Supplemental Information

for

Prognostic pan-cancer and single-cancer models: A large-scale analysis using a real-world clinico-genomic database

Sarah F. McGough, Svetlana Lyalina, Devin Incerti, Yunru Huang, Stefka Tyanova, Kieran Mace, Chris Harbron, Ryan Copping, Balasubramanian Narasimhan*, Robert Tibshirani*

* denotes equal contribution

SI Tables & Figures	2
Table S1. Summary of features included in prognostic models.	2
Table S2. Summary of prognostic model feature sets.	3
Figure S1-S5. Pan-cancer and single-cancer risk stratification plots for all cancer types	. 4
Figure S6. Integrated Brier Score (IBS) for pan-cancer and single-cancer (A) Benchmark, (B) ROPRO-like, and (C) Full models. Lower IBS is indicative of better model calibration. Cancer types are arranged on the x-axis from largest to smallest sample size.	9
Figures S7-9. Top 25 clinico-genomic predictors in each single-cancer model. Predictor are ordered on the y-axis by descending coefficient (log hazard ratio).	rs 10
Figure S10. Number of variables selected by each single-cancer model as a function of sample size. Cancer types are arranged on the x-axis from smallest to largest sample size.	f 13
Figure S11. Comparison of left-truncated right-censored forest (LTRCF) model performance for single-cancer and pan-cancer training cohorts with respect to the (A) c-index and (B) integrated brier score (IBS). Cancer types are arranged on the x-axis from largest to smallest sample size.	14
Figure S12. Top 10 variants associated with node2vec dimensions. Displayed node2ve dimensions are a subset of the full 128 that were chosen at least once by any model. Association was determined by the BIOT method.	с 15
Figure S13. Comparison of model performance between the stratified and non-stratified Cox models with respect to (A) c-index and (B) integrated Brier score (IBS). Cancer types are arranged on the x-axis from largest to smallest sample size.	ל 16
SI Materials & Methods	17
Adaptation of the ROPRO prognostic model	17
Investigation of alternative model fitting approaches that support interactions.	17

SI Tables & Figures

	# Features	# Features						
Modality	(raw)	encoded)	Туре	Description				
Clinical/dem ographic	17	32	Categorical, Continuous	Collection of baseline clinical/demographic information including: age, gender, race, BMI, ECOG, smoking status, cancer type, cancer stage at diagnosis, advanced or metastatic status at baseline, insurance type, socioeconomic status index, time from diagnosis to genomic test.				
Labs and vital signs	412	412	Continuous	Time series summaries (e.g. median, min, max, proportion abnormal, slope, variance) of common labs and vital signs.				
Treatment	32	32	Binary, Continuous	Indicators for each unique drug category received during frontline therapy and treatment at an academic center; continuous variable describing number of unique drugs received in frontline therapy, year of frontline therapy, time from diagnosis to first treatment.				
Genomic	1,511	1,513	Categorical, Continuous	Binary alteration status (short variant "SV", copy number "CN", or rearrangement "RE") of genes; Raw variables are binary, while imputed ones are continuous due to the nature of KNN imputation (the resulting value reflects level of agreement between nearest neighbors). Variables consist of all combinations of HUGO gene symbol and variant type (SV, CN, RE) that were assayed by any Foundation Medicine test. Pathway affected status - biological pathways are designated as affected if any of their constituent genes have any kind of alteration. Node2Vec 128-dimensional embedding vector averages of all genes altered in a sample. Non-alteration related features derived from or associated with Foundation Medicine data: tissue tumor mutational burden (tTMB), tumor purity (computationally derived), PDL1 status, estimated ancestry (fractional assignment to 5 superpopulations)				
Cancer-speci fic	87	146	Categorical, Continuous	Prognostic factors relevant to one or more cancer types, including: sites of metastases,				

Table	S1.	Summary	of features	included in	prog	nostic models.

				extranodal sites, disease subtypes, cancer-specific lab test results, disease-specific histologies.			
Total	2,059	2,135					
BMI: Body ma Organization.	Body mass index; ECOG: Eastern Cooperative Oncology Group; HUGO: HUman Genome nization.						

Table S2. Summary of prognostic model feature sets.

