	perpetuity.	
All rights reserved	No rouse allowed	without permission
All fights reserved.		without permission.

1	Differences in coagulation responses to vascular injury between uninterrupted
2	dabigatran and apixaban - a clinical prospective randomized study
3	
4	Yasuhiro Ikami, M.D., ^a Daisuke Izumi, M.D., ^a Shinya Fujiki, M.D., ^a Hirotaka Sugiura,
5	M.D., ^b Sou Otsuki, M.D., ^a Naomasa Suzuki, M.D., ^a Yuta Sakaguchi, M.D., ^a Takahiro
6	Hakamata, M.D., ^a Yuki Hasegawa, M.D., ^a Nobue Yagihara, M.D., ^a Kenichi Iijima, M.D., ^a
7	Takahiro Tanaka, Ph.D., ^c Masahiro Ishizawa, M.D., ^c Masaomi Chinushi, M.D., ^d Tohru
8	Minamino, M.D., ^{a,e} and Takayuki Inomata, M.D. ^a
9	
10	^a Department of Cardiovascular Medicine, Niigata University Graduate School of Medical
11	and Dental Sciences, Niigata, 951-8510, Japan
12	^b Department of Cardiovascular Medicine, Niigata Medical Center, Niigata, 950-2022, Japan
13	^c Clinical and Translational Research Center, Niigata University Medical and Dental Hospital,
14	Niigata, 951-8520, Japan
15	^d School of Health Science, Faculty of Medicine, Niigata University, Niigata, 951-8518,
16	Japan
17	^e Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School
18	of Medicine, Tokyo, 113-8421, Japan
19	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

- 20 **Short title:** Differences in coagulation responses among DOACs
- 21 **Total word count:** 4927 words
- 22
- 23 Address correspondence to:
- 24 Daisuke Izumi M.D., Ph.D.
- 25 E-mail: dizumi@med.niigata-u.ac.jp
- 26 Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and
- 27 Dental Sciences
- 28 1-757 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
- 29 Phone: +81-25-227-2185, Fax: +81-25-227-0774

30 Abstract

32	Background: The coagulation response during vascular injury with uninterrupted
33	administration of direct oral anticoagulants (DOACs) has not been elucidated. Our aim was to
34	evaluate differences in coagulation responses after vascular injury between uninterrupted
35	direct thrombin inhibitor and direct factor Xa inhibitor recipients.
36	
37	Methods: Patients scheduled for catheter ablation for atrial fibrillation were randomly
38	assigned to receive dabigatran or apixaban in this prospective, randomized, comparative,
39	parallel-group study. Venous blood was collected three times: 180 minutes after taking the
40	anticoagulant on the day before the procedure, before vascular punctures of the ablation
41	procedure, and 10–15 minutes after the start of vascular punctures.
42	
43	Results: Forty-two patients were enrolled. The prothrombin fragment 1+2 (F1+2) level, the
44	primary endpoint, was much larger after vascular puncture in the uninterrupted dabigatran
45	recipients (median: 83 pmol/L; interquartile range: 56-133 pmol/L) than in the uninterrupted
46	apixaban recipients (median: 1 pmol/L; interquartile range: -3-19 pmol/L; P < 0.001).
47	Antithrombin levels decreased after vascular puncture in dabigatran recipients, and both
48	protein C and antithrombin levels decreased after vascular puncture in apixaban recipients.

49

- 50 **Conclusions**: Unlike uninterrupted apixaban, uninterrupted dabigatran does not inhibit
- 51 thrombin generation in response to vascular injury.

52

53 Non-standard Abbreviations and Acronyms

- 54 AF Atrial fibrillation
- 55 DOAC Direct oral anticoagulant
- 56 F1+2 Prothrombin fragment 1+2
- 57 IQR Interquartile range
- 58 SFMC Soluble fibrin monomer complex

60 <u>Clinical perspective</u>

61 What is new?

- 62 To the best of our knowledge, this is the first randomized clinical comparison of the
- 63 effects of direct thrombin and factor Xa inhibitors on the physiological coagulation and
- 64 anticoagulation system after vascular injury while direct oral anticoagulants (DOACs)
- 65 serum levels were at the peak phase.
- 66 Unlike uninterrupted apixaban, uninterrupted dabigatran does not inhibit thrombin
- 67 generation in response to vascular injury.
- This study shows that physiological anticoagulation factors are consumed during
- 69 vascular injury in patients receiving DOACs.
- 70

71 What are the clinical implications?

- 72 The difference in the thrombin generation response during vascular injury between
- vuninterrupted dabigatran and apixaban may be one of the reasons for different clinical
- 74 outcomes of thrombotic and hemorrhagic complications.
- **5** DOACs may inhibit an excessive coagulation response by retaining physiological
- 76 anticoagulation factors.

