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1 Administrative information

The history for the current Statistical Analysis Plan (SAP) is shown in Table 1. The current SAP

version (1.0.0) is aligned with protocol version 1.0.0. Trial registration: NCT06051318.

Table 1: SAP history.

Protocol

version

Updated

SAP version
Section Description Date

1.0.0 1.0.0 — Initial version 21/Dec/2023

1.1 Roles and responsibility

This SAP was written by Giuliano Netto Flores Cruz, who is responsible for the statistical design

and analysis of the trial. The SAP was reviewed and approved by all investigators.

2 Study design

2.1 Design overview

This is a series of N-of-1 trials comparing two diets (breakfast meals). The reference treatment is

denoted Diet A, while the comparator is Diet B. The primary outcome is the positive incremental

area-under-the-curve (iAUC) of the postprandial blood glucose, measured in mmol · min · L−1

and calculated according to Brouns et al. (2005) [1]. The iAUC is based on continuous glucose

monitoring with a blood glucose measurement right before and every 30 minutes for 2 hours

after breakfast. Within each of five treatment cycles, each participant undergoes two periods of

treatment. Within each of the ten total treatment periods, one diet is consumed and the outcome

is measured. Participants will be randomized into one of two doubly counterbalanced sequences:

ABBABAABBA or BAABABBAAB [2, 3]. Analysis of all outcomes will be carried out at the

end of the study when all relevant data is available.

2.2 Data generating process

Here we state the full specification of the data generating process used for simulation-based power

calculations. It also lays the basis for the primary analysis plan, described in upcoming sections.

Let Yij be the iAUC for participant i = 1, 2, . . . , n measured at the period j = 1, 2, . . . , 10.

Let Xij be the corresponding treatment indicator variable – i.e., it takes the value of 1 if the

ith participant ate diet B in the jth period, and 0 otherwise. Denote Mi as a continuous score

representing the gut microbiome profile for the ith participant at the start of the trial (centred
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and scaled to variance 1). Also, define Si as the indicator variable for the treatment sequence

randomized to each participant (equals 1 if the sequence is BAABABBAAB and 0 otherwise). We

then assume

Yij = αi + βiXij + g(j) + κSi + ϵij (1)

where g(j) =
∑5

t=2 µt · 1{t = j} is the effect of the jth period, for j = 2, . . . , 10. Due to

randomization, we know that the average sequence effect κ is exactly zero, but it is included to

increase precision.

For the ith participant, αi is their average iAUC under Diet A and βi is the average individual

effect of Diet B. Note that βi is an Individual Treatment Effect (ITE), identifiable thanks to

the N-of-1 design where each individual participant, considered as the population of interest, is

treated multiple times. The independent error term is ϵij ∼ N (0, σ2
ϵ ) and represents the residual

variability within participant and period. The participant-specific terms are modeled as

αi = α0 + τ1Mi + u1i (2)

βi = β0 + τ2Mi + u2i (3)

where u1i and u2i are random intercept and random slope terms, respectively, given by(
u1i

u2i

)
∼ N

(
0,Σ

)
(4)

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
(5)

Table 2 shows the interpretation for each parameter in the data-generating process specified

by (1) — (5) along with values used in the simulation-based power calculations (see below). In

addition to the ITE, βi, we can also estimate the overall average treatment effect (ATE) through

β0. The interaction term τ2 allows estimating the conditional average treatment effect (CATE) of

diet B, given the microbiome profile Mi.
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Table 2: Parameters of the assumed data-generating process specified by (1)—(5).

