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Supplemental Text

S1 - Experimental procedures

S1.01 - Study participant
This study includes data from one participant (referred to as ‘SP2’ in this preprint rather

than the actual trial participant designation, which the participant is familiar with, as per medRxiv
policy) who gave informed consent and was enrolled in the BrainGate2 clinical trial (identifier:
NCT00912041). This pilot clinical trial was approved under an investigational device exemption
by the US Food and Drug Administration (Investigational Device Exemption #G090003).
Permission was also granted by the Institutional Review Board at the University of California,
Davis (protocol #1843264). SP2 gave consent to publish photographs and videos containing his
likeness. All research was performed in accordance with the relevant guidelines and
regulations.

SP2 is a left-handed man in his 40’s with Amyotrophic Lateral Sclerosis (ALS). During
the summer of 2023, his left precentral gyrus was implanted with four 64-channel, 1.5
mm-length silicon microelectrode arrays coated with sputtered iridium oxide (Blackrock
Microsystems, Salt lake City, UT). For more information on array targeting, see Sections S1.02
and S1.03, below. Data are reported from post-implant day 25 onward.

SP2 is effectively paralyzed below the neck and severely dysarthric due to his ALS. He
retains intact eye movement and limited orofacial movement with the capacity for vocalization,
but is unable to produce intelligible speech (Audio 1). He typically communicates through
trained interpreters or a gyroscopic head mouse (Quha Zono 2) that enables him to move and
click a mouse on a computer screen.

S1.02 - Multi-modal MRI-based speech localization
Prior to array placement, SP2 underwent a multi-modal MRI session for array targeting

based on the Human Connectome Project (HCP’s) prior protocols1,2 and as done for prior
Braingate2 clinical trial participant ‘T12’3. SP2 was scanned in a 3T Ultra High Performance
scanner (GEHealthcare) with a Nova 32-channel coil. Scan parameters were based on HCP
Lifespan protocols and modified for the GE system (Table S1). Briefly, 0.8mm isotropic T1w and
T2w images were acquired together with 2mm isotropic resting state fMRI with TR=800ms in 4
runs each lasting 5 minutes and 45 seconds. In addition, phase reversed single band reference
fMRI and spin echo MRI images geometrically and distortion matched to the MRI were acquired
for distortion correction, unaliasing, and motion correction. The HCP’s minimal preprocessing
pipelines1 were used to align the data within and across modalities, correct for image distortions,
reconstruct white and pial cortical surfaces, and compute T1w/T2w myelin maps and cortical
thickness maps. Subsequently, multi-run spatial Independent Components Analysis (sICA) was
applied to remove spatially specific fMRI artifacts related to head motion, physiology, and the
MRI scanner4.

https://www.zotero.org/google-docs/?9ITeBv
https://www.zotero.org/google-docs/?GEatdG
https://www.zotero.org/google-docs/?xSaScX
https://www.zotero.org/google-docs/?AsYePH


These independent components were hand checked after initial automated classification
using the “FIX” tool5 before non-aggressive regression of the artifactual components out of the
fMRI data. Hand component classification was used because the application involved surgical
planning. At this point the T1w/T2w myelin maps and fMRI data were used to align SP2’s brain
to the HCP’s atlas space using MSMAll areal-feature-based surface registration6. This
multi-modal cortical surface registration compensates for individual variability in areal size,
shape, and position and enabled the HCP’s multi-modal cortical parcellation1 to be overlaid
directly on SP2’s pial surface. The multi-modal surface registration was hand checked by
comparing the multi-modal features computed from SP2’s brain to the same features in the
atlas, with special attention paid to the features that defined the borders of areas 4, 6v, and 55b,
including the T1w/T2w myelin maps (Fig. S1e) and multiple spatial ICA-based functional
networks, including the language network (Fig. S1c-d), head sensori-motor network, and upper
extremity sensori-motor network. Again these maps were hand checked given the
neurosurgical targeting application. Once precise alignment of the HCP’s atlas of multi-modal
cortical areas was confirmed, targets for the arrays were proposed, including targets in ventral
area 6v, area 4, dorsal area 6v, and area 55b. These visual analyses were carried out within the
HCP’s Connectome Workbench software (Fig. S1b-h).

S1.03 - Array placement targeting
The surgical targets for array placement within the precentral gyrus were chosen based

on gross anatomical structure, vasculature, previous speech decoding studies3,7–9, and from
estimates of cortical boundaries obtained using a cortical parcellation method derived from
multi-modal Human Connectome Project (HCP) data (see Section S1.02, above). For two
arrays, we targeted the dorsal and ventral aspects of area 6v due to their contributions to
speech decoding in3. A third array was targeted to speech primary motor cortex (area 4). We
targeted area 55b for the fourth array due to emerging evidence it is a speech hub10.

S1.04 - Neural signal processing and feature extraction
Neural signals were recorded using Neuroplex-E headstages (Blackrock Microsystems)

attached to the two percutaneous connectors of the four implanted microelectrode arrays. The
headstages analog filtered raw signals between 0.3 to 7.5 kHz (4th order Butterworth filter) and
performed analog-to-digital conversion with sampling rate of 30 kHz (250 nV resolution). 1 ms
windows of the digitized 30 kHz signal from 256 channels were sent to our custom BRAND
node (see Section S1.05) written in Python for real-time digital filtering and feature extraction.

Each incoming 1 ms neural signal window was first band pass filtered between 250 to
5000 Hz using a 4th order zero-phase non-causal Butterworth filter. 1 ms neural signal windows
were padded on both sides (using the previous 1 ms window on the left side and 1.2 ms of
mean padding on the right side) to minimize discontinuities at the edges. Linear Regression
Referencing (LRR) was used to reduce noise artifacts from all channels of filtered signal3,11.