78 Introduction

79	Atrial fibrillation (AF) has major clinical implications for patients' quality of life,
80	morbidity with ischemic stroke and heart failure, and mortality (1–6). Anticoagulation
81	therapy is recommended for patients with risk factors for thromboembolism or during the
82	perioperative period of catheter ablation for AF (7,8). Direct oral anticoagulants (DOACs),
83	which carry a lower risk of bleeding and interact less with diet than other anticoagulants, are
84	commonly used for anticoagulation therapy (9–11). Uninterrupted administration of DOACs
85	is becoming more common during the perioperative period of catheter ablation for AF
86	because recent randomized clinical studies of such treatment showed that the risk of major
87	bleeding was lower than or similar to that with uninterrupted warfarin treatment (12–15). In
88	addition, in these randomized controlled trials, in which DOACs and warfarin were
89	administered during the perioperative period of AF ablation, the frequency of hemorrhagic
90	complications among patients who received dabigatran was conspicuously low (13). However,
91	the reason for the low risk of major bleeding complications when catheter ablation is
92	performed during the peak phase of dabigatran is unclear (13). Therefore, this multicenter,
93	randomized study evaluated differences in coagulation responses, including thrombin
94	production after vascular injury, between direct thrombin inhibitor and direct factor Xa
95	inhibitor recipients.

96

97 <u>Methods</u>

98 Study Design

99	This prospective, open-label, randomized, comparative, parallel-group study was
100	conducted at two centers, Niigata University Medical and Dental Hospital and Niigata
101	Medical Center, from August 2019 to March 2021. It was performed in accordance with the
102	guiding principles of the Declaration of Helsinki and in compliance with the Clinical Trial
103	Act, a Japanese law designed to ensure that researchers monitor and adhere to the study
104	criteria. The Niigata University Clinical Research Central Review Board approved the study
105	protocol (number SP18014), which was included in the Japan Registry for Clinical Trials (ID
106	jRCT1031190030). Informed consent was obtained from all patients in accordance with these
107	regulations. The institutional review board comprehensively conducted an ethical review of
108	all participating facilities.
109	
110	Participants
111	Eligible patients were 40-80 years of age, scheduled for catheter ablation for
112	paroxysmal or persistent AF according to the JCS/JHRS 2019 Guideline on
113	Non-Pharmacotherapy of Cardiac Arrhythmias (7), were eligible for treatment with
114	dabigatran (a direct thrombin inhibitor) or apixaban (a direct factor Xa inhibitor) according to
115	the prescribing guidelines in Japan (9), and provided informed consent to participate. The

116	main exclusion criteria were (1) a history of intracranial hemorrhage or bleeding in other
117	important organs; (2) the presence of mechanical heart valves or hemodynamically significant
118	mitral valve stenosis; (3) moderately severe or worse hepatic dysfunction (Child-Pugh class B
119	or C); (4) renal dysfunction characterized by a Cockroft–Gault estimated creatinine clearance
120	<50 mL/min; (5) conditions with a high risk of bleeding (e.g., uncontrolled severe
121	hypertension, active malignant tumors, congenital or acquired bleeding disorders, active
122	ulcerative gastrointestinal disorders, treatment with two or more antiplatelet agents); and (6) a
123	New York Heart Association class III or worse heart failure, left ventricular ejection fraction
124	of 35% or less according to echocardiography, or a history of hospitalization for heart failure
125	within 1 year before the study.
126	
126 127	Interventions
126 127 128	Interventions Patient assignment
126 127 128 129	Interventions Patient assignment Participants were randomly assigned in a 1:1 ratio to receive dabigatran or apixaban,
126 127 128 129 130	Interventions Patient assignment Participants were randomly assigned in a 1:1 ratio to receive dabigatran or apixaban, and the random allocation sequence was computer generated by a research physician.
126 127 128 129 130 131	Interventions Patient assignment Participants were randomly assigned in a 1:1 ratio to receive dabigatran or apixaban, and the random allocation sequence was computer generated by a research physician. Dynamic allocation with a minimization method was used to assign patients. The adjusting
126 127 128 129 130 131 132	Interventions Patient assignment Participants were randomly assigned in a 1:1 ratio to receive dabigatran or apixaban, and the random allocation sequence was computer generated by a research physician. Dynamic allocation with a minimization method was used to assign patients. The adjusting factors were age, gender, and CHADS2 score (calculated as 1 point each for a history of
126 127 128 129 130 131 132 133	Interventions Patient assignment Participants were randomly assigned in a 1:1 ratio to receive dabigatran or apixaban, and the random allocation sequence was computer generated by a research physician. Dynamic allocation with a minimization method was used to assign patients. The adjusting factors were age, gender, and CHADS₂ score (calculated as 1 point each for a history of a hypertension, diabetes, recent heart failure, and age ≥75 years and 2 points for a history of a

