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1 Methods and Materials

1.1 Physics Model

To determine the resonance versus pressure relationship, we model our system as a long, thin-

walled cylindrical shell (i.e., L ≫ a and a ≫ h). We assume that this shell has a uniform radius

and thickness along its length and that it is surrounded by incompressible fluid. Such a system5

will support many natural modes of wall motion, each composed of a superposition of an axial
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component consisting of m/2 wavelengths along the length of the cylinder and a circumferential

component consisting of n wavelengths around the circumference of the cylinder, where m is

an integer equal to or greater than 1 and n is an integer greater than 1. In cylindrical coordinates

of axial location z and azimuthal angle θ, the radial displacement w of each point on the surface10

at any given time t can be expressed as a superposition of sinusoidal basis functions given by

w(z, θ, t) = Σm,nAmn sin
mπz

L
cosnθ cos 2πft (1)

for some scalar amplitude Amn. The general solutions for the equations of motion of this system

are quite complex for arbitrary m and n. In a system with L ≫ a, however, the contributions of

the axial modes are greatly suppressed compared to the circumferential ones. Neglecting terms

proportional to a/L, the resonant frequencies take the form of roots of a cubic polynomial (1):15
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Where κ, Ki, and αi are dimensionless parameters.

In a damped system the lowest frequency resonant mode is generally the easiest to excite as

first-order damping forces will increase with frequency for a given magnitude of displacement;

thus, we focus our attention on the n = 2 mode. Finding the smallest real root of Equation 2
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and converting from κ back to f with n = 2 yields20

f 2
vac =

C0 −
√
C2

0 − C1

24π2(1− ν2)ha4ρS
(10)

C0 = 5Eh(3a2 + h2) + 12a3P (11)

C1 = 12Ea2h(36a3P − 4ah2P + 9Eh3) (12)

The frequency here is labeled fvac because it represents the natural frequency of the cylinder

in a vacuum. However, in our system the shell both contains and is surrounded by fluid with

non-zero mass, which adds to the effective inertia of the wall as it resonates. For a system with

L ≫ a and c ≫ fvaca, this adds a simple proportional correction to find the natural frequency

of the system with fluid (2):25

f 2

f 2
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=

[
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2n

n2 + 1

ρL
ρS

a

h

]−1

(13)
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δ = ahρS +
4

5
a2ρL (15)

Inverting Equation 14 to solve for P yields

P =
9α4 − 5 (3α + α3)D + 3D2

−4(9α− α3) + 12D
E (16)

α = h/a (17)

D = 4π2(1− ν2)
ρa2f 2

E
(18)

ρ = αρS +
4

5
ρL (19)

To gain some intuition about the behavior of this pressure equation we can linearize it for small

D, yielding

P ∼ ρa2f 2 −O(α3E) (20)
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Typical blood pressures range from 5-40kPa (40-300mmHg) (3), and typical carotid Young’s

moduli range from 100-1000 kPA with lower stiffness values at diastole (4). Thus, our cal-30

culation of pressure is dominated by the measurement of resonant frequency and radius in the

regime of α ≲ 0.1.

1.2 Measurement Technique

Calculating BP using Equation 16 requires knowledge of seven system parameters; radius, wall

thickness, resonant frequency, wall Young’s modulus, wall Poisson ratio, wall density, and fluid35

density. The first two parameters are routinely measured today using ultrasound imaging (5).

In practice, thicknesses were calculated as h = h ∗ a/a (where overlines represent temporal

averages), relying on the incompressibility of the arterial wall. Parameters 5-7 can be assumed

to hold nearly constant (6–8). This leaves two parameters, resonant frequency and Young’s

modulus, which must be calculated by more involved means. Young’s modulus is discussed in40

more detail below; the robustness of our estimate in discussed further in Supplementary Text

2.2. See Supplementary Text 2.3 for further analysis of the sensitivity of the BP estimate to the

various parameters and constants for measurements conducted in the carotid artery.

1.2.1 Resonant Frequency

Previous work has found that high-speed ultrasound imaging is capable of measuring the prop-45

agation of shear waves down the length of the arterial wall (9). We instead apply high-speed

Doppler ultrasound imaging to measure the strength of wall motion around the arterial circum-

ference under stimulation at various frequencies. While stimulus is applied via audio-frequency

transducers, we simultaneously measure the velocities of the top and bottom arterial walls using

a separate ultrasound transducer and standard Doppler velocimetry techniques (10). A lock-in50

amplifier (for static in vitro data) or Fourier transform (for time-varying in vivo data) is used on
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vdiff to extract magnitude and phase of the motion response at the stimulus frequency. The set

of magnitude and phase values at all stimulus frequencies represents the frequency response of

our system.