Model	# Features	Description	Feature set
Benchmark	9	Collection of variables commonly collected in clinical practice	Cancer type, Age, Race, Gender, Smoking status, Baseline ECOG, Cancer stage at diagnosis, Time from diagnosis to frontline treatment, Time from diagnosis to genomic test
ROPRO-like	29	All variables included in the ROPRO model (Becker et al. 2020) with <= 30% missing in the database, plus time from diagnosis to genomic test (to adjust for delayed entry).	Cancer type, Age, Gender, Smoking status, Baseline ECOG, Cancer stage at diagnosis, BMI, Body weight, Body height, Heart rate, Hemoglobin, Systolic blood pressure, Diastolic blood pressure, Urea nitrogen, ALP, ALT, AST, Calcium, Creatinine, Total protein, Bilirubin, Albumin, Hematocrit, Glucose, Platelet count, Lymphocyte count, Monocyte count, Neutrophil count, Time from diagnosis to genomic test
Full	2,059	All variables derived from the clinico-genomic database.	All clinical and genomic predictors

Figure S1-S5. Pan-cancer and single-cancer risk stratification plots for all cancer types.

Figure S1. Pan-cancer and single-cancer risk stratification plots for Non-Small Cell Lung, Colorectal, and Breast cancers.

Figure S2. Pan-cancer and single-cancer risk stratification plots for Ovarian, Pancreatic, and Gastric cancers.

Figure S3. Pan-cancer and single-cancer risk stratification plots for Prostate, Urothelial, and Melanoma cancers.

Figure S4. Pan-cancer and single-cancer risk stratification plots for Renal, Small Cell, and Head and Neck cancers.

Figure S6. Integrated Brier Score (IBS) for pan-cancer and single-cancer (A) Benchmark, (B) ROPRO-like, and (C) Full models. Lower IBS is indicative of better model calibration. Cancer types are arranged on the x-axis from largest to smallest sample size.

Cancer type (largest to smallest)

Figure S10. Number of variables selected by each single-cancer "full" model as a function of sample size. Cancer types are arranged on the x-axis from smallest to largest sample size.

Cancer type (smallest to largest)

Figure S11. Comparison of left-truncated right-censored forest (LTRCF) model performance for single-cancer and pan-cancer training cohorts with respect to the (A) c-index and (B) integrated brier score (IBS). Cancer types are arranged on the x-axis from largest to smallest sample size.

Figure S12. Top 10 variants associated with node2vec dimensions. Displayed node2vec dimensions are a subset of the full 128 that were chosen at least once by any model. Association was determined by the BIOT method.