135	examination, blood tests, and transthoracic echocardiography were performed after obtaining
136	consent from the participants.
137	
138	The dose of the designated anticoagulants
139	If an anticoagulant drug different from the designated drug had been used before the
140	study, it was discontinued before drug assignment. After the drug assignment, we
141	administered the designated DOACs, and administration continued until after catheter
142	ablation for AF. Dabigatran was administered at a dose of 150 mg twice daily or, if dosage
143	adjustment was required (e.g., for patients aged \geq 75 years, those taking P-glycoprotein
144	inhibitors, or those with a history of gastrointestinal bleeding), 110 mg twice daily. Apixaban
145	was administered at a dose of 5 mg twice daily or, if dose adjustment was required (≥ 2 of the
146	following criteria: age of \geq 80 years, body weight \leq 60 kg, or serum creatinine \geq 1.5 mg/dL),
147	2.5 mg twice daily. The designated DOACs were administered at least 1 week before catheter
148	ablation for AF.
149	
150	Examinations during hospitalization, including blood sampling before and after vascular
151	puncture
152	Participants were admitted to the hospital two days before the ablation procedure.
153	Baseline measurements, physical examinations, blood tests, electrocardiography, and

154	transthoracic echocardiography were performed at admission. Venous blood was collected
155	three times to investigate the effect of vascular injury on the coagulation system: on the day
156	before the procedure, 180 minutes after the DOAC was administered (i.e., when serum levels
157	of the DOAC are at the peak phase) (17); before vascular puncture for the ablation procedure;
158	and 10–15 minutes after the start of vascular puncture, which was performed via a venous
159	sheath introducer after all sheath introducers were inserted and before intravenous
160	administration of unfractionated heparin. We planned not to use data from patients who
161	required more than 15 minutes to insert the sheath introducers. The final DOAC dose was
162	administered 1-2 hours before the ablation procedure (Figure 1).
163	The vascular puncture was performed according to the modified Seldinger method.
164	Conventional anatomical landmarks, palpation, and real-time two-dimensional vascular
165	echocardiography were used to locate the internal jugular veins, femoral arteries, and femoral
166	veins (18,19). In all patients undergoing AF ablation, four or five vascular sheath introducers
167	were inserted: one or two 8 Fr (SL0; St. Jude Medical Japan Co. Ltd., Tokyo, Japan) and one
168	8.5 Fr (SR0; St. Jude Medical Japan Co. Ltd.) into the femoral vein; one 7.2 Fr (Medikit
169	Supersheath; Medikit Co. Ltd., Tokyo, Japan) into the internal jugular vein; and one 3 Fr
170	(XEMEX, Zeon Medical, Tokyo, Japan) into the femoral artery.
171	We evaluated the prothrombin fragment 1+2 (F1+2) levels as a marker of thrombin
172	generation, soluble fibrin monomer complex (SFMC) as a marker of coagulation activation,

173	and D-dimer as a marker of coagulation. Similarly, we evaluated protein C, protein S, and
174	antithrombin levels as physiological coagulation inhibitors. Sample measurements were made
175	at an external institution unrelated to this study. We used an ELISA (Enzygnost F1+2
176	[Monoclonal]; Siemens Healthcare Diagnostic Corporation, Tokyo, Japan) to determine the
177	F1+2 level, a hemagglutination assay (FM test; Fujirebio Inc., Tokyo, Japan) or latex
178	photometric immunoassay (Iatro SF II; LSI Medience Co., Tokyo, Japan) to quantify SFMC
179	level, and functional assays (HemosIL ProClot and HemosIL PS-clot, respectively, I.L. Japan
180	Co., Ltd., Tokyo, Japan) to quantify protein C and S levels. We used the chromogenic
181	substrate method (Testzym S ATIII, Sekisui Medical Co., Ltd., Tokyo, Japan) to measure
182	antithrombin activity and a latex agglutination assay to measure D-dimer levels (LATECLE
183	D-dimer, KAINOS Laboratories, Inc., Tokyo, Japan).
184	
185	Endpoints
186	The primary endpoint of this study was the change in F1+2 levels before and after
187	vascular puncture for both DOACs. Secondary endpoints were F1+2, protein C, protein S,
188	and antithrombin levels and the changes in the latter three levels between vascular punctures
189	for both DOACs. The exploratory endpoints were all D-dimer levels and the changes in
190	D-dimer and SFMC levels between vascular punctures for both DOACs. All adverse events

