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Abstract

Objective: This paper aims to address the challenges in citation screening (a.k.a. abstract screening) within

Systematic Reviews (SR) by leveraging the zero-shot capabilities of large language models, particularly

ChatGPT.

Methods: We employ ChatGPT as a zero-shot ranker to prioritize candidate studies by aligning abstracts

with the selection criteria outlined in an SR protocol. Citation screening was transformed into a novel

question-answering (QA) framework, treating each selection criterion as a question addressed by ChatGPT.

The framework involves breaking down the selection criteria into multiple questions, properly prompting

ChatGPT to answer each question, scoring and re-ranking each answer, and combining the responses to

make nuanced inclusion or exclusion decisions.

Results: Large-scale validation was performed on the benchmark of CLEF eHealth 2019 Task 2: Technology

Assisted Reviews in Empirical Medicine. Across 31 datasets of four categories of SRs, the proposed QA

framework consistently outperformed other zero-shot ranking models. Compared with complex ranking

approaches with iterative relevance feedback and fine-tuned deep learning-based ranking models, our

ChatGPT-based zero-shot citation screening approaches still demonstrated competitive and sometimes better

results, underscoring their high potential in facilitating automated systematic reviews.

Conclusion: Investigation justified the indispensable value of leveraging selection criteria to improve the

performance of automated citation screening. ChatGPT demonstrated proficiency in prioritizing candidate

studies for citation screening using the proposed QA framework. Significant performance improvements were

obtained by re-ranking answers using the semantic alignment between abstracts and selection criteria. This

further highlighted the pertinence of utilizing selection criteria to enhance citation screening.
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Introduction

A Systematic Review (SR) in medical research is the highest

form of knowledge synthesis of all available medical evidence from

relevant publications on a specific topic. SR follows a principled

pipeline, including candidate study retrieval, primary study

selection, quality assessment, data extraction, data synthesis,

meta-analysis, and reporting [1]. Because of its thoroughness and

reliability, SR underpins evidence-based medicine [2]. It shapes

medical research and practice by informing researchers of the

state-of-the-art knowledge and knowledge gaps as well as health

practitioners and policymakers of the best clinical practice [3].

SR also faces tremendous challenges at each step. For instance,

it is time-consuming, expensive and resource-intensive to select

primary studies, a.k.a. citation screening, due to the massive

volume of retrieved candidate studies, often at tens of thousands

[4, 5]. It is further worsened by involving multiple human

annotators, which is required to reduce bias and disparities

[6]. This compound complexity calls for innovative solutions to

automate or semi-automate citation screening [1] to minimize the

time delays and costs of this manual screening tasks [7], which

is the focus of the current paper. Figure 1 shows an example

of citation screening, where the abstract of an included study is

matched against the selection criteria defined in the SR protocol.
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Machine learning has been the focus of research in automating

citation screening [1, 7, 8]. Firstly, a small set of studies are

selected for human annotation, and then a classifier is trained.

Typically, active learning is adopted to improve the classifier

iteratively. Obviously, the quality of the initial annotations plays

an important role. However, choosing initial annotations is a

problem of zero-shot setting and has not been explored at all.

Another disadvantage is that this approach is not generalisable,

and each SR topic requires training a bespoke classifier from

scratch.

An alternative perspective was to treat citation screening as a

ranking problem a.k.a. reference prioritisation [7], incorporating

approaches from the information retrieval (IR) community [9, 10,

11, 12, 13, 14, 15, 16]. One advantage of this approach is that it

can utilise additional information about an SR, which is converted

into queries to enhance screening performance. Such information

could be review title [9, 10], original Boolean queries (for candidate

study retrieval) [17], research objectives [18, 16], or a set of seed

studies [15, 19]. Another advantage is the possibility of training a

cross-topic ranker to generalise to diverse SR topics.

The above analysis motivated us to explore the emerging

capabilities of Large Language Models (LLMs), particularly

ChatGPT in the current paper, to facilitate citation screening.

Indeed, the recent successes in text ranking [20, 21] suggest LLMs

potentially could be used as an alternative AI-based reviewer due

to their strong zero-shot capabilities [22]. This could either save at

least one human reviewer’s time or, less radically, suggest a good

initial training set for human verification.

In addition, we witness a severe lack of study about using

selection criteria in automated citation screening (except [23]).

Indeed, it is the selection criteria that set up the grounds

for human reviewers’ decision-making. Unfortunately, only a

few studies initiated similar attempts [23, 24, 25], and neither

the effectiveness of their methods nor the comprehensiveness of

their experiments could provide convincing conclusions about the

feasibility of LLMs in this task. The current paper presents

a pioneering LLM-based framework for facilitating automated

citation screening to fill this gap.

Our contributions can be summarised in three folds. (1)

We proposed the first comprehensive LLM-assisted question-

answering framework for automated citation screening in a zero-

shot setting. (2) We developed the first generalisable approach

to utilising selection criteria to enhance citation screening

performance. (3) We performed the first comprehensive empirical

study on well-known benchmark datasets and demonstrated the

high potential of the proposed approach for citation screening.

Background Study

Automating in Citation Screening

Efforts to automate systematic reviews using machine learning

have surged recently. Kitchenham and Charters’ presented a good

survey of such attempts in software engineering [26]. In evidence-

based medicine, Cohen et al. was the seminal work of citation

screening using machine learning [27], while Marshall and Wallace

advocated active learning techniques for citation screening [28].

Examples like RobotReviewer [29, 30] and TrialStreamer [31]

showcased the power of integrating AI into the review process, with

RobotReviewer claiming to reach accuracy comparable to human

reviewers. Despite the progress, challenges persist, including

labour-intensive labelling and the risk of overlooking relevant

studies [32]. Acknowledging the limitation of full automation, tools

like Rayyan and Abstracker leverage natural language processing

(NLP) algorithms to partially automate article screening [33].