We extracted threshold crossings and spike-band power features from every 1 ms
window of filtered and denoised neural signals. Threshold crossings were identified if the
voltage of the signal in this window crossed the threshold of -4.5 times the root mean squared

https://www.zotero.org/google-docs/?AVX0pD
https://www.zotero.org/google-docs/?uEFoJK
https://www.zotero.org/google-docs/?LDDxWR
https://www.zotero.org/google-docs/?SdG7zl
https://www.zotero.org/google-docs/?ho5u1u
https://www.zotero.org/google-docs/?jbXz5N
https://www.zotero.org/google-docs/?Fd8R8Q


(RMS) value of the neural signal for each channel. Spike-band power was obtained by squaring
the samples in the window and temporally averaging it for each channel. Spike-band power was
clipped to avoid outliers. This real-time signal processing, de-noising and feature extraction was
performed in less than 1 ms, minimizing the delay. These neural features were then binned into
20 ms non-overlapping bins. Binned threshold crossing counts were obtained by summing
threshold crossings in 20 consecutive neural feature windows. Binned spike-band power was
computed by averaging spike-band power in 20 consecutive neural feature windows. Threshold
crossings and spike-band power are commonly used measurements of local spiking activity that
have been shown to be comparable to sorted single unit activity in terms of decoding
performance and neural population structure12–14. For brain-to-text decoding, binned threshold
crossings and spike-band power from all 256 electrodes were assembled into a single 1 x 256
feature vector at every time step. Sequences of the feature vectors were smoothed and
normalized before passing them into the RNN decoder (see Section S2.01).

At the start of each session, a short “diagnostic” block with attempted speech of
repeated single words was recorded (see Section S1.07), which was used get initial estimates
of electrode-specific RMS thresholds for obtaining threshold crossing features and LRR filter
coefficients for de-noising signals as described above. Subsequently during the session, we
recomputed these RMS thresholds and LLR coefficients after every block of neural data
recording. Recomputing these parameters after every block helped with minimizing
nonstationarities in the neural activity throughout the day.

S1.05 - Data collection rig
All real-time data collection, processing, analysis, and decoding was done between a

group of five computers communicating with one another over a local area network. A Windows
10 computer interfaced with the Neuroplex-E system to start and stop neural data recording. A
second computer (Ubuntu 22.04 LTS) was used to process and extract neural features from raw
30k neural data. A third computer (Ubuntu 22.04 LTS) was responsible for real time neural
decoding, fine-tuning the RNN model online, displaying the task to SP2, and displaying the task
control GUI on the research monitor. Finally, a fourth computer (Ubuntu 22.04 LTS) was used to
run the language model that converted phoneme sequences to words. We used the Backend for
Realtime Asynchronous Neural Decoding (BRAND15) to run our data collection computer setup.
All code was written in Python, C, or MATLAB.

S1.06 - Overview of data collection sessions
Neural data were recorded in 5-7 hour long research sessions, which took place at the

participant’s home twice per week. Sessions typically included 1-2 breaks for food or beverages.
During the sessions, SP2 sat in his power lift chair in an upright position. A computer monitor
placed in front of SP2 displayed the task. An eye tracker mounted to the bottom of the computer
monitor allowed SP2 to select on-screen “buttons” by looking at them. Data was collected in
15-25 minute “blocks” consisting of an uninterrupted series of trials. Trials could be paused as
necessary and continued or terminated as appropriate. Between blocks, SP2 was encouraged

https://www.zotero.org/google-docs/?XKdkRP
https://www.zotero.org/google-docs/?f5Xab8


to rest as needed. Table S2 lists all data collection sessions reported in this study. In each
session, we collected an average of 136 minutes of neural data.

In keeping with historical precedent in our clinical trial, we began data collection 25 days
after implantation16. While a delay between surgery and device initialization is standard practice
in clinically approved neuromodulation procedures such as deep brain stimulation and vagal
nerve stimulation, in principle data collection could have begun within hours or days after
implantation.

S1.07 - Instructed delay Copy Tasks
In an instructed-delay Copy Task (Videos 1-2), a prompted sentence was displayed as

text on a screen facing SP2. A colored square changed from red to green to indicate when he
should begin speaking. SP2 triggered the end of each sentence using an on-screen eye-tracker
“button”, at which time the final decoded sentence was read aloud with a text-to-speech
algorithm that was customized to sound like the participant’s pre-ALS voice17 (Section S5). To
support users incapable of eye gaze control, we also demonstrated sentence finalization
triggered by neural decoding of SP2’s attempted hand squeezes (Section S6). The majority of
Copy Task blocks were 50 trials long, which took 15-25 minutes depending on how long the
prompted sentences were.

At the start of each session, we did a “diagnostic block”, which was an instructed delay
task with 8 single-word cues each repeated 6-8 times. The word set consisted of the words
’bah’, ’choice’, ’day’, ’kite’, ’though’, ’veto’, ’were’, and a ‘DO NOTHING’ condition where SP2
was instructed not to say or do anything, consistent with 3 . Data from this block was used to
calculate initial thresholds and weights for linear regression referencing, which were then
updated after each subsequent block.