191 during this study were recorded, analyzed, and classified as serious or nonserious. The events

192	were reported to the Data and Safety Monitoring Committee and evaluated for
193	recommendations to continue the study.
194	
195	Statistical Analysis
196	Based on previous findings (20), we hypothesized that the increase in F1+2 levels
197	before and after vascular puncture would be approximately 2.5 times higher for dabigatran
198	than for apixaban. Because we used 80% power and 0.05 bilateral alpha levels, the study had
199	to include at least 36 patients to reach statistical significance. Given the potential number of
200	dropouts, we set the target number of participants at 40.
201	The safety analysis set included all enrolled patients. The full analysis set included
202	all enrolled patients except those with critical protocol violations (e.g., no consent or major
203	procedural violations). The per protocol set included all enrolled patients from the full
204	analysis set without major protocol deviations.
205	The study endpoints were analyzed for the full analysis set. Continuous variables
206	were calculated as means and standard deviations for normally distributed data and as
207	medians and interquartile ranges (IQRs) for nonnormally distributed data. Categorical
208	variables were calculated as numbers (percentages). Patient characteristics were compared
209	with chi-square tests (for five or more events) and Fisher's exact test (for fewer than five
210	events) for categorical variables, t-tests for normally distributed continuous variables, and the

211	Wilcoxon rank-sum test for continuous variables with a skewed distribution. All P-values
212	were two-sided, and values < 0.05 were statistically significant. We used SPSS Statistics 27
213	(IBM Corporation, Armonk, NY, USA) to perform all statistical analyses.
214	
215	<u>Results</u>
216	Patient Characteristics
217	Of the 42 patients randomly assigned to receive dabigatran or apixaban, 1 patient
218	assigned to receive dabigatran withdrew from the study before drug administration. The trial
219	was terminated because the target number of enrolled patients was reached. Persistent AF was
220	found in nine patients (45%) who received dabigatran and seven patients (33%) who received
221	apixaban. Thirty-seven patients (17 receiving dabigatran and 20 receiving apixaban)
222	completed the study. However, one patient receiving dabigatran was excluded from the per
223	protocol set because of a protocol violation (a mistake in the blood sampling procedure).
224	There were no changes to trial outcomes after the trial commenced. The demographic and
225	clinical characteristics of the participants of both groups were similar (Table 1).
226	

227 Vascular Punctures

228	We found no significant difference between the two groups from the final DOAC
229	administration to the blood samplings (Table 2). In addition, the number of sheath introducers
230	inserted did not differ significantly between the two groups (Table 2).
231	
232	Attrition and Adverse Events
233	During the study period, five patients (four receiving dabigatran and one receiving
234	apixaban) dropped out (Figure 2). Of those receiving dabigatran, 1 voluntarily withdrew
235	consent, 1 patient dropped out because of upper gastrointestinal symptoms, and 2 suffered
236	unexpected adverse events during ablation procedure (sedative-induced coronary spasm in 1,
237	delay of 15 minutes or more in vascular puncture in the other). Of those receiving apixaban, 1
238	patient withdrew because the catheter ablation procedure was canceled. Of those receiving
239	dabigatran, 2 suffered adverse events that may have been caused by the study (upper
240	gastrointestinal tract symptoms in 1 and gastric ulcer associated with discontinuation of
241	proton pump inhibitor therapy in 1). Thus, the per protocol set included 36 patients.
242	
243	Primary Endpoint
244	The change in F1+2 levels after vascular punctures was much larger in participants
245	taking dabigatran (median: 83 pmol/L [IQR: 56 to 133 pmol/L]) than in those taking
246	apixaban (median: 1 pmol/L [IQR: -3 to 19 pmol/L] pmol/L]; $P < 0.001$; Figure 3).