	1 -	SMO SV	TMPRSS2 RE	FGF10 RE	PTCH1 SV	APC SV	TERT RE	EPHB4 SV	CD36 RE	ARFRP1 CN	HSD3B1 SV		
	3 -	APC SV	ALOX12B SV	ALK RE	ALK SV	SMARCA4 SV	CD22 SV	FGF14 CN	CYP2D6 SV	AR SV	RAD21 CN		
	4 -	SMAD4 SV	PDGFRA SV	ERBB3 SV	TAF1 SV	PDGFRB SV	TRRAP SV	IGF2R SV	SMARCA4 SV	PTCH1 SV	NF2 SV		
	5 -	TSC2 SV	GNAS SV	TET2 SV	KEL SV	RAD54L SV	BRAF SV	SOX9 SV	RUNX1T1 CN	RUNX1T1 SV	GNAS CN		
	6 -	TBX3 SV	NBN CN	RUNX1T1 CN	BCORL1 SV	CCNE1 CN	CDKN2A SV	NBN SV	ATR SV	RICTOR CN	SMAD4 SV		
	7-	KMT2D SV	KMT2C SV	KDM6A SV	FAT3 SV	APC SV	KMT2A SV	IDH1 SV	AR SV	TET2 SV	KRAS SV		
	9 -	FGFR2 SV	EGE19 CN	FGF4 CN	FGFR1 SV	EGER1 CN	FGF23 CN	EGER3 SV	FGF23 SV	EGE6 SV	FGE10 CN		
	13	CIC SV	KELSV	CREBBP SV	PAK3 SV	MAP3K13 SV	TAE1 SV	SDHA CN	TMPRSS2 RE	NRASSV	ATR SV		
	1/1	CDKN2A SV	CDKN24 CN	KMT2D SV	TRRAP SV	KMT2C SV	DOT1L SV	KMT24 SV	MUTVH SV	KAT6A SV	TYRO3 SV		
	15	DTEN OV		CDEN OV	RADOL CN	MED12 SV	IDEO EV	DIK2C2D OV	DTEN DE	PCOR SV	CATA2 SV		
	10	PTEN SV	PTEN CN	OPICIND ON	RAD21 CN	TETR OV	162 SV	PIK3C2B SV		DECON SV	GATAS SV		
		DINITISK SV	EGFH SV	CDKN2B CN		TET2 SV	HUST SV	JAK3 SV	PIK3C2G SV	PIPINIT SV	HBMITO SV		
		CUL4A CIN	DINMITSA SV	COL4A SV	CUL4D SV	CTP2D6 SV	INFI SV	IGFDH2 SV	MED 12 SV	PDGFRD SV	NNT2A SV		
	23 -	PIK3CA SV	FGF10 RE	TP53 SV	DDR2 SV	KLHL6 SV	KLHL6 CN	DDR2 CN	KRAS SV	KEAP1 SV	RETSV		
	25 -	NF1 SV	BRCA2 SV	PTEN SV	BAP1 SV	STAG2 SV	TSC2 SV	ATR SV	RAD21 CN	TERT SV	POLE SV		
	26 -	ATM SV	BCORL1 SV	CIC SV	DIS3 CN	DIS3 SV	BCOR SV	SOX9 SV	GNAS SV	SLIT2 SV	EMSY CN		
	31 -	KRAS SV	BRAF SV	NRAS SV	PIK3CA SV	ARAF SV	HRAS SV	MAP2K1 SV	KRAS CN	MUTYH SV	SMAD4 SV		
	34 -	FLT1 SV	VEGFA SV	PARP4 SV	VEGFA CN	KDR SV	FLT1 CN	PIK3CA SV	KMT2D SV	PARP4 CN	TEK SV		
	38 -	CDH1 SV	KRAS SV	PIK3CA SV	RAD21 CN	ARID1A SV	VHL SV	STAG2 SV	IGF2R SV	CDKN2A SV	AR SV		
	41 -	LRP1B SV	EGFR SV	ERBB2 SV	EPHB1 SV	ERBB2 CN	EGFR CN	TNKS SV	CYP2D6 SV	RNF43 SV	LRP1B RE		
	44 -	GABRA6 SV	CONE1 ON	MAGI2 SV	FANCA SV	PRSS1 SV	EPHA3 SV	TET2 SV	BCORL1 SV	ERBB3 SV	ZNRF3 SV		
	45 -	GNAS SV	GNAS CN	KMT2D SV	ATRX SV	INPP4B SV	BRAF SV	JAK3 SV	BCORL1 SV	NTRK3 SV	GATA3 SV		
Б	49 -	RNF43 SV	TYRO3 SV	VHL SV	EPHA6 SV	CHEK2 SV	IDH1 SV	SF3B1 SV	CIC SV	NOTCH1 SV	GRIN2A SV		
lsic	50 -	STK11 SV	BRAF SV	TBX3 SV	RNF43 SV	KEL SV	MPL SV	SPEN SV	MAP2K2 SV	STK11 CN	STK11 RE		
Jer	54 -	KMT2C SV	KMT2D SV	APC SV	JAK1 SV	JAK2 SV	KDM6A SV	PTEN SV	JAK3 SV	MPL SV	AR SV	Co	efficient of association
ng din	55 -	SPTA1 SV	BRAF SV	ZNF217 CN	KDM5C SV	ERRFI1 SV	ABL1 SV	ZNF217 SV	BRIP1 SV	DOT1L SV	KEAP1 SV	fro	om BIOT W matrix
	59 -	MYD88 SV	CARD11 SV	ERBB2 SV	MET SV	IRF4 SV	MST1R SV	TNFAIP3 SV	INPP4B SV	ERBB2 CN	ROS1 SV		0.025
gi	61 -	MAGI2 SV	APC SV	GRIN2A SV	ERBB4 SV	MTOR SV	PTEN SV	BCOR SV	GNAS SV	TET2 \$V	ATM SV		0.025