Machine Learning for Citation Screening

The biggest challenge is handling large document volumes,

particularly in non-randomized controlled trials lacking database

filters [34]. For instance, EPPI-Centre reviews often screen over

20,000 documents, necessitating more efficient approaches [35].

Efforts include refining search queries, balancing precision and

recall, and leveraging resource-efficient recall-maximizing models

with NLP [36].

The initial approach involves training a classifier to make

explicit include/exclude decisions [27, 36, 37, 38, 39, 40, 41]. Many

classifiers using this approach inherently generate a confidence

score indicating the likelihood of inclusion or exclusion (similar

to the ranking in the second approach). Generally, this approach

requires a labelled dataset for training, hindering the assessment

of work reduction until after manual screening. Research within

this paradigm primarily focuses on enhancing feature extraction

methods [27, 39] and refining classifiers [40]. Van Dinter et al.

[8] analyzed 41 studies in medicine and software engineering,

revealing Support Vector Machines and Bayesian Networks as

standard models and Bag of Words and TF-IDF as prevalent

natural language processing techniques. Despite advancements, a

dearth of deep neural network models explicitly designed for the

systematic review screening phase is noted. The most prominent

challenges include handling extreme data imbalance favouring (at

least close to) total recall of relevant studies.

Ranking Approaches to Citation Screening

The second approach entails utilizing a ranking or prioritization

system [9, 10, 11, 12, 13, 14, 15, 16, 35, 42]. This approach

might necessitate manual screening by a reviewer until a specified

criterion is met. This approach can also reduce the number

of items needed to be screened when a cut-off criterion is

properly established [35, 42, 43]. In addition to reducing the

number needed to screen, other benefits of this approach

include enhancing reviewers’ understanding of inclusion criteria

early in the process, starting full-text retrieval sooner, and

potentially speeding up the screening process as confidence in

relevance grows [7]. This prioritization approach also aids review

updates, enabling quicker assimilation of current developments.

Various studies reported benefits from prioritization for workflow

improvement, emphasizing efficiency beyond reducing title and

abstract screening workload [44, 45].

Active learning in Citation Screening

It’s crucial to note that the last approach, active learning,

aligns with both strategies above [36, 35, 46]. This involves an

iterative process to enhance machine predictions by interacting

with reviewers. The machine learns from an initial set of

include/exclude decisions human reviewers provide. Reviewers

then judge on a few new samples, and the machine adapts

its decision rule based on this feedback. This iterative process

continues until meeting a specified stopping criterion. While

the classifier makes final decisions for unscreened items, human

screeners retain control over the training process and the point

at which manual screening concludes. Wallace et al. implement
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Fig. 1: Illustration of LLM-assisted automated citation screening.

active learning-based article screening using Support Vector

Machines [36]. Notable tools include Abstrackr [38] and ASReview

[47]. Various active learning strategies existed [7]. For instance,

Marshall and Wallace [28] proposed a variant based on certainty,

continuously training the classifier on manually screened articles

and reordering unseen articles based on predicted relevance.

Large Language Models for Citation Screening

Recent advancements in LLMs, notably demonstrated by

ChatGPT, have brought about a revolutionary paradigm shift

across disciplines [48, 49]. LLMs have shown impressive

generalisability across diverse domains and strong zero-/few-shot

reasoning capabilities [48, 50]. Leveraging LLMs, like ChatGPT,

holds promise for SRs, which however remains underexplored [7, 8].

This gap underscores the need for a comprehensive investigation

into LLMs’ potential in automating SRs, e.g., citation screening

in the current paper.

There are some initial attempts to evaluate ChatGPT in

automated SR, such as automating search queries [51]. Alshami

et al. [52] utilized ChatGPT for automating the SR pipeline;

however, their approach did not follow the norm of citation

screening, making it incomparable to existing methods. Notably,

the effectiveness of ChatGPT in automating citation screening has

received limited attention, with only two studies [53, 54], which,

unfortunately, lack consideration for achieving high recall, making

them less suitable for real-world scenarios.

Materials and Methods

Overview

Our framework utilizes ChatGPT’s zero-shot learning to assess if a

candidate study’s abstract aligns with the SR protocol’s selection

criteria. These criteria outline aspects of the selected studies. The

provided sentence explains that in Figure 1, the red-highlighted

text, ”We included qualitative studies,” serves as an example

illustrating an inclusion criterion. This criterion specifies that only

studies with a qualitative nature will be selected. Theoretically, all

inclusion criteria should be met for the study to be included in the

SR.

Our novel method frames automated citation screening as a

question-answering (QA) task. Each selection criterion is treated

as a question to be addressed using LLMs like ChatGPT. These

models have showcased impressive question-answering abilities

across diverse domains and tasks, including encoding clinical

knowledge and achieving success in medical licensing exams

[55, 56, 57, 58].

An initial experiment using the whole selection criteria as

one comprehensive question (Figure 2a) proved ineffective. LLMs

excel at answering focused and clearly described questions. Hence,

our improved approach involves breaking down the selection

criteria into several K questions (the LM-based Query Generator

component in Figure 1), prompting LLMs to answer each question

(the LM-based Question Answerer in Figure 1), and combining the

answers for each question (the Ensembler in Figure 1).

Figure 2b details our proposed QA framework for citation

screening. We begin with a Question Generator to convert the

selection criteria into a set of questions. Optionally, a Question

Analyser may be employed to correctly combine the question

answers, considering, for instance, that answers A1 and A2

for questions Q1 and Q2 represent an inclusion and exclusion

criterion, respectively, and the correct combination is A1 ∩ ¬A2.

Subsequently, each question is addressed by a trained Question

Answerer to determine if the corresponding selection criterion is

met, with each answer converted into a numeric score. Optionally,

an Answer Re-ranking component can either be pre-trained on

a large corpus of SRs or task-specifically trained with human

reviewers’ feedback. Finally, the Ensemble component combines

the answers to all questions, and a final decision is made using

predefined rules. Each component will be detailed in subsequent

sections.