In order to extract a resonant frequency from this frequency response, we apply a method55

from electrical systems analysis known as Vector Fitting. In general, the frequency response

H(f) of any system can be approximated as a sum of rational functions:

H(f) = ΣN
m=1

rm
if − am

+ d+ fe (21)

where f is frequency, am and rm are complex poles and residues respectively, and d and e are

real linear offset parameters. In particular, a resonant system will have a complex conjugate

pair of poles. Vector Fitting is an algorithm which uses iterative least-squares fitting to find an60

optimal set of values for (rm, am, d, e) which best match the observed frequency response of the

system (11). The final fitted resonant frequency of the system is represented by the magnitude

of our complex conjugate pair of poles. If resonance is not present, the Vector Fitting algorithm

will return a set of purely real poles; this is additional confirmation that our data contain resonant

behavior.65

1.2.2 Young’s Modulus

Previous studies focused on calculating arterial Young’s modulus in vivo have utilized the

Moens-Kortweg (first term) and Bramwell-Hill (last term) equations, which are related but in-

dependent measures of pulse wave velocity down the length of the artery (12):

c =

√
Eh

ρLd
=

√
A

ρL

dP

dA
(22)

where c is pulse wave velocity, d is arterial diameter, and A is arterial cross-sectional area. Re-70

arranging the latter two terms and substituting A = πa2 yields a useful equation for calculating
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Young’s modulus based on changes in pressure:

Eh

2a
= πa2

dP

2πada
(23)

E =
a2

h

dP

da
(24)

Prior studies calculated dP/da using ultrasound imaging to measure a and an external refer-

ence device such as a cuff or tonometer to measure P . We replace this external reference with

pressure measurements generated by our device. This creates a recursive relationship, as these75

pressure measurements are themselves dependent on the value of E we measure. This interde-

pendency can be resolved using the Gauss-Seidel method. First, a physiologically reasonable

value for E is chosen as a starting point, and P is calculated at all radii based on this value us-

ing Equation 16. These P values are then used to calculate E using Equation 23. By repeating

these two steps, both P and E converge on a self-consistent set of values which satisfy both80

Equations 16 and 23 (e.g., fig. S2, table S2).

An important facet of this method of measuring E is that it does not require E to be constant

across different radii. Instead, it provides instantaneous E estimates at the same rate that pres-

sure measurements are generated. Real arteries have been found to exhibit substantial variation

in E between systole and diastole (4), making dynamic E measurement essential to obtaining85

accurate pulse pressures.

1.3 Artery Mock-up Setup

To validate the present physics model, we used compliant, thin-walled rubber tubing, sourced

from latex rubber balloons (Qualatex 160Q or similar) to simulate human vasculature. Tube-in-

gelatin mock-ups are often used as an ultrasound teaching aid as they provide similar imaging90

properties to blood vessels embedded in tissue (13, 14). We substituted a water/psyllium fiber

(Metamucil) mixture (15) for the gelatin/psyllium fiber mixture, as tubing can disbond from
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the gelatin as pressure (and thus also the tubing’s radius) is changed, leading to air pockets

and behavior disparate from real anatomy. Professional ultrasound tissue models are unsuitable

for these experiments as they do not have similar elasticity in their vessel analogues; several95

vendors we investigated used rigid tubing, and all were flow-only (no pressure simulation).

Two sizes of tubing were used (2.18mm radius, “small”; and 3.23mm radius, “large”). Wall

thicknesses of each were 0.25mm and 0.28mm, with a density of 1.93 g/cm measured for both.

The small tubing was submerged to a depth of 2-3 cm in the water/psyllium fiber bath,

modeling a depth similar to that of the human carotid artery. Psyllium fiber was used as a100

scattering medium to simulate surrounding tissue. The tubing was filled with water and inflated

using a syringe to add pressure. Pressure was held constant for the course of a scan. Each

scan consisted of a stimulus sweep from 200 to 600 Hz in 10 Hz steps with simultaneous

measurement using the ultrasound transducer. Five scans were performed at each pressure, and

pressure was swept from 60 to 150 mmHg (targeting a physiologically-relevant range) in 5105

mmHg increments, for a total of 95 scans.

The experiment was repeated using the larger diameter tubing to confirm that the model

holds across different vessel sizes. Pressures were swept from 60 to 150 mmHg in 10 mmHg

increments. Above 130mmHg, we found that the tubing would start to rapidly expand in an

uneven manner (where the radii of specific segments would expand unevenly, as normally seen110

during inflation). As this behavior is not seen in healthy arteries, we discarded data above

130mmHg, for a total of 40 scans.

1.4 Measurement Apparatus

We constructed a custom ultrasound device to provide full insight into the signal processing

chain and to allow accurate timing between the resonance-driving stimulus and ultrasound mea-115

surement. This device is comprised of two USRP N210 software-defined radios (National In-
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struments, Austin, TX), tied to custom transmit and receive electronics. The transmit chain

consists of a threshold block, followed by a bipolar high-voltage pulse generator (a MAX4940,

from Maxim Electronics, San Jose, CA). The receive chain consists of a matching network and

low-noise amplifier with voltage-controlled gain (an AD8336 from Analog Devices, Wilming-120

ton, MA). The gain is set via software and provides time-gain compensation. These chains are

isolated from one another via an automatic transmit-receive switch (a MD0100 from Microchip,

Chandler, AZ). The device has one transmit chain and two receive chains, which are multiplexed

to 32 ultrasound transducer pixels. In addition, the device has an amplified low-voltage output

which feeds the audio-frequency stimulus transducers.125

Downstream of the transmit/receive electronics, a commercial 6L3 linear ultrasound probe

(Acuson, Mountain View, CA) provides conversion to ultrasound. Audio-frequency stimulus

is provided by a set of audio-frequency bone conduction transducers (BC-10 from Ortofon,

Nakskov, Denmark), mounted to the Acuson 6L3.

Capture bandwidth of the software-defined radios and associated electronics extends to 25130

MHz, allowing for adequate localization and image reconstruction of pulses ranging from 3-6

MHz. Raw data is captured for post-processing by custom software.