247

248 Secondary Endpoints

249	F1+2 levels before vascular puncture were slightly higher in the dabigatran
250	recipients (median: 113 pmol/L [IQR: 93 – 141 pmol/L]) than in the apixaban recipients
251	(median: 84 pmol/L [IQR: 72 – 96 pmol/L]; $P < 0.001$). Unlike the apixaban recipients,
252	dabigatran recipients showed a significant increase in F1+2 levels after vascular puncture
253	(Figure 3). Antithrombin levels were significantly higher in the apixaban recipients before
254	and after vascular puncture. Moreover, protein C and S levels were significantly higher in the
255	dabigatran recipients before and after puncture (Figure 4). In both groups, F1+2 levels before
256	vascular puncture were slightly lower than 3 hours after the administration of DOACs on the
257	day before the procedure, when serum DOAC levels are in peak phase; in dabigatran
258	recipients, median levels were 113 pmol/L (IQR: 93 to 141 pmol/L) vs. 136 pmol/L (IQR:
259	112 to 151 pmol/L), respectively ($P = 0.039$); in apixaban recipients, median levels were 84
260	pmol/L (IQR: 72 to 96 pmol/L) vs. 109 pmol/L (IQR: 88 – 128 pmol/L), respectively ($P <$
261	0.001) (Figure 3). In the dabigatran recipients, antithrombin levels decreased after vascular
262	puncture, whereas in apixaban recipients, protein C and antithrombin levels decreased after
263	vascular puncture (Figure 4).

264

265 Exploratory Endpoints

266	We found no significant difference in pre-puncture D-dimer levels between the
267	dabigatran (median: 0.17 μ g/mL [IQR: 0.05 to 0.23 μ g/mL]) and apixaban recipients
268	(median: 0.21 μ g/mL [IQR: 0.14 to 0.30 μ g/mL]; $P = 0.067$) or in post-puncture D-dimer
269	levels between the dabigatran (median: 0.12 $\mu g/mL$ [IQR: 0.05 to 0.23 $\mu g/mL$]) and the
270	apixaban recipients (median: 0.15 μ g/mL [IQR: 0.05 to 0.25 μ g/mL]; <i>P</i> = 0.42). We also
271	found no significant difference in the change in D-dimer levels between the dabigatran
272	(median: $-0.01 \ \mu g/mL$ [IQR: $-0.08 \text{ to } 0 \ \mu g/mL$]) and the apixaban recipients (median:
273	$-0.04 \ \mu g/mL$ [IQR: -0.08 to $0.02 \ \mu g/mL$]; $P = 0.92$; Figure 4). Meanwhile, the SFMC
274	changed positively ($P = 0.58$) after vascular puncture in two dabigatran recipients and one
275	apixaban recipient. SFMC was measured with two different methods, but the difference in the
276	method did not affect the change in SFMC ($P > 0.999$).
277	
278	Discussion
279	Our major findings were that (1) after vascular puncture, F1+2 levels increased more
280	in the uninterrupted dabigatran recipients than in the uninterrupted apixaban recipients, and
281	(2) Some coagulation inhibitors, such as antithrombin and protein C, appeared to be
282	consumed after vessel puncture.
283	To our knowledge, this is the first randomized clinical comparison of the effects of
284	direct thrombin and factor Xa inhibitors on the physiological coagulation and anticoagulation

285	system after vascular injury while serum levels of DOAC were at the peak phase. Several
286	previous studies of the anticoagulant effect of DOACs have shown that thrombin generation
287	or levels of coagulation activation markers, such as F1+2 and soluble fibrin, are suppressed to
288	some extent not only during the peak phase but also during the trough phase of DOACs (20 –
289	23). The degree of suppression of F1+2 levels at the peak levels of DOAC in our study was
290	similar to those previously reported (20–23). According to our previous report, thrombin
291	production was increased at dabigatran and apixaban trough levels during vascular injury, but
292	the response at DOAC peak levels was unknown (20). In this study, we found that the large
293	thrombin production after vascular puncture during the peak phase of dabigatran was similar
294	to the trough phase previously reported (20) . Meanwhile, we found that an increased response
295	to thrombin generation after vascular puncture was not observed during the peak phase of
296	apixaban (20).
297	Unlike direct Xa inhibitors, direct thrombin inhibitors in the therapeutic range may
298	be less effective in suppressing initial thrombin generation associated with vascular injury
299	(24). Moreover, direct factor Xa inhibitors in the therapeutic range may suppress thrombin
300	bursts after the initial thrombin generation (25). This finding may be the reason for the
301	difference in thrombin-producing ability after vascular injury observed in this study.
302	Compared with apixaban, dabigatran appeared to inhibit hemorrhagic complications such as
303	intracranial hemorrhage and bleeding complications during catheter procedures (12–15,26).