Parameter Interpretation
Simulated

value

αi Average iAUC for the ith individual eating diet A with average micro-

biome profile (i.e., Mi = 0)

†

βi Average individual treatment effect (ITE) of diet B on iAUC for the ith

individual

†

g(j) Average effect of jth period (period j = 1 is the reference) 0

κ Average effect of treatment sequence (sequence ABBABAABBA is the

reference), known to be zero due to randomization

0

α0 Overall average iAUC under Diet A 200

τ1 Average effect on iAUC of increasing Mi by 1 standard deviation 5

β0 Overall average treatment effect (ATE) of diet B on iAUC 0

τ2 Conditional average treatment effect (CATE) of diet B on iAUC repre-

senting microbiome-by-treatment interaction

5

σ2
1 Between-patient variance of u1i (larger values represent greater variability

of average iAUCs across individuals)

1575

σ2
2 Between-patient variance of u2i (larger values represent stronger patient-

by-treatment interaction, i.e., greater variability of ITEs)

75

σ12 Covariance between u1i and u2i 0

σ2
ϵ Residual within-patient variance (how much iAUC varies within a given

patient, from period to period, under the same treatment)

225

† These values are computed from other parameters.

The rationale for the parameter values used in Table 2 was as follows. From past literature,

it was assumed that 99% of potential iAUC values range approximately between 100 and 300

mmol · min · L−1, with an average of 200 mmol · min · L−1 [4, 5, 6]. A relative difference in

iAUC of 20% was used to compute the minimal clinically important difference (MCID) [7, 8, 9].

With a baseline average iAUC of 200 mmol ·min · L−1, this corresponds to an absolute MCID of

40 mmol ·min · L−1. In light of this value, the parameters σ2
2 and τ2 were set such that βi would

be within β0 ± 20 with approximately 95% probability (i.e., the standard deviation of βi was set

to 10). This means that the expected difference between the highest individual effect and the

lowest individual effect should be close to 40 mmol ·min · L−1 around 95% of the time. The value

of τ2 was chosen so that around 25% of the total variance of the ITEs (βi) was attributable to

the microbiome score Mi. Similarly, the individual average iAUCs (αi) were assumed to lie in the

range 120—280 mmol ·min · L−1 about 95% of the time, with 25% of this variation attributable

to variation in the microbiome, which defined the values of σ2
1 and τ1 shown in Table 2. Finally,
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we assumed that the observed iAUC values for each patient, under a given treatment, vary from

period to period within ±30 mmol ·min · L−1 of their individual averages.

3 Primary analysis plan

The primary analysis plan will be based on random effects models and likelihood-ratio tests at

a 5% significance level, described below for the two co-primary objectives of the study. We will

employ Holm’s method to correct p-values due to the multiple comparisons. Missing covariate

data will be handled using Multiple Imputation. The random effects models naturally deal with

missing outcome values (e.g., if there is no iAUC available in some treatment period), assuming

these are missing at random. Any estimates will be reported alongside 95% confidence intervals

(two-sided) and will be considered in light of the MCID of 40 mmol ·min · L−1.

3.1 Determining the presence of heterogeneity of the ITEs of Diet B

on iAUC — patient-by-treatment interaction

In light of the data generating process defined by (1)—(5), here the specific question is: does

βi vary significantly across participants? This is equivalent to testing the (random) patient-by-

treatment interaction. Notice that the influence of the microbiome profile Mi does not matter for

this question.

The full model is:

Yij = α0 + u1i + (β0 + u2i)Xij + g(j) + κSi + ϵij (6)

The corresponding reduced model is:

Yij = α0 + u1i + β0Xij + g(j) + κSi + ϵij (7)

In other words, we will test whether the use of a random slope term u2i improves the model

fit due to significant variation in the effect of Diet B from participant to participant – i.e., the

patient-by-treatment interaction.

3.2 Determining the influence of the gut microbiome on the hetero-

geneity of the ITEs — microbiome-by-treatment interaction

Here the specific question is: does βi vary significantly with Mi? This is equivalent to testing the

(fixed) microbiome-by-treatment interaction. If indeed βi varies across participants, then we may

be able to explain some of this variation by conditioning on the microbiome profile score Mi. This

conditional average treatment effect (CATE) of Diet B given microbiome profile Mi can then be

used to inform decision-making for future patients, outside the trial.
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The full model is:

Yij = α0 + τ1Mi + u1i + (β0 + τ2Mi + u2i)Xij + g(j) + κSi + ϵij (8)