S1.08 - Self-initiated conversational task
In the self-paced conversational task (Video 3), no prompted sentences were shown on

screen. Instead, SP2 could say whatever he wanted. SP2 would initiate a new sentence by
simply attempting to speak, which the BCI would reliably detect using only neural data. To
accomplish this detection, the RNN decoder was always running in the background to predict
phoneme probabilities every 80 ms. These phoneme probabilities were analyzed in real time to
detect when speech had started (probability of any phoneme higher than the probability of
silence) or ended (probability of silence higher than probability of any phoneme for 6
consecutive seconds; this duration was determined over the first few sessions of this task to
balance accidentally timing out a sentence early with not making SP2 wait too long for it to end
when he wants it to). SP2 could end a sentence using the eye tracker or by waiting six seconds
for the trial to time out, after which time the final sentence was read aloud by the TTS algorithm.
SP2 used the eye tracker to confirm whether the final decoded sentence was correct, or if not,
he could specify whether it was “mostly correct” or “incorrect”. Sentences that were confirmed to
be correct were used to fine-tune the RNN in the background, which ensured that decoding
performance remained stable and accurate throughout usage of the speech neuroprosthesis.
The duration of personal use blocks ranged from approximately five minutes to 4 hours. The

https://www.zotero.org/google-docs/?90Jqk5
https://www.zotero.org/google-docs/?9tGhlR
https://www.zotero.org/google-docs/?4Xih9U


design of the self-paced conversational task was continuously tweaked in response to feedback
from SP2 (e.g., see Table S3).

S1.09 - Decoder evaluation
To evaluate speech decoding performance, we computed PER and WER using

Levenshtein distance, which counts the number insertions, deletions, or substitutions necessary
to match the decoded phonemes or words to the ground truth labels. For assessing the RNN
output (without language models), we calculate the “raw PER” by comparing the most probable
phoneme decoded in each time step (duplicates removed) with the ground truth phoneme
sequence. Consistent with 3, reported error rates were aggregated across all evaluation
sentences from each session by summing the number of errors (insertions, deletions, or
substitutions) for all sentences and then dividing it by the total number of words in those
sentences. This helps prevent very short sentences from overly influencing the result.
Confidence intervals for error rates were computed via bootstrap resampling over individual
trials and then re-calculating the aggregate error rates over the resampled distribution (10,000
resamples).

Blocks where the participant was excessively tired, per his own report, were excluded
from evaluation (2 of 36 total blocks); the WERs on these blocks were 8.3% (session 14) and
5.3% (session 15). The first-ever closed-loop block (session 1) was excluded from evaluation
because the participant cried with joy as the words he was trying to say correctly appeared
on-screen (1 of 36 total blocks). In each session, we collected 1-4 evaluation blocks (50-200
sentences).

Before every session, an RNN was trained on all previous data. In early sessions (1-11),
an additional new model was also trained halfway through data collection to calibrate it to the
current day. From session 12 onward, after online fine-tuning was introduced, we stopped
training a new model halfway through the day and instead relied on the online fine-tuning.

S1.10 - Sentence selection
For 50-word decoding (sessions 1 and 2), custom-written prompted sentences contained

words from a 50-word vocabulary7. For 125,000-word decoding (sessions 2 onward), sentences
were sourced from the Switchboard corpus18, as in 3. Additional training sentences were
sourced from the OpenWebText2 corpus19 and the Harvard Sentences20 in an effort to expand
the sampled vocabulary and thus the decoder’s ability to generalize (Fig. 3c). Sentences were
screened for grammatical errors or offensive language. We collected data for 4,444 prompted
sentences over 17 sessions, totaling to 18.8 hours of neural recording.

S1.11 - Eye tracking
SP2’s gaze data were tracked using a Tobii Pro Spark eye tracker. Eye tracker

calibration was performed at the beginning of each session, and repeated as necessary
between data collection blocks. During data collection blocks, SP2’s on-screen gaze location

https://www.zotero.org/google-docs/?bS9KA0
https://www.zotero.org/google-docs/?XeYPzF
https://www.zotero.org/google-docs/?sAnSE5
https://www.zotero.org/google-docs/?U1LgVv
https://www.zotero.org/google-docs/?MGpxb9
https://www.zotero.org/google-docs/?5W5d9D


was recorded at 60 Hz and used to allow him to select on-screen “buttons” by simply looking at
them. Gaze data was recorded independently from each eye before being averaged and
smoothed over time. All eye tracker calibration, gaze data recording, and logic for on-screen
button selection was done with custom written Python code that was integrated into our
BRAND-based15 data collection rig.

S2 - RNN decoder

S2.01 - RNN architecture and feature preprocessing
The RNN used in this study to predict sequences of phoneme probabilities from neural

data has an RNN inspired by 3. In brief, the RNN consisted of (1) linear day-specific input
layers to correct for nonstationarity in neural data between days, (2) 5 layers of gated recurrent
unit (GRU) architecture with 512 units per layer, and (3) a dense output layer that outputted the
probabilities of 41 classes (39 phonemes, silence, and a CTC blank token). The RNN ran every
4 bins (20 ms per bin) to predict phoneme probabilities from the most recent 14 bins of neural
data (280 ms). Before neural features were input into the RNN, they were z-scored using their
means and standard deviations from the previous 20 trials, and then smoothed with a Gaussian
kernel (sd = 40ms) that was delayed by 160ms. Connectionist temporal classification (CTC) loss
was used to output a sequence of predicted labels (phonemes) from an unlabeled time
sequence of neural data. For additional details about the RNN architecture, refer to the
supplemental methods section of 3.