1.5 Arterial Mock-up Data Analysis

For each individual scan, radius was calculated from the average delay in echo timings be-

tween the top and bottom walls, and resonant frequency was calculated using the Vector Fitting135

method described above. Because the tubing walls were much thinner than those of in vivo

arteries, thickness could not be determined accurately from our ultrasound imaging due to lim-

ited resolution. Instead, we used high-precision calipers to measure the unpressurized radius

and thickness of the tubing (a0 and h0). Because the tubing was assumed to be incompressible

(ν = 0.5), a pressure-dependent thickness could be calculated as h = h0 ∗ (r0/r). These caliper140
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measurements along with the weight of the tubing were also used to calculate its density.

The Young’s modulus of the tubing was calculated by comparing radius and resonant fre-

quency measurements across multiple scans at different pressures, as described above. We

assumed that the tubing was linearly elastic, so a single value of E was calculated which mini-

mized the relative error in pressure as determined by Equations 16 and 23; this value came out145

to roughly 1.16 MPa. The balloon material was later analyzed with a tensile strength measure-

ment instrument from Instron (Norwood, MA). This test yielded an average stiffness of 1.10

MPa which held nearly constant across our strain range, validating both our calculated value

and our linearity assumption.

Measured radii were adjusted for each scan based on this fixed E value to generate agree-150

ment between these two equations. For the larger tubing, obtaining alignment with theory

required adding h/2 to all radii; this would be explained if peak echoes from this system cor-

responded to the inner rather than average radius of the tube. The measured values for radius,

thickness, resonant frequency, and stiffness were combined with prior values for wall density,

fluid density, and wall Poisson ratio in Equation 16 to generate the final calculated pressure155

values shown in Fig. 3.

1.6 Human Feasibility Studies: Design and Data Collection
1.6.1 Study 1

This study was a prospective observational feasibility study evaluating the carotid, brachial,

axillary, and femoral arteries in a single test subject compared to a BP cuff. For each scan, the160

subject’s BP was monitored intermittently with an oscillometric cuff. This study was developed

under guidelines for self-experimentation (16), and one of the authors both collected the data

and served as the subject over several sessions in 2022 and 2023. The study was undertaken in

order to evaluate the feasibility of data collection in multiple arteries of one subject. Data were
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analyzed to produce arterial pressure waveforms displayed in Fig. 5; no further analysis was165

conducted.

1.6.2 Study 2

This study was a prospective observational, first-in-human feasibility study evaluating the carotid

arteries in six test subjects (table S3) compared to a BP cuff. The research protocol was ap-

proved by the California Institute of Technology (protocol #: 19-0971). The aim of this study170

was to assess feasibility of collecting data in a single artery across multiple subjects for the sole

purpose of demonstrating that resonance phenomena exist in humans. Study 2 evaluated the

carotid artery in six volunteer test subjects in comparison to a BP cuff. Recruitment and data

collection occurred during one session in October 2022. Data were collected with the BP cuff

on the arm ipsilateral to the device placed on the carotid artery (IEEE Std 1708aTM-2019 (17)175

and ISO 81060-2 (18)). Two measurements were taken with the BP cuff prior to initial data col-

lection. Five one-minute measurements were taken with the device then two additional BP cuff

measurements were taken. An additional five one-minute device measurements were taken and

finally two additional BP cuff measurements were taken at the completion of data collection.

Data were analyzed for SBP and DBP as well as arterial waveform presence and shape. Sta-180

tistical analyses were completed using SigmaPlot 15.0 (Systat Software Inc) and Matlab 2022a

(Mathworks). A power analysis was completed assuming alpha of 0.05 and power of 0.80 with

an estimated effect size of 5mmHg. In a study using a t-test to compare two methods, a sample

of 20 measurements can be used to determine a difference between the two datasets. Statistics

were calculated according to universal standard ISO 81060-2.185

It should be noted that, as an early feasibility study demonstrating proof-of-concept, strict

adherence to regulatory standards was not intended, specifically in relation to subject numbers.

This study was designed only to demonstrate that arterial resonance is observable in human
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arteries. Existing standards such as IEEE 1708 and ISO 81060-2 were not designed for cuffless,

continuous, calibration-free devices and thus are not entirely appropriate for demonstration of190

this technology; however, we attempted to follow the static testing guidelines in IEEE 1708 and

81060-2 as closely as possible. ISO 81060-3 (19) had not yet been published at the time of data

collection. It is likely a new set of procedures will need to be developed for future regulatory

testing of this device.

1.7 Data Processing Pipeline for Blood Pressure Calculation195

To calculate BP, we extracted the necessary physical measurements required by the model (i.e.,

radius, resonance frequency, and thickness) from the ultrasound imaging. Using a custom data

processing pipeline, we were able to extract the relevant measurements from the raw ultrasound

data and produce a BP estimate. A detailed outline of the data processing pipeline is shown in

fig. S1, with the key steps briefly summarized below. Using ultrasound imaging at a frame rate200

of ∼ 300 Hz, we visualized the pulsatile artery walls in each subject and segmented them to

extract instantaneous radius and thickness measurements (fig. S3, Movie S1). Using simultane-

ously captured Doppler ultrasound data, we also measured arterial wall velocities generated by

our stimulus and used this response to identify the arterial resonant frequency at a rate of 200 Hz

(Movie S1). User-specified indicators for the locations of the artery walls were also provided to205

aid in distinguishing the location of arterial walls within the image from other vasculature. The

instantaneous elastic modulus was estimated continuously to account for the nonlinear elasticity

of the arterial wall (Materials and Methods, Supplementary Text 2.2). A Kalman filter was used

to combine wall velocity and image-derived radius & thickness measurements, providing a bet-

ter estimate of both radius and thickness. These data were then fed into our stiffness calculator210

and the BP formula (Equation 1 in the main text). The resulting BP estimates were low-passed

to remove unphysical high-frequency noise, and were then screened using a set of quality con-
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trol (QC) criteria to remove data contaminated by artifacts stemming from the manual operation

of the device, such as excessive motion of either the probe or subject.