Question Generation

A substantial body of research exists on automated question

generation from natural language text [59]. These methods often

rely on manually crafted rules or a trained model, typically

a fine-tuned pre-trained language model. While these question

generation models have demonstrated utility in domain-specific

tasks, such as generating questions about product descriptions

for matching purchase inquiries [60] or creating questions about

academic materials to assess learning outcomes [61], generalizing

them to the vast diversity of SR topics presents challenges.

Therefore, we entrust the question generation task to ChatGPT.
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(a) Naive approach for LLM-based automated citation

screening using selection criteria

(b) An aspect-based approach for LLM-assisted automated citation

screening using selection criteria

Fig. 2: Methodological framework for LLM-assisted automation

screening.

A naive approach to question generation involves prompting

ChatGPT to generate questions from the given paragraph about

the selection criteria of a systematic review. However, this

uncontrolled method often generates numerous questions, many

subsumed by others or deemed too trivial to be meaningful.

To enhance the quality of generated questions, we constrained

ChatGPT to produce no more than K questions, aiming to

minimize redundancy. Based on an analysis of the lengths of

selection criteria in our dataset’s SRs, K = 5 proved sufficient for

most SRs. Each sentence in the selection criteria often aligns well

with a distinct criterion. In rare cases with more than 5 sentences,

ChatGPT intelligently combined two sentences into one question.

Figure 3a depicts the utilized prompt, and an example is shown

in Figure 1.

(a) Prompt for question generation

(b) Prompt for question answering

Fig. 3: Prompt design for LLM-assisted automated citation

screening

Question Answering

The Question Answerer evaluates the relevance of each abstract

to every selection criterion, formulated as Yes/No questions. We

prompt ChatGPT to return three types of responses Figure 3b:

• Positive: The abstract explicitly addresses the question,

offering information that aligns with the criteria posed by the

question.

• Neutral: The information in the abstract is inqdequate or too

ambiguous for ChatGPT to derive a confirmative answer.

• Negative: A clear NO answer to the question, indicating

irrelavance to the specified criteria.

Answer Representation Approaches

Two distinct techniques represent answers, namely the Hard

Answer and Soft Answer methods. These methods conceptualize

answer representation as a generative sentiment classification

problem, leveraging the capabilities of the BART model inspired

by its recent successes in various sentiment classification tasks [62].

• Hard Answer: This method involves BART determining

the sentiment category of each answer (Positive, Neutral,

Negative). Traditionally, rejecting an abstract occurred if one

question had a Negative answer, leading to low recall due to

small errors in ChatGPT responses. Instead, we convert the

discrete sentiment categories to semantic scores (e.g., 1, 0.5,

and 0), enabling the Ensemble to combine answers into a final

decision.

• Soft Answer: ChatGPT often justifies its answer,

contributing to quantifying its confidence level in the provided

answer. In the Soft Answer method, the sentiment score

for each answer is the probability of BART classifying the

ChatGPT-generated answer sentence as positive.

Decision Engine

Ensemble

The answer scores for each selection criterion are ”averaged.” This

mean score provides a quantitative representation of the relevance

of the abstract. Candidate studies are then ranked in descending

order based on these mean scores. To enhance screening further,

a significant contribution involves re-ranking candidate studies

based on how well abstracts are semantically aligned with the

selection criteria.

Re-ranking

Several methods are available for embedding selection criteria and

abstracts. Given the emphasis on the capabilities of LLMs in this

paper, GPT Embeddings [63] are chosen. Two approaches to re-

ranking are defined: Abstract-level re-ranking and answer-level re-

ranking.

• Abstract-Level Re-Ranking: This method first aggregates

the mean answer score across all questions and then averages

the mean score with the similarity score.

• Answer-Level Re-Ranking: In this more advanced method,

the cosine similarity evaluates how well an abstract aligns

with each generated question, enhancing the answers to each

selection criterion. Each Yes/No question is matched against

the abstract, and the cosine similarity is averaged with the

corresponding answer score. This results in K re-ranked answer

scores. Then the K scores are averaged, and the mean score is
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Fig. 4: Example of handing exclusion criteria.

further averaged with the overall alignment between selection

criteria and abstract. This hierarchical ensemble effectively

enhances the overall precision of document re-ranking by

considering confidence in answering each question, aligning

with each selection criterion, and adhering holistically to

selection criteria.

Experimental Setup

Dataset and Evaluation

This study utilized datasets of CLEF eHealth 2019 Task 2:

Technology Assisted Reviews in Empirical Medicine (TAR2019).

This dataset provides valuable insights into the prevailing scientific

consensus on various topics, making it a suitable resource for

evaluating reranking methodologies in systematic reviews [64].

We employed the TAR2019 test set comprising 31 SRs

categorized into Intervention (20), DTA (8), Qualitative (2), and

Prognosis (1). We refrained from using the training set, aiming

to highlight the effectiveness of our zero-shot methodology that

eliminates the need for prior training [65, 25].

We used the review titles from the TAR2019 datasets to

identify selection criteria. Seven evaluation metrics were employed,

including the rank position of the last relevant document (L Rel),

Mean Average Precision (AP), Recall at k% (k = 5, 10, 20,

30), and Work Saved Over Sampling (WSS) at k% (k = 95%,

100%). Notably, WSS@k measures the screening workload saved

by halting the examination process once k% of relevant documents

are identified, compared to screening the entire document set [27].

Baseline Model

The baseline models, serving as a comparative benchmark, were

based on submissions to the TAR2019 workshop [66], which

encompass UvA [67], UNIPD [68], and Sheffield [17]. Additionally,

we considered the nine models evaluated by Wang et al [25].

Unlike our fully automated model, many workshop submissions

employ an iterative ranking system, making them semi-automated.