pe	63 -	RB1 SV	FOXL2 SV	NBN CN	RB1 CN	ATR SV	BRCA2 SV	FGF12 CN	TEK SV	MITF SV	TAF1 SV		0.000
E	73 -	BRCA2 SV	KEAP1 SV	BRIP1 SV	KDM5C SV	PALB2 SV	PMS2 SV	BRIP1 CN	CARD11 SV	FOXL2 SV	SOX9 SV		-0.025
ő	74 -	BRCA2 SV	SPTA1 SV	FANCA SV	PDCD1 RE	FANCM SV	MUTYH SV	NBN CN	ABCC4 SV	BRIP1 SV	FANCD2 SV		-0.050
Š	76 -	KEAP1 SV	PTPRD SV	KRAS SV	MTAP CN	ALK SV	ALK RE	TET2 SV	PALB2 SV	KEAP1 CN	CTNNB1 SV		0.000
de	79-	APC SV	CDH1 SV	ZNE217 CN	MAP2K4 SV	FBBB4 SV	SMO SV	MAP2K4 CN	DNMT3A SV	KEAP1 SV	EBBB3 SV		-0.075
ş	83	ZNEZ03 CN	ALK RE	ALKSV	CDH1 SV	MAP2KA SV	7NE703 SV	EPHA6 SV	MAP2K4 CN	MAP3K1 SV	IDH1 SV		
_	0.1	CDKN2P CN	TERT SV	CTK11 CV	LIGE SV	EGE10 CN	APC SV	CONE1 ON	MET SV	EGERA SV	CDKECN		
	04	CUEKO PV	TERT OF	BBCAD SV	FOED OV		FOE10 PE	CONCTON ON	CDCN CV	FANIOE ON	CIDICO ON		
	00]	DDD LOW	DOTAL OV	BRUAZ SV	EGFN SV	BOOH SV	KDD OV	DODVO OV	SPEN SV		OF OF OV		
	89 -	BRD4 SV	DOTIL SV	KAIBA SV	KM12A SV	KAIBA CN	KDH SV	P2H18 SV	FGFR2 SV	JAK3 SV	SF3BT SV		
	90-	ESR1 SV	MED12 SV	TRRAP SV	FBXW7 SV	CDK8 CN	CDK8 SV	LZTR1 SV	DNMT3A SV	MYCN SV	BRD4 SV		
	91 -	MTOR SV	RICTOR CN	RICTOR SV	NF1 SV	SPEN SV	RPTOR SV	TSC2 SV	TERT SV	BRAF SV	IRS2 SV		
	94 -	STAG2 SV	NF1 SV	KMT2D SV	RAD21 CN	ACVR1B SV	MYD88 SV	INHBA SV	MAP2K4 SV	RET SV	MAP3K1 SV		
	96 -	CHEK2 SV	MYC CN	FGFR2 SV	MYC SV	PREX2 SV	BAP1 SV	KDM5C SV	PREX2 CN	ARAF SV	TRRAP SV		
	98 -	RNF43 SV	KDM5C SV	RNF43 CN	DOT1L SV	ATRX SV	ROS1 SV	FBXW7 SV	STAG2 SV	DICER1 SV	TRRAP SV		
	99 -	NF1 SV	NF1 CN	NF1 RE	PRKDC SV	JAK3 SV	FAT1 SV	PTPN11 SV	PRDM1 SV	SMAD4 SV	RPTOR SV		
	102 -	ATM SV	RB1 SV	SF3B1 SV	CDH1 SV	MERTK SV	VHL SV	TET2 SV	GATA6 CN	RB1 CN	NFKBIA CN		
	105 -	DNMT3A SV	JAK3 SV	FLT4 SV	ROS1 SV	FGFR2 SV	PTPN11 SV	CCND3 CN	POLD1 SV	EP300 SV	WT1 SV		
	111 -	SDHA CN	SDHA SV	CTNNB1 SV	FLT4 SV	KDM6A SV	WT1 SV	KAT6A SV	GABRA6 SV	RANBP2 SV	MUTYH SV		
	112 -	CDKN2A CN	CDKN2A SV	APC SV	MYCN SV	MTAP CN	CCND1 CN	ARAF SV	SOX2 CN	WT1 SV	GRM3 SV		
	114 -	NOTCH1 SV	BRD4 SV	BCOR SV	MERTK SV	ESR1 SV	CARD11 SV	TGFBR2 SV	TYRO3 SV	PRKDC SV	MTAP CN		
	116 -	TP53 SV	NF1 SV	RAD21 CN	GRM3 SV	MDM2 CN	FGF10 RE	DNMT3A SV	NTRK3 SV	STAG2 SV	CDKN2A CN		
	117 -	BCL2L1 CN	JAK3 SV	KMT2A SV	MCL1 CN	CASP8 SV	MYC CN	INPP4B SV	RAD21 CN	KDM5C SV	BCL2 SV		
	119-	LRP1B SV	EGFR SV	CDK12 SV	PIK3CA SV	CHEK2 SV	ERRFI1 SV	CDK12 CN	RUNX1T1 CN	RUNX1T1 SV	NRAS SV		
	124 -	TMPRSS2 RE	CTNNB1 SV	TBX3 SV	MYC CN	ATR SV	AXIN1 SV	LRP6 SV	APC SV	PREX2 SV	PREX2 CN		
	125 -	MCL1 CN	EGFR SV	MYC CN	RNF43 SV	ASXL1 SV	AR SV	NOTCH4 SV	RAD54L SV	TNKS2 SV	MCL1 SV		
	126 -	KRAS SV	ROS1 SV	INPP4B SV	CARD11 SV	ERBB2 SV	ESR1 SV	ROS1 RE	INPP4B CN	ERBB2 CN	BRAF SV		
	127	PREX2 SV	APC SV	MTOR SV	PREX2 CN	VHL SV	GNAS SV	TSC2 SV	ZNE703 CN	NOTCH2 SV	TERT SV		
	12/ 1	CHEAZ SV	AFGSV	MICHSV	FREAZ ON	VIL SV	01043-54	1802.50	ZINF703 GN	NOTOH2 SV	TENT SV		