1.8 Quality Control Criteria and Data Exclusion215

BP measurements obtained from the test device were processed using standard methods from

the literature that are consistent with those employed by vital sign monitors (20). First, measure-

ments were passed through an interquartile range filter and a 12 Hz lowpass filter. To convert

continuous measurements into clinically relevant metrics of diastolic blood pressure (DBP) and

systolic blood pressure (SBP), data were divided into non-overlapping time windows with a220

length of six seconds, rounded to the nearest heartbeat interval. For each window, DBP and

SBP were calculated as the average of peak minima and maxima, respectively.

Because a manual placement of the probe is required for the current implementation of the

device, measurements are highly sensitive to motion-induced operator error, including shifts

due to operator fatigue, as well as test subject movement. As a result, signal loss was a regular225

occurrence and these data were deemed unusable and excluded from the final analysis.

1.9 Calibrated Pressure Waveform from Arterial Radius

A reference for the arterial blood pressure at the carotid artery was calculated in Fig. 6 us-

ing the calibrated exponential function proposed by Meinders (2004). This empirically-derived

relationship provides a method to obtain localized blood pressure from arterial radius wave-230

forms by first calibrating the fitting parameters in the equation to a separate blood pressure

reference, such as a brachial sphygmomanometer, when measurements from an arterial catheter

are unavailable. This method has been employed in numerous previous studies as a means of

extrapolating instantaneous blood pressure information from arterial dimensions obtained with

ultrasound imaging (12, 22–25). Assuming that the target artery has a circular interior cross-235
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section and exhibits minimal hysteresis, the pressure-radius relationship is given by

P (r) = Pdia exp

[
α

(
r2

r2dia
− 1

)]
(25)

where α is an artery-specific stiffness coefficient given by

α =
r2dia

r2sys − r2dia
ln

[
Psys

Pdia

]
. (26)

Here, P is the arterial pressure, r is the arterial radius, and the dia and sys subscripts indicate the

diastolic and systolic values of the given parameters.

While r and rdia can be measured directly with ultrasound at the target location, Pdia, Psys,240

and, subsequently, α are not known a priori from passive ultrasound imaging and must be

informed by an external blood pressure reference, in this case, a blood pressure cuff (Philips

Intellivue MP70).

Because the reference blood pressure measurement might not be collected with the mea-

surements of the arterial dimensions, as is the case of the present carotid artery measurements,245

Meinders (2004) suggested a correction whereby α is iteratively updated until the mean blood

pressure obtained from the exponential fit matches that obtained from the reference. This ap-

proach operates under the assumption that the diastolic and mean blood pressures do not vary

significantly in the various arteries, unlike systolic blood pressure (26). In the present study, α

is first estimated using Equation 26 and then updated using250

αi+1 =

((
Pref

1
T

∫ t0+T

t0
P (r(t))dt

− 1

)
β + 1

)
αi (27)

where Pref is the reference mean blood pressure, and β is a dimensionless over-relaxation factor

to accelerate convergence. In instances where the mean blood pressure is not available, as can

often be the case for brachial sphygmomanometer, Pref can be estimated using the formula

proposed by Meaney (2000):
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Pref = Pdia + 0.412(Psys − Pdia). (28)

Iterative updating of α is conducted until the integrated estimate for mean blood pressure is255

within ±0.01 mmHg of Pref , which typically occurs with O(10) iterations.

2 Supplementary Text

2.1 Further Detail of Existing Continuous Noninvasive BP Methods Ver-
sus Present Method

The performance and convenience gap between the catheter and cuff has inspired a number260

of methods aimed at enabling continuous, noninvasive BP measurements (28). We list them

briefly to highlight the large body of work that has attempted to bridge this gap: finger cuffs

(volume clamp method) (29), photoplethysmography (PPG) correlation (30), pulse transit time

analysis (31), ballistocardiography (32), tonometry (33), capacitance measurement (34), elec-

trical impedance measurement (35), radar measurement (36), and lastly, ultrasound measure-265

ment (12, 22, 24, 25) (table S1 for further details and comparisons). Noninvasive methods that

do not require calibration are few and have inherent limitations such as periodic data black-

outs (37) or the requirement of “black-box” machine learning techniques that may overfit to

the demographics of the underlying dataset (38). We also note that these methods may not

extend to all patients; for example, finger cuffs may be inaccurate in patients with peripheral270

vasoconstriction or hypotension (39).

Ultrasound-based methods, in particular, present several advantages compared to many of

the previously listed alternatives. These methods can image deep arteries (unlike PPG or tonom-

etry) and are unaffected by factors such as skin tone or body hair (unlike most optical methods).