304	In contrast, the risk of thrombotic events such as asymptomatic cerebral infarction during
305	ablation may be greater in patients taking dabigatran (15,23,27). The difference in the
306	thrombin generation response between both drugs observed in our study may be one of the
307	reasons for the different clinical outcomes of thrombotic and hemorrhagic complications
308	mentioned above.
309	Our results suggest that dabigatran increased the protein C and S levels, whereas
310	apixaban increased antithrombin levels. DOACs may prolong clotting time, and protein C,
311	protein S, and antithrombin activity may be overestimated (28,29). Meanwhile, antithrombin
312	or protein C levels decreased after vascular puncture in both groups in this study. Although
313	there is an interaction of DOACs on the measured values, before-and-after comparisons are
314	possible. Therefore, decreased physiological anticoagulant factors during vascular puncture
315	may indicate negative feedback for a hypercoagulable state in the DOAC recipients.
316	Our study had some limitations. The sample size was relatively small, and the study
317	was underpowered to determine the difference in the increasing reaction of the SFMC. Blood
318	samples obtained before vascular puncture might not accurately reflect the peak levels of
319	DOACs because the elapsed time from the last administration of DOACs was approximately
320	70–80 minutes (30,31). However, F1+2 levels 3 hours after the administration of DOACs at
321	admission, when DOAC levels peaked, were equivalent to or higher than F1+2 levels before

322	vascular puncture. Therefore, the comparison of each measurement before and after vascular
323	puncture in this study is considered an evaluation, while DOAC levels are fairly high.
324	
325	Conclusions
326	In contrast to uninterrupted apixaban, uninterrupted dabigatran did not inhibit
327	thrombin generation in response to vascular injury.
328	
329	Sources of Funding
330	This study was supported by the Clinical Research Support Program from Niigata
331	University Medical and Dental Hospital.
332	
333	Disclosures
334	None
335	
336	

337 **<u>References</u>**

- 1. Thrall G, Lane D, Carroll D, Lip GY. Quality of life in patients with atrial fibrillation: a
- 339 systematic review. *Am J Med.* 2006; 119:448.e1-e19.
- 2. Kimura K, Minematsu K, Yamaguchi T, Japan Multicenter Stroke Investigators'
- 341 Collaboration (J-MUSIC). Atrial fibrillation as a predictive factor for severe stroke and early
- death in 15,831 patients with acute ischaemic stroke. *J Neurol Neurosurg Psychiatry*. 2005;
- **343** 76:679-683.
- 344 3. Mamas MA, Caldwell JC, Chacko S, Garratt CJ, Fath-Ordoubadi F, Neyses L. A
- 345 meta-analysis of the prognostic significance of atrial fibrillation in chronic heart failure. *Eur J*
- 346 *Heart Fail*. 2009; 11:676-683.
- 4. Cheng M, Lu X, Huang J, Zhang J, Zhang S, Gu D. The prognostic significance of atrial
- 348 fibrillation in heart failure with a preserved and reduced left ventricular function: insights
- 349 from a meta-analysis. *Eur J Heart Fail*. 2014;16:1317-1322.
- 5. Olsson LG, Swedberg K, Ducharme A, Granger CB, Michelson EL, McMurray JJ, Puu M,
- 351 Yusuf S, Pfeffer MA; CHARM Investigators. Atrial fibrillation and risk of clinical events in
- 352 chronic heart failure with and without left ventricular systolic dysfunction: results from the
- 353 Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity (CHARM)
- 354 program. J Am Coll Cardiol. 2006; 47:1997-2004.

- 355 6. Rivero-Ayerza M, Scholte op Reimer W, Lenzen M, Theuns DA, Jordaens L, Komajda M,
- Follath F, Swedberg K, Cleland JG. New-onset atrial fibrillation is an independent predictor
- 357 of in-hospital mortality in hospitalized heart failure patients: results of the EuroHeart Failure
- 358 Survey. *Eur Heart J.* 2008; 29:1618-1624.
- 359 7. Nogami A, Kurita T, Abe H, Ando K, Ishikawa T, Imai K, Usui A, Okishige K, Kusano K,
- 360 Kumagai K, et al. JCS/JHRS 2019 Guideline on non-pharmacotherapy of cardiac arrhythmias.
- 361 *Circ J.* 2021; 85:1104-1244.
- 362 8. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V,
- 363 Brugada J, Camm J, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus
- statement on catheter and surgical ablation of atrial fibrillation. *Europace*. 2018; 20:e1-e160.
- 365 9. Ono K, Iwasaki YK, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y,
- 366 Koretsune Y, Sasano T, et al. JCS/JHRS 2020 Guideline on pharmacotherapy of cardiac
- 367 arrhythmias. *Circ J.* 2022; 86:1790-1924.
- 10. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC
- 369 Guidelines for the management of atrial fibrillation developed in collaboration with EACTS.
- *Eur Heart J.* 2016; 37:2893-2962.
- 11. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, Haeusler KG,
- 372 Oldgren J, Reinecke H, Roldan-Schilling V, et al. The 2018 European Heart Rhythm