To comprehensively assess performance, we implemented two IR

baselines of our own. One is cosine similarity between selection

criteria and abstract based on GPT embeddings [63], named

GPT Cosine Similarity. The other is BM25 [69], using selection

criteria as a query. The variants of our own approach are

summarised below:

• GPT QA Soft/Hard: Soft/Hard answer representation,

without re-ranking.

• GPT QA Soft/Hard Abstract Level: Soft/Hard answer

representation, with abstract-level re-ranking.

• GPT QA Soft/Hard Answer Level: Soft/Hard answer

representation, with answer-level re-ranking.

am

Results

Prognosis

Our proposed methods demonstrated promising results on the

Prognosis dataset (Table 1). Notably, in terms of LRel, for

which a lower value signifies superior performance, answer-level

re-ranking methods showcased the most impressive results among

our proposed methods: 2333 for GPT QA Soft Answer Level

and 2373 for GPT QA Hard Answer Level. Our methods also

achieved MAP scores from 0.350 to 0.430, underscoring the

models’ efficiency in prioritizing candidate studies. This outshined

numerous IR methods (UNIPD and Sheffield variants).

The proposed methods sustained their superiority in R@k%.

When k ∈ {5, 10}, our re-ranking methods (the last four rows

in Table 1) consistently outperformed UNIPD and Sheffield

submissions. A promising finding was that our best re-ranking

method successfully suggested 65% of total positive samples

(included studies) for classifier training when only 10% of

total samples needed to be verified by human reviewers. This

is a testament to the capacity of selecting positive samples

from highly imbalanced data. The best WSS@95 of our zero-

shot approaches reached 55.5% on Prognosis, and notably

WSS@100 was significantly better than most baselines except

2018 stem original p50 t1500 which used relevance feedback.

From the holistic view of the evaluation metrics, our answer-

level re-ranked models stood out as cutting-edge solutions,

achieving either competitive or new state-of-the-art results.

Qualitative

The results are presented in Table 2. Similarly, the LRel metric

highlighted that both our abstract-level and answer-level re-

ranking methods (the last four rows in Table 2) are particularly

effective. The MAP results of our proposed models consistently

outperformed the IR baselines of UNIPD and Sheffield. UvA

showed the best performance. Note that the UvA approaches used

relevance feedback to improve the ranking performance, so it was

not purely a zero-shot problem in our sense. Further discussions

can be found in the Discussions section.

Regarding recall, our models showed promising results when

k = 5, meaning that our methods identified more than half

of the positive samples in the top 5% ranked list. This allows

us to significantly reduce the effort in annotating the initial

dataset for training a citation screener. Although some IR methods

showed higher recall when k ≥ 10, our methods outperformed

all baselines in R@30% and showed significant performance gains

in terms of both WSS@95 and WSS@100 over all baselines,
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Table 1. Results obtained on the Prognosis data. The zero-shot ranking models are emboldened.

Paper Models L Rel MAP R@5% R@10% R@20% R@30% WSS@95 WSS@100

UvA abs-hh-ratio-ilps 2885 0.673 0.562 0.714 0.875 0.911 0.591 0.143

abs-th-ratio-ilps 2537 0.628 0.521 0.682 0.818 0.927 0.566 0.247

UNIPD 2018 stem original p10 t400 2967 0.235 0.214 0.484 0.812 0.901 0.567 0.119

distributed effort p10 t1500 2594 0.235 0.214 0.484 0.812 0.896 0.554 0.230

2018 stem original p10 t1000 2644 0.235 0.214 0.484 0.812 0.896 0.554 0.215

2018 stem original p10 t200 2911 0.242 0.214 0.536 0.812 0.901 0.530 0.135

2018 stem original p10 t500 2920 0.235 0.214 0.484 0.812 0.891 0.560 0.133

2018 stem original p10 t300 2955 0.239 0.214 0.547 0.818 0.891 0.556 0.122

2018 stem original p10 t1500 2578 0.235 0.214 0.484 0.812 0.896 0.554 0.234

distributed effort p10 t1000 2563 0.235 0.214 0.484 0.812 0.896 0.554 0.239

2018 stem original p10 t100 2802 0.259 0.286 0.562 0.797 0.891 0.600 0.168

baseline bm25 t500 3343 0.071 0.057 0.130 0.281 0.422 0.084 0.007

distributed effort p10 t300 2964 0.235 0.214 0.484 0.812 0.906 0.567 0.120

2018 stem original p50 t1000 2556 0.221 0.214 0.484 0.740 0.870 0.571 0.241

distributed effort p10 t100 2789 0.252 0.250 0.568 0.786 0.875 0.594 0.172

2018 stem original p50 t200 2911 0.242 0.214 0.536 0.812 0.901 0.530 0.135

baseline bm25 t1000 3346 0.070 0.057 0.130 0.276 0.396 0.057 0.006

distributed effort p10 t500 2708 0.235 0.214 0.484 0.812 0.891 0.566 0.196

baseline bm25 t300 3350 0.071 0.057 0.135 0.276 0.385 0.104 0.005

baseline bm25 t100 3350 0.066 0.047 0.130 0.255 0.365 0.059 0.005

2018 stem original p50 t400 2955 0.231 0.214 0.484 0.807 0.896 0.556 0.122

2018 stem original p50 t300 2955 0.239 0.214 0.547 0.818 0.891 0.556 0.122

2018 stem original p50 t100 2802 0.259 0.286 0.562 0.797 0.891 0.600 0.168

distributed effort p10 t200 2968 0.240 0.214 0.542 0.807 0.906 0.548 0.119

baseline bm25 t400 3347 0.071 0.057 0.130 0.281 0.417 0.109 0.006

2018 stem original p50 t1500 1975 0.219 0.214 0.484 0.740 0.828 0.500 0.413

2018 stem original p50 t500 2660 0.228 0.214 0.484 0.807 0.891 0.576 0.210

baseline bm25 t1500 3346 0.070 0.057 0.130 0.276 0.396 0.050 0.006

baseline bm25 t200 3350 0.069 0.057 0.125 0.266 0.385 0.111 0.005

distributed effort p10 t400 2920 0.235 0.214 0.484 0.812 0.891 0.560 0.133

Sheffield sheffield-baseline 2990 0.126 0.146 0.255 0.448 0.594 0.247 0.112

sheffield-relevence feedback 2775 0.141 0.151 0.307 0.484 0.646 0.305 0.176

Proposed Method GPT Cosine Similarity 3160 0.178 0.200 0.305 0.495 0.647 0.239 0.053