Additionally, ultrasound is already widely used in various diagnostic applications due to its275

safety and convenience. Numerous groups have proposed several methods for monitoring BP
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via ultrasound imagery by extracting parameters such as arterial wall diameter (21, 22) and

blood flow velocity (12, 24, 25). However, these previous methods are limited to measurements

of pulse pressure (i.e., the difference between systolic and diastolic pressure) and cannot es-

tablish an artery’s baseline pressure without calibration to an externally obtained BP reference,280

such as a BP cuff. Because artery physiology (e.g., muscle tone or amount of vasoconstriction)

changes over time, any method that relies on calibration also requires periodic recalibration to

compensate for those changes (40). The timeframe and conditions when a calibration point is

valid may vary drastically depending on the time of day or the physiological state of an in-

dividual (41). This constraint significantly limits the usefulness of these methods in dynamic285

conditions such as those found in critically ill patients, where vital signs can rapidly change, as

well as in more common conditions such as during exercise.

Zakrzewski (2018) demonstrates measurements of absolute BP by combining ultrasound

imaging, manually applied probe pressure, and a complex simulated tissue deformation model.

This approach differs from other examined methods in a central way: rather than just passively290

imaging the artery, the distension of an artery is measured with respect to external stimulus (not

dissimilar to the pressure applied by BP cuffs and finger cuffs). Though actively distending the

imaged artery provides sufficient information to calculate the baseline diastolic pressure, the

method still requires the use of a data-driven correction factor to obtain accurate results.

In contrast to these previous approaches, we present a new method for determining blood295

pressure within an artery (Fig. 1) that overcomes the shortcomings of prior ultrasound methods

and requires no calibration or external reference. We start by treating a short section of artery as

a hoop of elastic material, placed under tension by the pressure within. The core of this method

is to then apply an acoustic stimulus (Fig. 1B) to the system, which causes a resonant response

(Fig. 1C). Using ultrasound, we measure this resonance as well as the artery’s dimensions and300

feed these values into a physical model; these data can be obtained from a single ultrasound
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transducer. Given these values, the physical model allows us to calculate the absolute pressure

within the artery.

2.2 Robustness of Young’s Modulus Estimation
2.2.1 Empirical Approach305

An important consideration for our approach to calculating the circumferential Young’s modu-

lus is that arterial stiffness varies widely between subjects. For an arbitrary system of equations

there is no guarantee that an iterative procedure, such as the one employed in this study, will

always converge to a unique solution. We wish to show that for our particular system we do

obtain robust convergence to a unique solution from any reasonable initial conditions. To do310

this, we performed an empirical analysis of convergence at 600 time steps randomly sampled

from our in vivo carotid measurements (100 from each subject examined in Fig. 6). Previous

studies have found that circumferential Young’s modulus for the carotid artery varies from 0.1

MPa to 1 MPa in healthy adult subjects (4). To account for potential variations due to age or

pathologies, we extended our analysis by a full order of magnitude in either direction, starting315

our iterative solver with seven initial values for Young’s modulus ranging from 0.01 MPa to 10

MPa in geometric steps of
√
10. Gauss-Seidel iteration was performed for five steps from each

starting value, and the seven final results for each of blood pressure (P ) and Young’s modulus

(E) were compiled to compute coefficients of variation (CV ) (defined as the standard deviation

divided by mean) for each sampled time step.320

Results for all six subjects are outlined in Table S2; the median CV was less than 0.11%

for E and less than 0.01% for P , indicating robust convergence to a unique solution for any

reasonable starting value of Young’s modulus. Fig. S2 shows representative plots of how this

iterative convergence looks in practice for the various initial values. There do exist initial values

that cause the iterative method to diverge. These values consist of extreme initial estimates,325

17



such as E < 0 or E > 100 MPa, and unphysical inputs, such as dP/da < 0. However, this

analysis indicates that convergence should be expected for physically reasonable starting points

and parameters.

2.2.2 Analytical Approach

The above empirical analysis shows that our iterative procedure robustly converges for a wide330

range of initial estimates for E encompassing the physiologically relevant range, even if the

starting point is orders of magnitude off from the final value. However, we do not need to

rely on random initial values for E; instead, we can use an approximate solution to the system

of equations and improve the accuracy of the starting value. The physical model consists of

equations 16-19 and 24 from Materials and Methods (reproduced below as Supp. Equations335

29-33), which represent a system of differential equations which we must solve in order to

determine P and E.

P =
9α4 − 5 (3α + α3)D + 3D2

−4(9α− α3) + 12D
E (29)

α = h/a (30)

D = 4π2(1− ν2)
ρa2f 2

E
(31)

ρ = αρS +
4

5
ρL (32)

E =
a

α

dP

da
(33)

Such systems may, in principle, generate a family of many different solutions, in which

case our P would not be uniquely determined. For our particular system, the solution (P,E)

which satisfies these equations at any given instant is uniquely determined. From an analytical340

standpoint, the full equation 29 is intractable; however, we can analyze its linearized version

(equation 20 in Materials and Methods):
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P ≈ 5

3
π2
(
1− ν2

)(
ahρS +

4

5
a2ρL

)
f 2 − h3

4a3
E

=
5

3
π2
(
1− ν2

)(
γρS +

4

5
a2ρL

)
f 2 − γ3

4a6
E (34)

E =
a3

γ

dP

da
(35)