- 373 Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in
- patients with atrial fibrillation. *Eur Heart J.* 2018; 39:1330-1393.
- 12. Cappato R, Marchlinski FE, Hohnloser SH, Naccarelli GV, Xiang J, Wilber DJ, Ma CS,
- 376 Hess S, Wells DS, Juang G, et al. Uninterrupted rivaroxaban vs. uninterrupted vitamin K
- antagonists for catheter ablation in non-valvular atrial fibrillation. *Eur Heart J*.
- 378 2015;36:1805-1811.
- 13. Calkins H, Willems S, Gerstenfeld EP, Verma A, Schilling R, Hohnloser SH, Okumura K,
- 380 Serota H, Nordaby M, Guiver K, et al. Uninterrupted dabigatran versus warfarin for ablation
- 381 in atrial fibrillation. *N Engl J Med*. 2017; 376:1627-1636.
- 382 14. Kirchhof P, Haeusler KG, Blank B, De Bono J, Callans D, Elvan A, Fetsch T, Van Gelder
- 383 IC, Gentlesk P, Grimaldi M, et al. Apixaban in patients at risk of stroke undergoing atrial
- fibrillation ablation. *Eur Heart J.* 2018; 39:2942-2955.
- 15. Hohnloser SH, Camm J, Cappato R, Diener HC, Heidbüchel H, Mont L, Morillo CA,
- 386 Abozguia K, Grimaldi M, Rauer H, et al. Uninterrupted edoxaban vs. vitamin K antagonists
- for ablation of atrial fibrillation: the ELIMINATE-AF trial. *Eur Heart J.* 2019;40:3013-3021.
- 16. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of
- 389 clinical classification schemes for predicting stroke: results from the National Registry of
- 390 Atrial Fibrillation. *JAMA*. 2001; 285:2864-2870.

- 17. De Caterina R, Husted S, Wallentin L, De Caterina R, Husted S, Wallentin L, Andreotti F,
- 392 Arnesen H, Bachmann F, Baigent C. New oral anticoagulants in atrial fibrillation and acute
- 393 coronary syndromes: ESC Working Group on Thrombosis—Task Force on Anticoagulants in
- Heart Disease position paper. *J Am Coll Cardiol*. 2012; 59:1413-1425.
- 18. Prabhu MV, Juneja D, Gopal PB, Sathyanarayanan M, Subhramanyam S, Gandhe S..
- 396 Ultrasound-guided femoral dialysis access placement: a single-center randomized trial. Clin J
- *Am Soc Nephrol.* 2010; 5:235-239.
- 19. Troianos CA, Hartman GS, Glas KE, Skubas NJ, Eberhardt RT, Walker JD, Reeves ST.
- 399 Guidelines for performing ultrasound guided vascular cannulation: recommendations of the
- 400 American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists.
- 401 *J Am Soc Echocardiogr.* 2011; 24:1291-1318.
- 402 20. Otuki S, Izumi D, Suda M, Sato A, Hasegawa Y, Yagihara N, Iijima K, Chinushi M, Fuse
- 403 I, Minamino T. Effects of direct oral anticoagulants at the peak phase, trough phase, and after
- 404 vascular injury. *J Am Coll Cardiol*. 2018; 71:102-104.
- 405 21. Nakano Y, Kondo T, Osanai H, Murase Y, Nakashima Y, Asano H, Ajioka M, Sakai K,
- 406 Inden Y, Murohara T. Clinical usefulness of measuring prothrombin time and soluble fibrin
- 407 levels in Japanese patients with atrial fibrillation receiving rivaroxaban. *J Cardiol*. 2015;
 408 65:185-190.

409	22. Tajiri K, Sato A, Harunari T, Shimojo N, Yamaguchi I, Aonuma K. Impact of rivaroxaban
410	compared with warfarin on the coagulation status in Japanese patients with non-valvular
411	atrial fibrillation: a preliminary analysis of the prothrombin fragment 1+2 levels. J Cardiol.
412	2015; 65:191-196.
413	23. Nagao T, Higo S, Suzuki H, Teshima Y, Matsunaga S, Harada K, Shinoda N, Harada K,
414	Kato M, Marui N, et al. Prospective comparison of periprocedural coagulation markers
415	among uninterrupted anticoagulants for atrial fibrillation ablation. Heart Rhythm. 2020;
416	17:391-397.
417	24. Samama MM, Le Flem L, Guinet C, Gerotziafas G, Depasse F. Three different patterns of
418	calibrated automated thrombogram obtained with six different anticoagulants. J Thromb
419	Haemost. 2007; 5:2554-2556.
420	25. Shibeko AM, Lobanova ES, Panteleev MA, Ataullakhanov FI. Blood flow controls
421	coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst
422	<i>Biol.</i> 2010; 4:5.
423	26. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly
424	PA, Themeles E, Varrone J, et al. Dabigatran versus warfarin in patients with atrial fibrillation.
425	N Engl J Med. 2009;361:1139-1151.
426	27. Nakamura K, Naito S, Sasaki T, Minami K, Take Y, Goto E, Shimizu S, Yamaguchi Y,
427	Suzuki N, Yano T, et al. Silent cerebral ischemic lesions after catheter ablation of atrial
	22