The corresponding reduced model is:

Yij = α0 + τ1Mi + u1i + (β0 + u2i)Xij + g(j) + κSi + ϵij (9)

So here we are testing whether τ2 = 0 — i.e, the microbiome-by-treatment interaction. Notice

that Eq. (8) is exactly Eq. (1). The underlying linearity assumption between Mi and βi will be

relaxed in secondary analyses when estimating the effect of Diet B given an observed microbiome

profile score Mi (e.g., using restricted cubic splines). The full model given by Eq. (8) will be used

to estimate ITEs, regardless of statistical significance. ITEs will be reported as point estimates

and bootstrap-based 95% confidence intervals.

3.3 Sample size and statistical power

The sample size was determined by simulation-based power calculation, under the assumptions

described in section 2.2. The simulation setting followed the full data generating process described

by Eq. (1)—(5) with parameters defined in Table 2. Using likelihood ratio tests at a 5% significance

level and assuming a dropout rate of 20%, the present study required the recruitment of 80

participants followed through five treatment cycles. The numbers of participants and of treatment

cycles were selected to provide a statistical power of at least 90% and 85% for the detection

of patient-by-treatment interaction and microbiome-by-treatment interaction, respectively. The

power calculation considered p-values adjusted for multiple comparisons using Holm’s method.

Given these assumptions and the primary analysis plan described above, the present study required

80 participants with 5 treatment cycles per participant.

3.4 Sensitivity analyses

Sensitivity analyses will be implemented to check the robustness of the inferences made during

the primary analysis, including period-by-treatment interactions and smooth time trends using

restricted cubic splines. If some covariate data is missing (e.g., missing Mi), we will also perform a

complete case analysis as well as a Bayesian version of the primary analysis treating each missing

data point as a parameter. A Bayesian version of the primary analysis will also be performed, using

weakly- or non-informative priors. The Bayesian interpretation of the results will be reported as

a supplement.
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4 Secondary analyses plan

4.1 Non-linear influence of the gut microbiome score on the hetero-

geneity of the ITEs

Secondary analyses will further explore the influence of the gut microbiome profile on the individual

treatment effects of Diet B on the iAUC. In particular, the relationship between the treatment-by-

microbiome interaction will allow for non-linearities using restricted cubic splines. The conditional

effect of diet B given the microbiome score will be assessed visually.

4.2 Exploratory microbiome data analysis

Exploratory microbiome data analyses will be implemented [10]. Associations between new

biomarkers and the individual treatment effects of diet B will be analyzed similarly to the primary

analysis described in section 3.2, replacing the gut microbiome score Mi with the ith patient’s cor-

responding biomarker value. These biomarkers will include the relative abundance of the observed

taxa (at the oligotype, species, genus, family, and phylum levels), alpha-diversity metrics (Shannon

and Inverse Simpson indexes), functional microbiome profiles, and biochemical and inflammatory

markers. Using proportion-normalized oligotype abundances, we will also perform beta-diversity

analysis (e.g., based on Bray-Curtis dissimilarity). Differential abundance (DA) analyses will be

performed as appropriate, considering the consensus of at least two DA tools available [11].

Given its exploratory nature, this analysis will control the false discovery rate (FDR) at 10%

using the Benjamini-Hochberg procedure [12]. Potential predictive models for both individual

treatment effects and individual response will be explored using machine learning methods and

internally validated through cross-validation. The predictive models will be ℓ2- and/or ℓ1-penalized

for complexity to mitigate overfitting.

5 Software and reproducibility

All analyses will be conducted using the R software package (version 4.3.0 or higher) with code

versioning and software dependency tracking [13]. A fixed Docker image will be used for all

analyses to ensure full reproducibility [14]. Random effects models will be estimated using the

lme4 R package (v. 1.1.33 or higher) and general data analysis will employ the tidyverse R meta-

package [15, 16]. The simulation-based power calculation performed for this document is available

at https://github.com/biomehub/bhub-n-of-1-sap and is equally fully-reproducible.
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