We have replaced the product ah with γ because prior studies have found the arterial wall

to be very nearly incompressible (6,7). For a fixed length of the arterial wall, its cross-sectional

area must remain constant even as pressure changes; thus, γ is a constant independent of345

changes in a. To analyze this system, we make the common assumption that our physical

system behaves smoothly as radius changes without sharp discontinuities in pressure, stiffness,

or frequency. Take two consecutive measurements where the radius has changed by a small

quantity ϵ. These will generate a system of four equations:

P (a) =
5

3
π2
(
1− ν2

)(
γρS +

4

5
a2ρL

)
f 2 − γ3

4a6
E(a)

P (a+ ϵ) =
5

3
π2
(
1− ν2

)(
γρS +

4

5
(a+ ϵ)2ρL

)(
f + ϵ

df

da

)2

− γ3

4(a+ ϵ)6
E(a+ ϵ)

E(a) =
a3

γ

P (a+ ϵ)− P (a)

ϵ

E(a+ ϵ) =
(a+ ϵ)3

γ

P (a+ ϵ)− P (a)

ϵ

where df
da

= f(a+ϵ)−f(a)
ϵ

. Note that we have used our smoothness assumption to neglect terms of350

the order ϵd
2f

da2
, ϵd

2P
da2

, or ϵd
2E
da2

. Given that our device is able to measure a and f (and thus ϵ and

df/da) at each time step, our system of four equations has only four unknowns. Rewriting in

linear algebra form, we get
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
C1

C2

0
0

 =


1 0 γ3

4a6
0

0 1 0 γ3

4(a+ϵ)6

a3

γϵ
−a3

γϵ
1 0

(a+ϵ)3

γϵ
−(a+ϵ)3

γϵ
0 1




P (a)
P (a+ ϵ)
E(a)

E(a+ ϵ)


C1 =

5

3
π2
(
1− ν2

)(
γρS +

4

5
a2ρL

)
f 2

C2 =
5

3
π2
(
1− ν2

)(
γρS +

4

5
(a+ ϵ)2ρL

)(
f + ϵ

df

da

)2

Solving this system and applying the limit of ϵ → 0 to simplify yields the unique solution

P (a) =
5π2f (1− ν2)

9

4ρLa
2
(
4a4f − 5γ2f − 2aγ2 df

da

)
+ 5ρSγ

(
4a4f − 3γ2f − 2aγ2 df

da

)
4a4 − 3γ2

E(a) =
8π2a7f (1− ν2)

3γ

4ρLa
(
f + a df

da

)
+ 5ρSγ

df
da

4a4 − 3γ2

This solution is not exact as it was generated from a linearized version of our full equations;355

however, it should represent a close approximation of the true values of E and P . It has been

shown that for any twice continuously differentiable nonlinear system, Gauss-Seidel iteration

is guaranteed to converge to the ideal solution given an initial guess reasonably close to this

solution (43). Thus, by using our approximate analytical solution as a starting point we can

have even greater confidence that numerically solving the nonlinear system through iteration360

will converge to the true solution. As shown in Fig. S2, our linearized estimate does indeed

consistently come close to our final values for P and E.

2.3 Sensitivity Analysis of the Physics Model

Understanding the parameters to which the calculated blood pressure is most sensitive is critical

for establishing the accuracy requirements of ultrasound-based imaging. We quantify this sensi-365

tivity through a propagation of error analysis in the equations of the physical model. Three key
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assumptions related to arterial geometry and mechanics underpin this analysis and the physical

model of arterial resonance:

1. The artery can be modeled as a long cylinder of uniform wall thickness (h) and radius

(a).370

2. The audio stimulus operates in a perturbative fashion such that any nonlinear effects from

the induced resonance can be neglected. Further damping effects due to the finite viscos-

ity of the internal or external media or viscoelasticity of the wall itself can be modeled as

a linear effect for the range of displacements induced by the stimulus.

3. The circumferential Young’s Modulus of the arterial wall (E) behaves in a linearly elastic375

manner in response to the small radius perturbations induced by the stimulus. Such an

assumption does not preclude changes in E over the course of a cardiac cycle, only that

changes in radius induced by the stimulus are small compared to variations in radius

encountered over the course of a heartbeat.

By dimensional analysis, the internal blood pressure (P ) within the artery can be expressed380

as a function of the geometric and material parameters as

P = g1(a, h, f, ρL, ρS, E, ν).

As before, f is the natural frequency of circumferential waves along the arterial wall, ν is

the arterial wall Poisson ratio, ρS is arterial wall density, and ρL density of fluid around the

artery.

For human arteries, we further make two assumptions regarding the material properties of385

the artery and surrounding media:

1. ρS , ρL, and ν can be taken to be nearly constant parameters with known variability of a

few percent across subjects (8).
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2. The measurements of the different parameters are independent, and correlations in uncer-

tainty between different parameters are assumed to be negligible.390

The internal pressure at a given point in the cardiac cycle can be related to the parameters in a

reference state (denoted with a 0 subscript) through

P − P0 ≈ (f − f0)
∂P

∂f

∣∣∣∣
0

+ (a− a0)
∂P

∂a

∣∣∣∣
0

+ (h− h0)
∂P

∂h

∣∣∣∣
0

+ (E − E0)
∂P

∂E

∣∣∣∣
0

+

(ρS − ρS0)
∂P

∂ρS

∣∣∣∣
0

+ (ρL − ρL0)
∂P

∂ρL

∣∣∣∣
0

+ (ν − ν0)
∂P

∂ν

∣∣∣∣
0

(36)