BM25 3337 0.074 0.089 0.132 0.279 0.416 0.020 0.000

GPT QA Soft 3211 0.350 0.395 0.563 0.784 0.832 0.434 0.037

GPT QA Hard 3338 0.315 0.395 0.395 0.753 0.753 0.417 0.060

GPT QA Soft Abstract Level 2467 0.417 0.395 0.647 0.795 0.879 0.523 0.261

GPT QA Hard Abstract Level 2398 0.417 0.395 0.637 0.789 0.884 0.543 0.282

GPT QA Soft Answer Level 2373 0.430 0.400 0.653 0.800 0.884 0.543 0.289

GPT QA Hard Answer Level 2333 0.429 0.400 0.642 0.789 0.884 0.555 0.301

including the relevance feedback approaches by UvA. The results

are overall encouraging, showing that the proposed QA-based

prioritization framework potentially applies well to qualitative

SRs, too. However, a conclusive statement requires more empirical

studies, which will be one direction of our future work.

Diagnostic Test Accuracy (DTA)

Table 3 shows satisfactory results on DTA. The top-5% ranked

list of our best models covered as many as 45% positive samples.

They outperformed all IR methods except abs-hh-ratio-ilps by

UvA, leading to better MAP over the latter, and approached

the fine-tuned models in R@5%. This implies the feasibility of

our approaches for reducing the human effort in annotating an

initial training set with a reasonable number of included studies,

compared to random sampling, which requires annotating 45% of

total samples to reach the same size of included studies. Although

our models underperformed the best UvA variant in R@5%, they

started to excel the latter when k ≥ 20, resulting in a better MAP

and significantly higher WSS.

On the other hand, we notice that although some UNIPD and

Sheffield submissions performed better than our best models in

recall (when k > 10) andWSS (when R = 95 or 100), our methods

were consistently stronger than the baselines without relevance

feedback (the rows in bold) by large margins. This justifies the

superiority of LLMs as a zero-shot citation screening method. We

anticipate that the screening performance can be further improved

through an iterative question-answering conversion by providing

proper feedback to LLMs. Similar ideas have been proven effective
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Table 2. Results obtained on the Qualitative data. The zero-shot ranking models are emboldened.

Paper Models L Rel MAP R@5% R@10% R@20% R@30% WSS@95 WSS@100

UvA abs-hh-ratio-ilps 1796 0.204 0.478 0.655 0.876 0.929 0.417 0.397

abs-th-ratio-ilps 2564 0.187 0.487 0.628 0.805 0.920 0.398 0.215

UNIPD 2018 stem original p10 t400.out 2547 0.109 0.496 0.717 0.779 0.894 0.302 0.183

distributed effort p10 t1500.out 2544 0.109 0.496 0.743 0.770 0.885 0.268 0.168

2018 stem original p10 t1000.out 2662 0.109 0.496 0.743 0.770 0.885 0.273 0.141

2018 stem original p10 t200.out 2934 0.089 0.478 0.522 0.699 0.805 0.216 0.101

2018 stem original p10 t500.out 2535 0.109 0.496 0.743 0.770 0.894 0.301 0.185

2018 stem original p10 t300.out 2660 0.103 0.496 0.655 0.752 0.858 0.303 0.159

2018 stem original p10 t1500.out 2534 0.109 0.496 0.743 0.770 0.885 0.268 0.170

distributed effort p10 t1000.out 2469 0.109 0.496 0.743 0.770 0.885 0.295 0.199

2018 stem original p10 t100.out 2996 0.071 0.327 0.416 0.637 0.796 0.186 0.090

baseline bm25 t500.out 2700 0.051 0.274 0.425 0.469 0.611 0.412 0.256

distributed effort p10 t300.out 2518 0.109 0.496 0.743 0.770 0.894 0.309 0.193

2018 stem original p50 t1000.out 2438 0.116 0.496 0.743 0.920 0.947 0.357 0.194

distributed effort p10 t100.out 2920 0.083 0.416 0.469 0.681 0.814 0.258 0.106

2018 stem original p50 t200.out 2934 0.089 0.478 0.522 0.699 0.805 0.216 0.101

baseline bm25 t1000.out 3040 0.055 0.274 0.425 0.496 0.788 0.239 0.101

distributed effort p10 t500.out 2641 0.109 0.496 0.743 0.770 0.894 0.295 0.162

baseline bm25 t300.out 2697 0.049 0.274 0.372 0.451 0.628 0.294 0.257

baseline bm25 t100.out 2700 0.056 0.301 0.389 0.637 0.743 0.399 0.256

2018 stem original p50 t400.out 2566 0.109 0.496 0.717 0.779 0.894 0.293 0.174

2018 stem original p50 t300.out 2687 0.103 0.496 0.655 0.752 0.858 0.290 0.147

2018 stem original p50 t100.out 2996 0.071 0.327 0.416 0.637 0.796 0.186 0.090

distributed effort p10 t200.out 2762 0.104 0.496 0.673 0.761 0.867 0.303 0.135

baseline bm25 t400.out 2700 0.052 0.274 0.434 0.469 0.619 0.417 0.256

2018 stem original p50 t1500.out 1970 0.116 0.496 0.743 0.920 0.965 0.356 0.301

2018 stem original p50 t500.out 2576 0.110 0.496 0.743 0.788 0.894 0.283 0.168

baseline bm25 t1500.out 3039 0.055 0.274 0.425 0.496 0.779 0.240 0.101

baseline bm25 t200.out 2698 0.053 0.274 0.381 0.619 0.726 0.395 0.256

distributed effort p10 t400.out 2636 0.109 0.496 0.743 0.770 0.894 0.301 0.165

Sheffield sheffield-relevance feedback.out 2940 0.060 0.274 0.549 0.717 0.832 0.185 0.103

sheffield-baseline 3031 0.051 0.265 0.451 0.619 0.743 0.135 0.082

Proposed Method GPT Cosine Similarity 2256 0.082 0.173 0.478 0.559 0.618 0.303 0.289