- 428 fibrillation in patients on 5 types of periprocedural oral anticoagulation-predictors of
- 429 diffusion-weighted imaging-positive lesions and follow-up magnetic resonance imaging. *Circ*
- 430 *J*. 2016; 80:870-877.
- 431 28. Mani H. Interpretation of coagulation test results under direct oral anticoagulants. Int J
- 432 *Lab Hematol.* 2014; 36:261-268.
- 433 29. Moser KA, Smock KJ. Direct oral anticoagulant (DOAC) interference in hemostasis
- 434 assays. *Hematology Am Soc Hematol Educ Program*. 2021; 2021:129-133.
- 435 30. Stangier J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin
- 436 inhibitor dabigatran etexilate. *Clin Pharmacokinet*. 2008; 47:285-295.
- 437 31. Frost C, Nepal S, Wang J, Schuster A, Byon W, Boyd RA, Yu Z, Shenker A, Barrett YC,
- 438 Mosqueda Garcia R. Safety, pharmacokinetics and pharmacodynamics of multiple oral
- 439 doses of apixaban, a factor Xa inhibitor, in healthy subjects. *Br J Clin Pharmacol*.
- 440 2013;76:776-786.

Table.1

Baseline characteristics

	Dabigatran group (n=20)	Apixaban group (n=21)	P value
Female, n (%)	4 (20)	4 (19)	1
Age, years	61.3 ± 8.5	63.8 ± 7.8	0.34
Type of atrial fibrillation, n (%)			0.44
Paroxysmal	11 (55)	14 (67)	
Persistent	9 (45)	7 (33)	
Chronic heart failure, n (%)	0	0	1
Hypertension, n (%)	11 (55)	14 (67)	0.44
Diabetes, n (%)	2 (10)	3 (14)	1
History of stroke or transit	2 (10)	1 (5)	0.61
ischemic attack, n (%)			
CHADS2 score	0.85 ± 0.81	0.95 ± 0.67	0.66
Low-dose anticoagulants, n (%)	2 (10)	0	0.23
Body weight, kg	72.0 ± 13.4	73.4 ± 13.1	0.74
Systolic blood pressure, mmHg	126 ± 16	123 ± 14	0.57
Diastolic blood pressure, mmHg	80 ± 12	77 ± 11	0.50
Heart rate, bpm	76 ± 12	71 ± 11	0.18
Body temperature, °C	36.2 ± 0.4	36.3 ± 0.6	0.53

Left ventricular ejection	63.7 ± 6.7	63.2 ± 6.7	0.80
fraction, %			
Aspartate aminotransferase, U/L	24 ± 7	28 ± 9	0.14
Alanine aminotransferase, U/L	25 ± 9	31 ± 13	0.10
Lactate dehydrogenase, U/L	191 ± 23	194 ± 25	0.72
Creatinine, mg/dL	0.83 ± 0.13	0.83 ± 0.15	0.90
Estimated creatinine clearance,	94.1 ± 22.2	92.7 ± 22.1	0.85
mL/min			
Hemoglobin A1c, %	5.8 ± 0.4	5.8 ± 0.5	0.83
Hemoglobin, g/dL	14.7 ± 1.4	14.8 ± 1.2	0.81

Table.2

Vascular puncture situation

	Dabigatran group (n=20)	Apixaban group (n=21)	P value
Number of internal jugular	1	1	1
venous sheaths			
Number of femoral venous	2.2 ± 0.4	2.1 ± 0.3	0.35
sheaths			
Number of femoral arterial	1	1	1
sheaths			
Time from last dose to	71 ± 29	79 ± 22	0.37
pre-puncture blood collection,			
min			
Time from last dose to	149 ± 14	153 ± 19	0.46
post-puncture blood collection,			
min			
Time from beginning of	10.4 ± 0.7	10.5 ± 1.2	0.80
puncture to post-puncture			
blood collection, min			

measurements outside the $1.5 \times$ interquartile range.