Here, we use ≈ to indicate that we are neglecting higher-order terms in our analysis which

are assumed to be small if our deviations from the 0 state are sufficiently small. Taking the

variance of each side of Equation 36, and letting σi denote the standard deviation of parameter395

i allows us to express the standard deviation of the internal pressure (σP ) as a function of the

variability of the other parameters through

σ2
P ≈

(
∂P

∂f

∣∣∣∣
0

σf

)2

+

(
∂P

∂a

∣∣∣∣
0

σa

)2

+

(
∂P

∂h

∣∣∣∣
0

σh

)2

+

(
∂P

∂E

∣∣∣∣
0

σE

)2

+

(
∂P

∂ρS

∣∣∣∣
0

σρS

)2

+

(
∂P

∂ρL

∣∣∣∣
0

σρL

)2

+

(
∂P

∂ν

∣∣∣∣
0

σν

)2

(37)

Considering now our physical model allows us to quantify the relative sensitivity of the internal

pressure to each parameter. Taking partial derivatives of Equation 16 with respect to each

parameter and squaring each side gives the following relations for the leading order term of400

each derivative:
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(
∂P

∂f

∣∣∣∣
0

)2

=
P 2
0

f 2
0

[
4 +

h0

a0

5E0

(1− ν2
0)π

2ρL0a20f
2
0

+O
(
α2
)]

(38)(
∂P

∂a

∣∣∣∣
0

)2

=
P 2
0

a20

[
4 +

h0

a0

(
5ρS0
ρL0

− 15E0

2(1− ν2
0)π

2ρL0a20f
2
0

)
+O

(
α2
)]

(39)(
∂P

∂h

∣∣∣∣
0

)2

=
P 2
0

h2
0

[
h2
0

a20

(
5E0

8(1− ν2
0)π

2ρL0a20f
2
0

− 5ρS0
4ρL0

)2

+O
(
α3
)]

(40)(
∂P

∂E

∣∣∣∣
0

)2

=
P 2
0

E2
0

[
h2
0

a20

25E2
0

64(1− ν2)2π4ρ2L0a
4
0f

4
0

+O
(
α3
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(41)(
∂P

∂ρS
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0

)2

=
P 2
0

ρ2S0

[
h2
0

a20

25ρ2S0
16ρ2L0

+O
(
α3
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(42)(
∂P

∂ρL
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0
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=
P 2
0

ρ2L0

[
1− h0

a0

(
5ρS0
2ρL0

− 5E0

4(1− ν2
0)π

2ρL0a20f
2
0

)
+O

(
α2
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(43)(
∂P

∂ν

∣∣∣∣
0

)2

=
P 2
0

ν2
0

[
4ν2

0

(1− ν2
0)

2
+

h0

a0

5ν4
0E0

(1− ν2
0)

3π2ρL0f 2
0a

2
0

+O
(
α2
)]

(44)

Note that we have expanded each error term about small values of the parameter α = h/a to

give intuition about the relative scale of the uncertainties, since α is assumed to be a relatively

small parameter for our system. The terms f , a, ρL, and ν all have order-unity leading terms,

indicating that they will be relatively important in contributing error. In contrast, the terms h,405

E, and ρS have order-α2 leading terms, indicating that they will be relatively unimportant in the

total error budget.

We can substitute representative values into the above equation to quantify how much each

term contributes to the overall error budget. Assigning values to each parameter corresponding

to a typical carotid artery gives: a0 = 4 mm, f0 = 270 Hz, h0 = 0.6 mm, E0 = 0.385 MPa,410

ρS = 1102 kg/m3, ρL = 1050 kg/m3, and ν = 0.5.
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σP

P0

≈

[
5.2

(
σf

f0

)2

+ 5.1

(
σa

a0

)2

+ 0.0004

(
σh

h0

)2

+ 0.019

(
σE

E0

)2

+0.035

(
σρS

ρS0

)2

+ 0.90

(
σρL

ρL0

)2

+ 0.58

(
σν

ν0

)2
]1/2

(45)

In this instance, we can see that less than 10% of error in thickness, stiffness, or arterial

wall density will propagate into error in our final pressure estimation. Because stiffness is ul-

timately an inferred parameter, estimates of stiffness will only be as accurate as the underlying

measurements. However, the sensitivity analysis reveals that the accuracy of our pressure es-415

timates is relatively insensitive to uncertainty in the wall stiffness. The primary contributions

to uncertainty come from frequency and radius, followed by fluid density and the Poisson ratio

of the wall. Using the IT’IS database, we can approximate the uncertainty in our mass density

value for blood (σρL) and blood vessels using their values sampled from the literature. There,

the standard deviation of blood densities was σρL = 17 kg/m3 and blood vessel density was420

σρS = 64 kg/m3. The combined uncertainty from just these two parameters corresponds to

< 2% error in the blood pressure.

2.4 Effect of Ambient Sound on the Method

The VRR method uses an audio-frequency stimulus (in range of 200-800 Hz) to obtain infor-

mation about the artery’s resonance behavior. Ambient sounds in this range are widely present,425

but we have not found this noise to be a factor in our data or represented in any of our analyses.

