counts of cross-vector host classes 

total_vector Total counts of cross-vector hosts 

vector_G_T Total counts of cross-vector host genera 

vector_F_T Total counts of cross-vector host families 

vector_O_T Total counts of cross-vector host orders 

vector_C_T Total counts of cross-vector host classes 

non-vector hosts Aves Aves host 

Carnivora Carnivora host 

Rodentia Rodentia host 

Chiroptera Chiroptera host 

Primates Primates host 

homo homo host 

Didelphimorphia Didelphimorphia host 

Artiodactyla Artiodactyla host 

Perissodactyla Perissodactyla host 

Eulipotyphla Eulipotyphla host 

Reptilia Reptilia host 

Lagomorpha Lagomorpha host 

Anura Anura host 

Pilosa Pilosa host 

Diprotodontia Diprotodontia host 

cross_host total cross non-vectors host 

homo_infected Whether or not homuns are infectious 
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Table 2: Summary of FunSoCs annotation results from SeqScreen. Counts and definitions 721 

of 10 distinct FunSoCs identified in this dataset. 722 

FunSoC title Counts FunSoC definition 

Viral adhesion 44482 Mediates viral adherence to host cells 

Viral counter 

signaling 
35256 

Viral suppression of host immune signaling within host cells to 

avoid inflammatory responses 

Host xenophagy 33656 Target host xenophagy/autophagy 

Viral invasion 4376 Mediates viral invasion into host cell 

Host transcription 949 Target host transcription to inhibit or activate 

Host ubiquitin 880 Target host ubiquitination machinery 

Host cell death 802 
Target host apoptotic cell death pathways either to inhibit or 

activate 

Resist complement 144 Enable resistance from host complement components 

Antibiotic 

resistance 
4 

Counters the effect of antibiotics administered to inhibit the 

growth or vital functioning of bacterial or eukaryotic parasites. 

Induce 

inflammation 
1 Directly activate host inflammatory pathways to cause damage 
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Figure 1: Hematophagous arthropod vector and non-vector hosts characteristics in the 726 

dataset. (A) The global distribution and quantity of blood-sucking vectors and their carriers. 727 

(B) The number of vector hosts, the continents where they are located, and the types of hostile 728 

weather conditions where they are found. (C) The characteristics of the number of non-vector 729 

hosts. (D) Viruses transmitted across non-vector hosts Quantity. The abscissa is the number 730 

across non-vector hosts, and the ordinate is the total number of viruses. 731 
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Figure 2: Relative importance of different macroscopic characteristics in the regression 734 

model. The weight contributions of diverse epidemiological features of viruses in the 735 

regression model to human pathogenicity. 736 
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Figure 3: Hosts distribution in viral functions annotation. The distribution of hosts for 739 

known non-pathogenic viruses to humans (A) and known human-pathogenic viruses (B). The 740 

actual counts of viruses are converted to percentage representations in their respective 741 

sections of the chart. 742 

 743 

  744 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2023. ; https://doi.org/10.1101/2023.12.30.23300660doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.30.23300660
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: Metrics of comprehensive assessment of model performance. The utilization of 745 

ROC Curve (A)and Confusion Matrix (B) for assessing the performance of the model. 746 
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Figure 5: Ranking of metrics presented in the XGBoost functional annotations model. 749 

Within the results of the XGBoost model, the functional feature importance outcomes of gain 750 

(A), cover (B), and weight (C) are separately obtained. These three metrics collectively reflect 751 

the relative significance in determining the pathogenicity of hematophagous arthropod 752 

vector-borne viruses. 753 
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Figure 6: The collective impact of viral function annotations on pathogeniciy prediction 756 

analyzed through SHAP. Providing a comprehensive overview of how various viral function 757 

annotations collectively contribute to the model's predictions regarding pathogenicity. 758 
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Figure 7: Detailed analysis of the interactions among crucial features in pathogenicity 761 

prediction models through SHAP. The interactions examined include those between viral 762 

sequence size and viral adhesion (A), host xenophagy and viral adhesion (B), as well as viral 763 

invasion and viral counter signaling (C). These analyses contribute to a deeper understanding 764 

of the combined influence of these features on pathogenicity predictions. 765 
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Supplementary Information 769 

Table supplement 1: Family for hematophagous arthropod vector 770 

Family 

Culicidae 

Phlebotominae 

Ceratopogonidae 

Simuliidae 

Tabanidae 

Cimicidae 

Ixodidae 

Argasidae 

Stenoponiidae 

Phthiraptera 

 771 

 772 

Table supplement 2: Hyperparameter settings for the XGBoost regression model. 773 

Optimized parameter settings for the XGBoost regression model obtained through rigorous 774 

experimentation and fine-tuning. 775 

Hyperparameter  Value 

booster dart 

eta 0.15 

max_depth 3 

subsample 0.7 

objective reg:logistic 

tree_method exact 

max_cat_threshold 20 

eval_metric ["logloss", "auc", 'error'] 
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Table supplement 3: Hyperparameter settings for the XGBoost classification model. 780 

Optimized parameter settings for the XGBoost classification model obtained through rigorous 781 

experimentation and fine-tuning. 782 

Hyperparameter  Value 

objective binary:logistic 

tree_method eaxct 

scale_pos_weight 0.26 

eta  0.15 

 783 
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