Top 10 original mutation variables used to explain embedding value

15

Figure S13. Comparison of model performance between the stratified and non-stratified Cox models with respect to (A) c-index and (B) integrated Brier score (IBS). Cancer types are arranged on the x-axis from largest to smallest sample size.

SI Materials & Methods

Adaptation of the ROPRO prognostic model

The ROPRO (Real wOrld PROgnostic score) was developed by by Becker et al⁹ and is composed of 27 clinical and demographic variables derived from the Flatiron Health electronic health record de-identified database.

We developed a "ROPRO-like" model, intended to adapt the ROPRO model using the available data in the clinico-genomic database (Table S2). However, our approach deviates in several ways:

- To remain consistent with the rest of our benchmark models, we allowed missingness in the selected variables of up to 30% whereas the ROPRO model allowed missingness up to 75%. As a result, our "ROPRO-like" model excludes several ROPRO variables with high rates of missingness including lactate dehydrogenase (LDH), chloride, oxygen, and eosinophils.
- 2. Where variables like "AST-to-ALT ratio" were not available, we included the individual laboratory components, AST and ALT.
- 3. The ROPRO model imputed missing data using a tree-based approach, whereas we used multiple imputation to remain consistent across our benchmark models.

Investigation of alternative model fitting approaches that support interactions.

The left-truncated right censored forests (LTRCF) R package^{73,74} was used within the same training and testing setup described for the Cox PH and Cox lasso models in the main results. The 'mtry' parameter was tuned via the LTRCforests::tune.ltrcrrf function (all arguments to which were set to their default values except time.eval, which was a grid from 0 to max observed time with granularity of 30 days. Default parameters: starting mtry = sqrt(number of variables), stepFactor = 2, ntreeTry = 100, bootstrap = "by.root", samptype="swor", sampfrac=0.632, nsplit = 10, nodesizeTry = max of either sqrt(number of observations) or 15. Values of the linear predictor were obtained from the resulting fit using the LTRCforests::predict.ltrcrfsrc method, and survival probabilities were calculated with the LTRCforests::predictProb method. These values were then used to calculate the final performance metrics: the concordance index and integrated Brier score.