S2.02 - Offline RNN training
The offline RNN training protocol used here is the same as in 3. A new RNN was trained

before each session, and also mid-session for the first 11 sessions (before online fine-tuning
was introduced). Whenever an offline RNN was trained, 90% of all previous data were used for
training, and 10% of data were randomly (uniformly from each session) held-out for validation.
Cue sentences from each trial were converted to a sequence of phonemes using the Python
g2p-en package 21. The RNN was trained with neural feature sequences and target phoneme
sequences for 5,000-15,000 batches (the number of batches was increased as the training data
pool grew throughout data collection), and the learning rate was linearly decayed from 0.02 to
0.0 across all batches. In each batch, up to 64 trials of data from a randomly selected session
were input into the corresponding day-specific input layer followed by the GRU and dense
layers. Data was dynamically augmented on a batch-by-batch basis to improve decoder
generalizability and stability by adding (1) white noise and (2) artificial constant offsets to the
neural features. At the end of each batch, weights for the relevant day-specific input layer and
the GRU layers were updated using stochastic gradient descent (ADAM; 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =
0.1). We applied dropout and L2 weight regularization during training to improve generalization.
For additional details about the offline RNN training, refer to the supplemental methods section
of 3.

https://www.zotero.org/google-docs/?AKOFcO
https://www.zotero.org/google-docs/?QHP5mL
https://www.zotero.org/google-docs/?dVKYH2
https://www.zotero.org/google-docs/?dzF5EI
https://www.zotero.org/google-docs/?niQMnH
https://www.zotero.org/google-docs/?Mhyj8w


S2.03 - Online RNN finetuning
Online RNN fine-tuning was introduced in session 12 in an effort to constantly adjust the

RNN to shifts in neural signals to ensure that speech decoding performance remains
consistently high throughout a session. The online finetuning method employed here is similar
to the one introduced in 22 for a handwriting decoder, but was adapted here to work with speech
decoding tasks. At the beginning of a new session, an RNN trained on all previous data was
loaded, and the day-specific input layer corresponding to the most recent session was
duplicated. After each trial in the new session (starting after ten trials of data had accumulated),
the weights of this day-specific input layer and the weights of the base GRU model were
updated using the neural data and ground-truth sentences from each trial. Ground-truth
sentences are defined as either the cued sentence (in the instructed delay Copy Task) or as
decoded sentences that SP2 confirmed to be correct (using the eye tracker) in the self-initiated
conversational speech task after each sentence. During each fine-tuning epoch, data from
previous sessions was randomly sampled (in a proportion of 60% new data to 40% old data) to
train the model in an effort to ensure that the model did not overfit to the current day’s data. A
static learning rate of 0.04 was used to fine-tune the RNN throughout the session. For additional
details about online RNN fine-tuning, refer to 22.

S2.04 - Hyperparameter optimization
Optimal hyperparameters for RNN architecture and training were determined with

hyperparameter sweeps twice throughout data collection (Fig. S5), and optimal parameters
were used in subsequent online decoding sessions. RNNs were trained offline (using all
previous data) with one hyperparameter varied at a time. Each RNN was validated on
randomly-selected held-out validation trials to evaluate performance (raw phoneme error rate).
For each parameter condition, 10 RNNs were trained and their validation performances were
averaged.

S3 - Language model

S3.01 - Architecture
The n-gram language models in this study, which take sequences of phoneme

probabilities as an input and output the most likely sequence of words, are the same general
architecture as described in 3. The 50-word language model used here was a 5-gram model
trained on 2,413 custom-written sentences that contained only words from the 50 word
vocabulary7. This model outputs only the singular most likely sequence of words. The
125,000-word language model, trained on the OpenWebText2 corpus19, was the same 5-gram
model described for post-hoc offline analyses in 3. The 125,000-word vocabulary included in this
language model stems from the CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict)
and encompasses the majority of the English language; native English speakers typically know
~20,000-40,000 words23,24. This language model initially predicts up to 100 of the most likely
sequences of words, before rescoring them in multiple stages to identify the singular most likely

https://www.zotero.org/google-docs/?D4KqVk
https://www.zotero.org/google-docs/?TjcnKF
https://www.zotero.org/google-docs/?hjEJsm
https://www.zotero.org/google-docs/?oa9uBk
https://www.zotero.org/google-docs/?DsXXaG
https://www.zotero.org/google-docs/?5LorE5
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.zotero.org/google-docs/?WPQuMa


sequence of words. To use this language model online and in real time, we implemented
custom-written Python code to integrate it into our real-time decoding system. For additional
details about the language models utilized in this study, refer to the supplemental methods
section of 3.

S3.02 - Hyperparameter optimization
As we collected data, we ran offline language model hyperparameter sweeps to identify

optimal speech decoding parameters (Fig. S6). In particular, the acoustic scale and alpha
parameters had the biggest impact on decoding performance. The acoustic scale parameter is
the weighting ratio between the RNN-derived phoneme probabilities and the n-gram derived
sentence probabilities, and the alpha parameter is the weight ratio between the n-gram model
rescoring and the OPT LLM rescoring (see supplemental methods in 3 for more details). After
hyperparameter tuning, we used these identified optimal hyperparameters to enhance speech
decoding accuracy online in subsequent speech decoding sessions.

S4 - Offline analyses

S4.01 - Offline RNN analyses
Offline RNN decoding analyses were utilized in Figures 2, 3, S3, and S5 of this study. All

analyses averaged the results from 5-10 RNN seeds per condition. Chance decoding values
(reported in Fig. 3c) were calculated by training a decoder where the phonemes of the
ground-truth sentence for each trial were shuffled. This allowed us to maintain the statistical
distribution of uttered phonemes while obtaining a chance value. For each channel count
condition of the channel dropping analysis (Fig. 2d), random channels were sampled uniformly
from all arrays, and data from unused channels was zeroed out. Unless specified, RNN
architecture and hyperparameters remained consistent between all conditions.