BM25 2704 0.037 0.078 0.146 0.191 0.259 0.135 0.135

GPT QA Soft 1786 0.157 0.537 0.614 0.673 0.959 0.599 0.484

GPT QA Hard 1784 0.110 0.478 0.582 0.900 0.959 0.650 0.485

GPT QA Soft Abstract Level 1683 0.159 0.509 0.605 0.673 0.959 0.595 0.511

GPT QA Hard Abstract Level 1675 0.200 0.509 0.609 0.678 0.959 0.608 0.514

GPT QA Soft Answer Level 1682 0.159 0.505 0.600 0.673 0.959 0.576 0.507

GPT QA Hard Answer Level 1684 0.157 0.514 0.600 0.678 0.959 0.601 0.507

on different NLP tasks [70, 71, 72]. Meanwhile, it is worth noting

the DTA dataset has been generally considered a very difficult

dataset [73].

Intervention

Table 4 shows the results on Intervention. Our methods exhibited

exceptional performance across all metrics. The high recall

values at different thresholds underscored the effectiveness of

our proposed model, consistently outperforming all models

except BioBERT-Tune. Our best models, namely the answer-

level re-ranking methods GPT QA HARD Answer Level and

GPT QA Soft Answer Level, also achieved better MAP results

than most baselines, and the abstract-level re-ranking method

GPT QA HARD Answer Level rivalled the robust UvA systems.

Notably, our best models excelled in LRel, and the results of

WSS@95 and WSS@100 outperformed most baseline models. In

summary, the comprehensive assessment across diverse metrics

and datasets reinforced the standing of our proposed methods as

state-of-the-art solutions.
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Table 3. Results obtained on the DTA data. The zero-shot ranking models are emboldened.

Paper Models L Rel MAP R@5% R@10% R@20% R@30% WSS@95 WSS@100

UvA abs-hh-ratio-ilps 2420 0.493 0.589 0.682 0.789 0.834 0.406 0.304

abs-th-ratio-ilps 2676 0.399 0.418 0.536 0.661 0.734 0.312 0.253

UNIPD 2018 stem original p10 t400.out 1190 0.229 0.448 0.634 0.818 0.895 0.662 0.512

distributed effort p10 t1500.out 1111 0.229 0.445 0.630 0.814 0.895 0.652 0.513

2018 stem original p10 t1000.out 1141 0.229 0.445 0.630 0.814 0.893 0.658 0.509

2018 stem original p10 t200.out 1282 0.229 0.445 0.634 0.823 0.891 0.660 0.507

2018 stem original p10 t500.out 1200 0.229 0.445 0.634 0.818 0.893 0.662 0.509

2018 stem original p10 t300.out 1280 0.229 0.452 0.627 0.816 0.893 0.660 0.500

2018 stem original p10 t1500.out 1126 0.229 0.445 0.630 0.814 0.895 0.657 0.514

distributed effort p10 t1000.out 1109 0.229 0.445 0.630 0.814 0.895 0.649 0.514

2018 stem original p10 t100.out 2024 0.221 0.418 0.609 0.791 0.868 0.525 0.399

baseline bm25 t500.out 2470 0.119 0.236 0.402 0.548 0.650 0.390 0.252

distributed effort p10 t300.out 1111 0.232 0.445 0.630 0.814 0.886 0.649 0.528

2018 stem original p50 t1000.out 1127 0.229 0.445 0.630 0.811 0.893 0.652 0.528

distributed effort p10 t100.out 1271 0.204 0.439 0.614 0.770 0.839 0.610 0.468

2018 stem original p50 t200.out 1291 0.229 0.445 0.634 0.820 0.898 0.660 0.499

baseline bm25 t1000.out 2395 0.119 0.236 0.389 0.543 0.659 0.396 0.260

distributed effort p10 t500.out 1116 0.229 0.445 0.630 0.814 0.891 0.634 0.521

baseline bm25 t300.out 2493 0.119 0.239 0.405 0.541 0.652 0.391 0.244

baseline bm25 t100.out 2130 0.120 0.239 0.414 0.564 0.659 0.394 0.295

2018 stem original p50 t400.out 1189 0.229 0.448 0.634 0.816 0.891 0.654 0.527

2018 stem original p50 t300.out 1272 0.229 0.452 0.627 0.814 0.893 0.656 0.518

2018 stem original p50 t100.out 2027 0.222 0.418 0.609 0.786 0.868 0.549 0.394

distributed effort p10 t200.out 1194 0.225 0.445 0.632 0.811 0.877 0.663 0.509

baseline bm25 t400.out 2492 0.119 0.239 0.405 0.539 0.650 0.386 0.246

2018 stem original p50 t1500.out 1056 0.229 0.445 0.630 0.814 0.898 0.651 0.537

2018 stem original p50 t500.out 1200 0.229 0.445 0.634 0.809 0.889 0.649 0.524

baseline bm25 t1500.out 2476 0.119 0.236 0.389 0.541 0.652 0.364 0.254

baseline bm25 t200.out 2253 0.120 0.234 0.405 0.550 0.652 0.409 0.278

distributed effort p10 t400.out 1116 0.231 0.445 0.630 0.814 0.886 0.634 0.528

Sheffield sheffield-Log likelihood.out 1964 0.222 0.305 0.450 0.641 0.730 0.475 0.375