The insensitivity to ambient noise can be explained by performing a transmission/reflection

calculation at the air-to-skin boundary. At an air-water interface, water is an almost perfect

reflector of acoustic waves (44). Because tissue is mostly water, the acoustic impedance of skin

(∼ 1.6× 106 kg m−2 s−1 per (45) and the IT’IS database (8)) and water (∼ 1.48× 106 kg m−2
430

s−1) are comparable, which would lead to the same near-perfect reflector effect for acoustic
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waves. Thus, it is nearly impossible for ambient noise from non-contact sources to penetrate

into the tissue with enough intensity and coherence to interfere with the acoustic input from the

direct contact transducers used in this method. In contrast, acoustic interference in the carotid

could be spurred by vocal cord vibration when a subject speaks. During the study, we made435

sure that subjects did not speak during data acquisition to both prevent the artery from escaping

the field of view and also to avoid this potential problem. Clinically, any patient who warranted

monitoring of central (carotid) blood pressures, such as in an intensive care setting, would likely

be sedated, negating this issue entirely.
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4 Supplementary Figures and Tables

Figure S1: Illustration of data processing pipeline. Each box represents an input or algorithm;
these produce the final data products seen in Figs. 4-7.
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Figure S2: An illustration of the convergence in E, viewed over several iterations. Each
panel represents one randomly chosen measurement point from each subject and shows our
iteration from three out of the seven initial conditions; E = 0.01 MPa, E = 0.3 MPa, and
E = 10 MPa. In every case, all three iterative traces quickly converge to the same location.
Furthermore, in every case, this convergent location is close to what we would have estimated
from our linearized solution.
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Figure S3: Identification and tracking of vessel wall boundaries in time. A-F on the left each
depict an ultrasound B-mode image (five second average intensity projection) of the carotid
artery in a longitudinal orientation corresponding to Subjects A-F in the N = 6 study, respec-
tively. Wall velocity was calculated at the pixel column, where the magenta and cyan markers
are located. G-L are corresponding raster images of the same five seconds of B-mode data,
where the center 20 columns from each B-mode image were averaged to generate a single col-
umn for each timepoint (similar to processing for M-mode display). Magenta and cyan lines
depict raw traces of the inner artery edge and interior wall (before radius filtering), respectively.
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Method Modality As presented by... Calibration source Full waveform? Uses machine
learning Physical model? Additional drawbacks/remarks

Ultrasound-imaged
Resonance

Ultrasound

This manuscript None Yes No Yes (fully
determined)

Radius tracking Wang (2018) Brachial cuff Yes No No Core exponential equation is
empirical

Pulse-wave velocity (QA
method)

Seo (2021),
Beulen (2011),
Vappou (2011)

Finger cuff (Seo (2021)),
brachial cuff (others) Yes No Yes Physical model uses

Moens-Korteweg/Bramwell-Hill

Blood velocity wave
analysis Jana (2020) None / Brachial cuff (for

training) No
Yes (determines
Windkessel
model params.)

No∗

∗Windkessel provides underlying
model, but feature extraction relies
on linear regression. Use of
machine learning results may result
in misreporting during regimes
outside of training set (such as
abnormal/rare physiologies and
cardiovascular shock)

Force-measured
distension

Zakrzewski
(2018) None No Yes Yes Requires steady applantation

pressure, operator training required

Volume clamp
Finger cuff

Imholz (1998) Brachial cuff (optional
but recommended) Yes No Yes

Difficult to measure BP on patients
with low perfusion in extremities,
periodic Physiocal self-calibration
results in lower data availability

Volume control technique Fortin (2021) Brachial cuff Yes No No Difficult to measure BP on patients
with low perfusion in extremities

Pulse wave analysis Capcitance
measurement Quan (2021) Brachial cuff No Yes No

Pulse transit
time analysis

Radar Ibrahim (2019) Brachial cuff No No
No – but BP from
best fit of linear
PTT model

PPG, ECG,
video, etc.
(review paper)

Mukkamala
(2015) Brachial cuff No No Yes∗

∗Linear regression is used
extensively to fit physics models)

Pulse wave analysis Optical Sola (2021) Brachial cuff No No No

Amplitude correlation PPG Shaltis (2005) Finger cuff No No No

Pulse wave analysis Tonometer Takazawa (2007) Brachial cuff No Yes No Sensitive to noise and movement
artifacts

Tonometry Radar Liao (2021) Brachial cuff Yes No No

Pulse wave analysis Bioimpedance Ibrahim (2019) Finger cuff No Yes No

Ballistocardiography
(Pulse wave analysis) Force plate Kim (2018) Finger cuff No No No

Requires patient to stand/sit on
force plate, not appropriate for
ambulatory use

Table S1: Comparison of noninvasive blood pressure measurement methods.
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Subject Median Blood
Pressure CV

Median Young’s
Modulus CV

A 1.0e-4 1.1e-3
B 5.5e-5 5.0e-4
C 4.3e-5 4.9e-4
D 1.4e-5 1.4e-4
E 2.2e-5 2.4e-4
F 2.8e-5 3.9e-4

Table S2: Summary of our empirical investigation into the convergence of pressure and stiffness
estimates from a range of initial conditions.

Characteristic Data (n=6)
Age (yrs) mean (range) 33 (26-37)
Height (m) mean (range) 1.76 (1.60-1.85)
BMI (kg/m2) mean (range) 24.03 (20.23-34.28)
Gender Males - n (%) 5 (83.3%)

Females - n (%) 1 (16.7%)
Race Asian - n (%) 1 (16.7%)

White - n (%) 4 (66.7%)
Not Reported - n (%) 1 (16.7%)

Table S3: Demographics of six subject study.
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