S4.02 - Offline language model analyses
Offline language model analyses were performed for Figures S4 and S6. In these offline

analyses, RNN-predicted phoneme sequences, either from online speech decoding sessions or
from offline RNN analyses (see Section S4.01), were sequentially fed into language models
(consistent with online language model inference) for each trial of data, before finalization.
Offline language models were initialized with a range of parameters or vocabularies as relevant
for the analysis. Language model performance was assessed as the aggregate WER of all
predicted sentences, calculated as described in Section S1.09.

https://www.zotero.org/google-docs/?LTnGZ4
https://www.zotero.org/google-docs/?KzVmR6


S5 - Own-voice text-to-speech
A text-to-speech algorithm17 was locally trained to sound like SP2’s pre-ALS voice. SP2

and his family provided us with home videos and other recordings of SP2 speaking. Recordings
with clear samples of SP2’s voice were segmented into individual sentences, noise-reduced
(RNNoise 1.425), and amplitude-normalized in preparation for training the TTS model.
Signal-to-noise ratio (SNR; calculated with Waveform Amplitude Distribution Analysis (WADA)
with the Coqui TTS Check-DatasetSNR notebook17) was used to quantify how noisy each audio
clip was. Each audio clip was then transcribed, and the phoneme distribution across all audio
clips was calculated (using the Python g2p-en package21) to ensure that each phoneme was
adequately sampled. Comprehensive coverage of each phoneme is required to train robust
text-to-speech models and accurately reproduce speech patterns.

For training an own-voice TTS, we chose the VITS model26, which we subjectively found
to reproduce SP2’s pre-ALS voice most accurately and without a long delay at the end of each
sentence. A pre-trained VITS model with LJSpeech corpus was fine-tuned using SP2’s
processed audio samples to create a TTS that sounded like SP2’s pre-ALS voice. This TTS was
used to read the final decoded sentence at the end of each trial in both the Copy Task and the
self-initiated conversational task. SP2 and his family found our recreation of his pre-ALS voice
to be more representative than his previously purchased commercial version.

S6 - Gesture decoding for task control
People with ALS may lose eye gaze control as their disease progresses. Thus,

eliminating reliance on eye gaze (e.g., by making the system controllable through exclusively
neural signals) is necessary to ensure that the BCI system will remain usable in the long-term
for users with degenerative diseases such as ALS. We provided SP2 with a “neural click”
functionality as an alternative to eye tracker control for indicating that he is done speaking,
which triggers sentence finalization and text-to-speech output. This neural click functionality was
used in sessions 17 and 18.

S6.01 - Motor imagery
We chose "right-hand squeeze" as the motor imagery to perform the neural click,

because it had a robust neural SNR in previously-collected SP2 movement sweep data, and the
hand squeeze gesture has been used for neural click in prior iBCI studies27,28. Other discrete
gestures may have worked just as well for this purpose29.

S6.02 - Decoder architecture
We implemented a linear gesture decoder (independent from the RNN speech decoder)

to solve the binary classification problem: "For each 10 ms bin, is the user attempting right-hand
squeeze or not?". We used a linear discriminant analysis (LDA) model, because linear models

https://www.zotero.org/google-docs/?Xvv1Vh
https://www.zotero.org/google-docs/?GQ56Sb
https://www.zotero.org/google-docs/?bWoB61
https://www.zotero.org/google-docs/?UBpaAW
https://www.zotero.org/google-docs/?lTEDFa
https://www.zotero.org/google-docs/?dBVTPM
https://www.zotero.org/google-docs/?SWePeS


are simple and fast to train, and were able to reliably distinguish the neural correlates of hand
squeezes from those of speech or silence in offline tests.

S6.03 - Decoder training
We interspersed 16 trials of a “RIGHT HAND - CLOSE” condition into the instructed

delay task (our "diagnostic block") performed at the start of each session. After the diagnostic
block, we trained the LDA classifier on all the trials (“RIGHT HAND - CLOSE” = click,
single-word speech trials = non-click, “DO NOTHING” = non-click). The training data from each
trial came from the epoch 0.5 - 1.5 seconds after the go cue. Each trial yielded 100 training
samples, as our LDA classifier operated on individual 10 ms time bins. Each training sample
was a single time bin's feature vector (256 threshold crossings + 256 spike band power = 512
features). These feature vectors were processed identically to those used for speech decoding
(filtered, z-scored, etc.). To fit the LDA model on these training data, we used the
LinearDiscriminantAnalysis class from the Python package sklearn30.

S6.04 - Decoder inference
After training the LDA classifier, we used it during online speech blocks to decode neural

clicks in real-time. Because this LDA neural click decoder was independent from the RNN
speech decoder, it was run in parallel using the BRAND software architecture. Though the LDA
model outputted a prediction for every 10 ms time bin, a click was not immediately performed
every time the LDA model predicted click. Instead, a click was only performed when all time bins
in a 100 ms sliding window were predicted as click, to reduce spurious clicks. Additionally, after
each click we maintained a refractory period of 1 second during which no additional clicks were
performed, to avoid rapidly clicking.

https://www.zotero.org/google-docs/?90vsEb


Supplemental Figures

Figure S1: Multi-modal MRI-based speech localization and array targeting.
a, Array implants shown on the surface of SP2’s brain during surgery. b, Approximate array locations on SP2’s
inflated brain using Connectome Workbench software, overlaid on the cortical areal boundaries (double black
lines) estimated by the Human Connectome Project (HCP) cortical parcellation. c, Approximate array locations
overlaid on a language-related resting state network shown for SP2’s individual scan. d, The same resting
state network identified in the Human Connectome Project data (i.e., averaged across many subjects) and
aligned to SP2’s brain. e, Approximate array locations overlaid on a myelin density map. f-h, Approximate
array locations overlaid on the confidence maps of the areal region labeled in the bottom right of the magnified
panel.