sheffield-Odds Ratio.out 2250 0.175 0.220 0.336 0.525 0.675 0.451 0.338

sheffield-baseline.out 2184 0.248 0.382 0.561 0.707 0.805 0.490 0.347

sheffield-Chi Squared.out 1972 0.234 0.350 0.527 0.668 0.759 0.487 0.381

Wang et al. BM25 2723 0.119 0.213 0.329 0.528 0.314 0.208

BERT 2514 0.092 0.132 0.238 0.391 0.258 0.210

BERT-M 3234 0.096 0.079 0.198 0.379 0.263 0.123

BioBERT 3264 0.081 0.129 0.229 0.337 0.137 0.095

BlueBERT 3771 0.069 0.026 0.053 0.105 0.023 0.016

PubMedBERT 3331 0.104 0.123 0.214 0.312 0.202 0.098

BERT-Tuned 1400 0.223 0.439 0.601 0.762 0.587 0.460

BERT-M-Tuned 1178 0.254 0.447 0.590 0.754 0.615 0.500

BioBERT-Tuned 853 0.318 0.500 0.671 0.817 0.686 0.585

Proposed Method GPT Cosine Similarity 1154 0.271 0.477 0.628 0.782 0.851 0.600 0.513

BM25 2461 0.164 0.334 0.472 0.654 0.723 0.351 0.233

GPT QA Soft 1979 0.255 0.319 0.495 0.674 0.765 0.408 0.334

GPT QA Hard 1983 0.228 0.367 0.468 0.673 0.776 0.364 0.303

GPT QA Soft Abstract Level 1491 0.301 0.384 0.574 0.705 0.810 0.473 0.422

GPT QA Hard Abstract Level 1583 0.310 0.387 0.573 0.727 0.820 0.454 0.396

GPT QA Soft Answer Level 1136 0.315 0.438 0.593 0.766 0.858 0.556 0.506

GPT QA Hard Answer Level 1176 0.322 0.450 0.595 0.791 0.873 0.536 0.491
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Table 4. Results obtained on the Intervention data. The zero-shot ranking models are emboldened.

Paper Models L Rel MAP R@5% R@10% R@20% R@30% WSS@95 WSS@100

UvA abs-hh-ratio-ilps 958 0.567 0.518 0.628 0.736 0.813 0.526 0.480

abs-th-ratio-ilps 986 0.556 0.478 0.576 0.692 0.774 0.535 0.450

UNIPD 2018 stem original p10 t400.out 985 0.280 0.307 0.502 0.663 0.744 0.632 0.511

distributed effort p10 t1500.out 981 0.280 0.306 0.499 0.664 0.745 0.633 0.517

2018 stem original p10 t1000.out 977 0.280 0.306 0.499 0.664 0.745 0.630 0.510

2018 stem original p10 t200.out 1180 0.280 0.312 0.501 0.671 0.775 0.617 0.488

2018 stem original p10 t500.out 975 0.280 0.306 0.502 0.662 0.742 0.630 0.514

2018 stem original p10 t300.out 1141 0.280 0.313 0.496 0.665 0.771 0.617 0.494

2018 stem original p10 t1500.out 952 0.280 0.306 0.499 0.664 0.745 0.630 0.522

distributed effort p10 t1000.out 992 0.279 0.306 0.499 0.664 0.745 0.620 0.492

2018 stem original p10 t100.out 1153 0.274 0.306 0.483 0.639 0.737 0.540 0.474

baseline bm25 t500.out 1233 0.222 0.191 0.282 0.410 0.515 0.435 0.394

distributed effort p10 t300.out 974 0.276 0.306 0.499 0.664 0.733 0.592 0.481

2018 stem original p50 t1000.out 836 0.290 0.306 0.498 0.688 0.795 0.643 0.542

distributed effort p10 t100.out 1114 0.248 0.315 0.444 0.604 0.704 0.458 0.372

2018 stem original p50 t200.out 1185 0.290 0.312 0.499 0.693 0.792 0.630 0.481

baseline bm25 t1000.out 1241 0.222 0.191 0.282 0.408 0.524 0.446 0.392

distributed effort p10 t500.out 991 0.278 0.306 0.499 0.664 0.743 0.606 0.483

baseline bm25 t300.out 1262 0.222 0.187 0.286 0.410 0.523 0.440 0.398

baseline bm25 t100.out 1397 0.223 0.186 0.291 0.429 0.557 0.414 0.368

2018 stem original p50 t400.out 985 0.290 0.307 0.501 0.685 0.767 0.646 0.514

2018 stem original p50 t300.out 1144 0.290 0.313 0.495 0.682 0.788 0.639 0.497

2018 stem original p50 t100.out 1150 0.284 0.306 0.483 0.653 0.752 0.556 0.481

distributed effort p10 t200.out 965 0.271 0.306 0.482 0.651 0.752 0.560 0.445

baseline bm25 t400.out 1242 0.222 0.191 0.286 0.412 0.523 0.434 0.393

2018 stem original p50 t1500.out 796 0.290 0.306 0.498 0.688 0.785 0.642 0.553

2018 stem original p50 t500.out 1001 0.290 0.306 0.501 0.691 0.779 0.650 0.505

baseline bm25 t1500.out 1203 0.222 0.191 0.282 0.411 0.533 0.453 0.399

baseline bm25 t200.out 1263 0.222 0.189 0.284 0.417 0.535 0.438 0.396

distributed effort p10 t400.out 981 0.277 0.306 0.499 0.663 0.734 0.595 0.483

Sheffield sheffield-Log likelihood.out 1132 0.293 0.258 0.378 0.583 0.695 0.458 0.381