Figure S2: Words per minute during evaluation blocks.
SP2’s average rate of attempted speech during evaluation blocks for each session. Error bars denote the 95%
confidence interval. For each sentence, words per minute (WPM) was calculated as the number of words in the
target sentence divided by the duration from the beginning of the first word until SP2 signaled the end of the
sentence (using the eye tracker or gesture decoder). The relatively low WPM in session 1 may be due to SP2
getting used to using the speech decoder.



Figure S3: Phoneme substitution errors observed across all real-time evaluation sentences.
Entry (i,j) in the matrix indicates the number of substitutions between true phoneme i and decoded phoneme j.
Substitutions were identified using an edit distance algorithm that determines the minimum number of
insertions, deletions, and substitutions required to make the raw (pre-language model) decoded phoneme
sequence match the true phoneme sequence. The majority of substitutions appear to occur between
phonemes that are articulated similarly (within place of articulation groupings indicated by the boxes colored
the same as in Fig. 2e), including between voiced and unvoiced consonant pairs (e.g., /p/ vs /b/, and /t/ vs /d/).



Figure S4: Decoding performance comparison between 3-gram and 5-gram language models.
Comparison of offline evaluation performance using a 3-gram language model without rescoring (cyan line; as
demonstrated online in Willett et al. 2023) or a 5-gram language model with multi-stage rescoring of candidate
sentences (blue line; as demonstrated offline in 3 and online in the main figures of this study). Both models
used the same 125k-word English vocabulary. RNN-decoded phoneme probabilities from SP2’s online
evaluation blocks were fed into both language models in offline analyses to compare their performance.
Results were averaged over 5 RNN seeds. We used the 3-gram language model for online evaluation in
session 2, and the upgraded 5-gram language model in subsequent sessions. After hyperparameter
optimization of both the RNN decoder and the language model (red dashed line; between sessions 4 and 7),
the 5-gram language model consistently outperformed the 3-gram model, resulting in lower word error rates.

https://www.zotero.org/google-docs/?ne78Mn


Figure S5: Offline parameter sweeps indicate near-optimal RNN parameter choices were used online.
We tested the effect on raw (pre-language model) phoneme error rate (PER) as a function of several RNN
parameters. Each point in each plot represents the average raw PER (± standard deviation) of 10 RNN seeds
trained with the corresponding parameter, on data from the first n sessions. This process was repeated twice
throughout data collection to ensure that we were using optimal RNN decoding parameters in subsequent
online decoding sessions. Here, results from the first 12 sessions of data are shown. Black arrows represent
parameters used in online evaluation. Tested parameters include: a, Bidirectional vs. unidirectional GRU
layers. b, Dropout percentage for GRU layers. c, Dropout percentage for input layers. d, Activation type for
input layers. e, “Kernel size” (i.e., the number of 20 ms bins stacked together as input and fed into the RNN at
each time step). f, “Kernel stride” (a stride of N means the RNN steps forward only every N time bins). g,
Number of GRU layers. h, Number of units per GRU layer. i, Standard deviation of the Gaussian smoothing
kernel (larger number means more smoothing). This parameter was not quite optimized for online decoding. j,
Standard deviation of white noise dynamically added to training data during RNN training for data
augmentation. This parameter was not quite optimized for online decoding. k, Standard deviation of constant
offset noise added to training data during RNN training for data augmentation.



Figure S6: Offline language model parameter sweeps informed subsequent online parameter choices.
We ran offline analyses to identify the optimal language model parameters (i.e., the parameters yielding the
lowest word error rate [WER]). An RNN was trained on all data from the first n sessions (in this case, n=12),
and the RNN-decoded phoneme probabilities from held-out validation trials were fed into 5-gram language
models initialized using a range of parameters. Varied parameters included the blank penalty, acoustic scale,
and alpha values (Section S3; also see supplemental methods section of 3). While varying the blank penalty
(set to log(9) here) did not result in a large change in WER, the acoustic scale and alpha parameters made
appreciable differences in performance. This language model parameter sweep was repeated thrice
throughout data collection, and consistently showed that an acoustic scale of 0.3 and an alpha of 0.5 (denoted
with * in the plot) resulted in the lowest WER. These optimal language model parameters were subsequently
used for online speech decoding.

https://www.zotero.org/google-docs/?sUioAn


Supplemental Tables

Table S1: MRI Scan Parameters

Image T1w T2w rsfMRI rsfMRI-single
band

spin echo
fieldmap

Sequence 3D MPRAGE 3D CUBE 2D Gradient
Echo EPI

2D Gradient
Echo EPI

2D Spin Echo
EPI

TR (ms) 3000 2500 800 4200 8000
TE (ms) 3.5 60-78 37 30 min full
TI (ms) 1060 - - - -
Parallel imaging 2 x 1.25 1.9 x 1.9 - - -
Fat suppression no no yes yes yes
Resolution
(mm)

0.8 x 0.8 x 0.8 0.8 x 0.8 x 0.8 2 x 2 x 2 2 x 2 x 2 2 x 2 x 2

Matrix size 320 x 320 x 230 320 x 320 x 216 104 x 104 x 72 104 x 104 x 72 104 x 104 x 72
FOV (mm) 256 x 256 x 184 256 x 256 x 184 208 x 208 x 144 208 x 208 x 144 208 x 208 x 144
Flip angle 8 - 54 90 -
slice orientation sagittal, AC-PC sagittal, AC-PC axial, AC-PC axial, AC-PC axial, AC-PC
phase encoding AP and PA

(separately)
AP and PA
(separately)

AP and PA
(separately)

multiband factor - - 8 1 -



Table S2: Data collection sessions

Session Number Post-implant day Description Data

1 25 50-word training data collection and
decoding

290 50-word-vocab training sentences.
50 50-word-vocab evaluation sentences.

2 27 125,000-word training data collection
and evaluation

330 Switchboard training sentences.
40 50-word-vocab training sentences.
50 50-word-vocab evaluation sentences.
30 Switchboard evaluation sentences.
10 personal use sentences.

3 32 125,000-word training data collection 300 Switchboard training sentences.

4 34 125,000-word training data collection,
evaluation, and personal use

280 Switchboard training sentences.
100 Switchboard evaluation sentences.
74 personal use sentences.

5 39 125,000-word training data collection
and other experiments

140 Switchboard training sentences.

6 41 125,000-word training data collection 200 Switchboard training sentences.

7 46 125,000-word training data collection
and evaluation

300 Switchboard training sentences.
100 Switchboard evaluation sentences.

8 48 125,000-word training data collection
and evaluation

275 Switchboard training sentences.
120 Switchboard evaluation sentences.

9 67 125,000-word training data collection
and other experiments

10 Switchboard training sentences.

10 69 125,000-word training data collection,
evaluation, and personal use

170 Switchboard training sentences.
115 Switchboard evaluation sentences.
180 personal use sentences.

11 74 125,000-word training data collection,
evaluation, and personal use

120 Switchboard training sentences.
50 OpenWebText training sentences.
75 Switchboard evaluation sentences.
140 personal use sentences.

12 76 125,000-word training data collection,
evaluation, and personal use

50 Switchboard training sentences.
40 OpenWebText training sentences.
210 Switchboard evaluation sentences.
85 personal use sentences.

13 81 125,000-word training data collection
and evaluation

110 Switchboard training sentences.
140 Switchboard evaluation sentences.

14 83 125,000-word training data collection,
evaluation, and personal use

115 Switchboard training sentences.
45 OpenWebText training sentences.
170 Switchboard evaluation sentences.
280 personal use sentences.

15 88 125,000-word training data collection,
evaluation, and personal use

140 Switchboard training sentences.
90 Switchboard evaluation sentences.
100 personal use sentences.

16 90 125,000-word training data collection,
evaluation, and personal use

140 Switchboard training sentences.
40 OpenWebText training sentences.
150 Switchboard evaluation sentences.
140 personal use sentences.



17 95 125,000-word training data collection,
evaluation, and personal use

50 Switchboard training sentences.
20 Harvard training sentences.
50 Switchboard evaluation sentences.
140 personal use sentences.

18 97 125,000-word training data collection
and personal use

100 Switchboard training sentences.
30 Harvard training sentences.
180 personal use sentences.



Table S3: Additional selected personal use transcripts.1

Context Selected transcripts WER

Session 11: SP2
thanks a member of
the research team
for complimenting
his plants

SP2: testing testing one two
SP2: hello how is everyone
SP2: thank you for complimenting my rubber and stick [snake] plan [plants]
…
SP2: when i first got them they were in a one inch pot
SP2: and they resided on my window sill
SP2: hell yeah
SP2: your degree is not in botany
SP2: you know the saying that before you have kids you need to successfully take care of
place [plants] in [and] the [then] past [pets]
SP2: the progression is place [plants] and then past [pets]

11.3%

Session 15: SP2
gives feedback to
Sergey about how
he’s enjoying using
the BCI for
conversational
speech.

SP2: he should know better than to ask me what i want to say
SP2: i'm a smart ass
SP2: does he want me to talk in english or russian
SP2: yes it should
SP2: we can ease into it by talking in spanish first
…
SP2: have you noticed anything different with the program
SP2: it is way more accurate than before
SP2: it is about ninety eight percent accurate by my informal estimation
…
SP2: thank you again for all the improvements and the time it took to make them

0%

Session 17: SP2
gives feedback
about using the
neural-click decoder
(right hand
squeeze) to signal
the end of
sentences. Then he
suggests adding a
third confirmation
button “mostly
correct” (in addition
to “100% correct”
and “incorrect”) to
the self-initiated
conversational task.

SP2: does it make a sound when i press the button
SP2: that makes sense
SP2: do you want some feedback about my right hand squeezing
SP2: so i can actually still squeeze my hand
SP2: but it was not a problem because i really had to intend to raise [squeeze] my hand or
it would not work
SP2: the only problem was if i was running [yawning]
SP2: so when i was doing that i would involuntarily raise [squeeze] my hand and that
would trigger the complete button
SP2: but initially my fears were mainly unfounded
SP2: yes i do but not because i didn't like using the eye tracker method but because i like
having multiple options
SP2: thank you
…
SP2: have you thought about adding a third party [button] that is almost correct
SP2: yes that would be good
SP2: we can try the eye tracker
SP2: how many rolls [trials] do you need in total
SP2: let’s do one country [hundred] at a time

4.7%



Session 18: SP2 is
telling a friend about
the speech
decoder.