Sheffield-Odds Ratio.out 1070 0.261 0.267 0.404 0.569 0.700 0.462 0.384

Sheffield-baseline.out 1276 0.245 0.220 0.334 0.507 0.653 0.470 0.386

sheffield-Chi Squared.out 1149 0.262 0.238 0.360 0.537 0.687 0.469 0.415

Wang et al. BM25 1716 0.211 0.305 0.399 0.554 0.351 0.296

BERT 1399 0.160 0.211 0.328 0.504 0.362 0.333

BERT-M 1837 0.177 0.195 0.355 0.527 0.323 0.266

BioBERT 1833 0.146 0.135 0.198 0.307 0.159 0.163

BlueBERT 2057 0.046 0.028 0.051 0.107 0.008 0.036

PubMedBERT 1975 0.078 0.050 0.091 0.275 0.121 0.094

BERT-Tuned 1375 0.281 0.374 0.527 0.659 0.363 0.301

BERT-M-Tuned 1572 0.334 0.402 0.565 0.706 0.446 0.362

BioBERT-Tuned 707 0.456 0.581 0.737 0.842 0.646 0.579

Proposed Method GPT Cosine Similarity 920 0.315 0.401 0.544 0.722 0.797 0.552 0.499

BM25 1545 0.146 0.191 0.300 0.497 0.667 0.270 0.238

GPT QA Soft 1055 0.411 0.469 0.610 0.738 0.856 0.486 0.416

GPT QA Hard 1159 0.356 0.444 0.578 0.759 0.847 0.466 0.397

GPT QA Soft Abstract Level 934 0.440 0.494 0.663 0.800 0.873 0.534 0.459

GPT QA Hard Abstract Level 976 0.443 0.505 0.687 0.777 0.856 0.532 0.458

GPT QA Soft Answer Level 801 0.450 0.526 0.697 0.816 0.881 0.600 0.526

GPT QA Hard Answer Level 806 0.447 0.527 0.697 0.808 0.869 0.592 0.519
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Discussion

Selection Criteria

To further evaluate the usefulness of selection criteria, we

implemented our own BM25 baseline using selection criteria as

a query, and we observed competitive performances. Particularly

it significantly outperformed the BM25 baselines of UNIPD and

Wang et al. on the DTA dataset. On Intervention, it was at least

on par with or slightly better than most other BM25 baselines

except Wang et al. The result underscored the validity of using

selection criteria to guide citation screening.

Question Generation and Answering

We manually checked the question qualities and found notable

strengths and occasional challenges of ChatGPT in question

generation. Figure 4 illustrates how ChatGPT was smart enough

to translate a lengthy exclusion criterion into two relevant

questions, Q4 and Q5, demonstrating its nuanced understanding

of the complex semantics of the sentence. The questions were

effectively formatted so that a POSITIVE response consistently

signifies compliance with a selection criterion, be it inclusion or

exclusion.

Occasionally, ChatGPT failed to generate completely

independent questions. This led to redundant or overlapped

questions, introducing biases in combining answer scores.

Occasionally, ChatGPT struggled to address the “OR” clause

in a long selection criterion sentence. It was split into separate

questions, which was problematic. In such cases, matching one

question should give a POSITIVE score, but the NEGATIVE

answers to other questions generated from the OR clause might

underestimate the final score. These issues imply areas of

improvement in ensuring robust question generation and precise

answer interpretation for citation screening. We postulate that a

viable solution is to train a good question generator and analyzer

to tackle these issues. Alternatively, it is sensible for human

reviewers to scrutinize and correct the generated questions before

sending them to LLMs to answer.

While the current paper deliberately limited answers to

a simple form, it is worthwhile to consider incorporating

explanations of LLM-generated answers in future iterations.

Providing insight into ChatGPT’s reasoning process can enhance

transparency and facilitate a better understanding of the model’s

decision-making which is essential for instilling user confidence

in the outputs of automated citation screening to encourage

technology acceptance [74, 75]. In addition, it contributes to

refining model performance through iterative conversation with

LLMs by giving user feedback on model answers and their

explanations [70].

Answer Re-Ranking

Taking a holistic view, i.e., averaging model performances over all

four categories of datasets, the answer-level re-ranking methods

consistently outperformed our other models across all metrics.

This superiority is attributed to the additional granularity gained

by considering the alignment of each question with the abstracts

of candidate studies. Compared with other zero-shot models,

our methods achieved substantial improvements, showcasing both

the effectiveness of the proposed questions-answering framework

and the utility of ChatGPT as a zero-shot ranker for automated

citation screening.

When pitted against trained models employing relevant

feedback or fine-tuning, our methods still held a solid

ground competitively. Our best models achieved very promising

performances in LRel, R@5%, and WSS. This is a useful merit

as our zero-shot method fits well into the real-world citation

screening task, starting with no annotation of included/excluded

studies. Although the UvA variants and BioBERT-Tuned models

often resulted in better performances in MAP and occasionally in

recall at different thresholds, our models were still demonstrated

to be competitive, highlighting their brilliance requiring no prior

training. Therefore, our models are better generalizable to all

SR categories, especially when lacking comprehensive datasets

for relevance feedback or fine-tuning. Nevertheless, it is always

valuable to fine-tune LLMs for each SR topic to benefit our

proposed answer re-ranking methods.

Conclusion

This paper proposed an effective LLM-assisted question-answering

framework to facilitate citation screening and advance automated

systematic review. Extensive experiments emphasized the

particular pertinence of selection criteria of included studies

to automated citation screening and ChatGPT’s proficiency

in understanding and utilizing selection criteria to prioritize

candidate studies. Specifically, ChatGPT was able to correctly

capture and handle complex semantics like several juxtaposed

criteria with a logical OR relationship, significantly outperforming

other zero-shot baselines. The positive results of LRel (position

of the last relevant study), R@5% (recall at top 5%), R@10%,

WSS@95 (Workload Saved over Sampling at 95% recall level),

and WSS@100 not only showed the competency of the proposed

framework as a zero-shot citation screening methodology but also

indicated its potential use in reducing human effort in building a

high-quality dataset for training a citation screener.
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