SP2: testing testing
SP2: thank you
SP2: what i was trying to say is that i have noticed that the computer has the same
problem understanding what i am saying that people have meaning the same exact words
that people have a problem with the computer also has a problem understanding
SP2: totally
SP2: yes i can in the last session the computer had problems with understanding when i
said next and it made the mistake of typing this instead of next and i thought that people
who can understand me often make the same mistake
SP2: totally
…
SP2: when it is thinking of what to write it is because it is confused about what i said and it
is running through different models of possible sentences
SP2: know [no] what i am doing is all the same type of degree [decoding]
SP2: the last word should have be be [been] guarding [decoding]
SP2: so we have found that there is a slight increase in accuracy when i realize [vocalize]
what i am saying but we think that is possibly true because the model trained on this
approach rather than me doing what i am doing now
SP2: the word really [realize] should have been vocally [vocalize]
…
SP2: we are in the future
SP2: on this post [wednesday] i will have my first day of only personal use
SP2: on this coming west [wednesday]
SP2: why can you not see [say] mr [wednesday]
SP2: and it is having a problem with hearing me when i am saying that particular day of
the week and now i am talking a little shit to it

4.9%

Session 30: An
interviewer is asking
SP2 about his
experience with
using the speech
decoder.

Interviewer: Hello [SP2], thank you so much for letting us into your home and taking the
time to talk to us, it is nice to meet you.
SP2: well it is nice to meet you and also your excellent camera made [man]
SP2: your name is [camera man’s name] right
Cameraman: Yup! Nice to meet you. Thank you for letting us into your home.
SP2: that is okay i will be very happy to have both of you here to witness what i can do
with my super powers
Interviewer: So tell me [SP2] why are you doing this, and what it means for you to be a part
of this.
SP2: well i have this terrible disease and it is slowly taking away my ability to move and to
talk
Interviewer: I am so sorry, [SP2].
SP2: it is fine but i am not a fan [ashamed] of you seeing me cry
SP2: it should have said that i am not at camp [ashamed] to have you see me cry
SP2: so because i have this terrible disease i have had the pleasure of meeting some
amazing people like the nurse [ones] here
SP2: the one [ones] where [here]
SP2: i did my homework when i was thinking about having brain surgery because it was
not an easy decision for me but i trusted the team that was behind me and i asked david if
he would do this if he was in my position and while i will not tell you what he said it helped
me make my decision with confidence
Interviewer: Okay, how did it help you?

2.7%



SP2: i think that i understand that there are human beings that are behind all of this
science and technology where they are thinking about what would be better for me and my
family rather than simply thinking about me as a test subject
SP2: does that make sense to you
Interviewer: Yes, very much it does, and I can assure you that protecting you and your
family is at the top of their list. I would like to thank you again, and I want to ask you how
this has helped you communicate with your loved ones?
SP2: why are you making me cry again
Interviewer: It’s okay if you’d rather move on to a different subject.
SP2: i can definitely answer that question i was just giving you a hard time to lighten the
mood
SP2: i really do not have much time and opportunity to use my home [humor] when i am
relying on other people to translate what i say so please indulge my attempts at home
[humor] because i really miss making jokes
Interviewer: So tell me about communicating, how is this helping you?
SP2: i have absolutely loved talking to my friends and family again without help from other
people who can still understand to me
SP2: so when my symptoms started my daughter was only [redacted]2 and now she is
[redacted]2 and she doesn't remember what i sounded like before this disease took away
my ability to talk normally and she was a little shy at first but now is super proud that her
mother [father] is a robot
SP2: that has been the lead [highlight] but i would also say that it is it possible [pretty cool]
that i have been able to talk to other adults who do remember what i sounded like and they
have been brought to tears to hear me again
Interviewer: That’s profound!
SP2: so what people have told me is that they can totally understand what this is as a
concept but when they see it in action it is [a] totally different type of experience
Interviewer: Definitely.
SP2: i have been able to talk to my parents over it and keep up with the conversation
because they are from the south and talk really really really slowly
SP2: so i have been able to use this device to help me communicate with my colleagues
who are working far away from here and i am on mobile [meetings] with them and this will
work fine to help me communicate on calls
Interviewer: That’s great.
SP2: it really is because i have an awesome job and i feel like people have really invested
in me to help make me who i am and i feel like i have a lot of really important work left to do
and this will help me do it
SP2: one of the things that people with my disease suffer from is isolation and depression
because they do not feel like they matter anymore and something like this technology will
help bring people back into life and into society
SP2: that really cannot be understated how important that is
SP2: because we will probably not find a cure for this disease but we will find medicines
that help people live longer but if they are completely miserable than what is the point and
something like this could really add value to people's life
SP2: so i think about this from my personal perspective and also the perspective of
people like me who might not be as lucky but deserve the same treatment
SP2: does that make sense
Interviewer: Yes it does, absolutely.
SP2: what else would you like to know
Interviewer: I think you covered pretty much most of the things I had in mind. I loved hearing
what you had to say and engaging in this conversation with you which was amazing with



the help of this technology. And your sense of humor! If there’s anything else that you would
like to share, I am here to hear it.
SP2: i hope that we are very close to the time when everyone who is in a position like me
has the same option to have this device as i do
Interviewer: I hope so too. I want to thank you so much, [SP2].
SP2: let's make it happen okay
Interviewer: Yes, and thank you so much.
SP2: my pleasure really
Cameraman: That was wonderful, thanks for letting us into your home.
SP2: of course my pleasure

1Transcripts included here are non-exhaustive and exclude sensitive personal conversations where SP2 used the speech BCI to
converse with friends, family members, or medical professionals. Selected transcripts show snippets of conversations SP2 had with the
research team or others. Gaps in time between transcribed sentences are represented by ellipses (...). Incorrectly decoded words are
colored red, followed by the word that SP2 meant to say (confirmed with him) in [green brackets].
2Potentially identifying information has been removed from these transcripts as per medrXiv policy.
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