Supplementary Figures: A maternal germline mutator
phenotype in a family affected by heritable colorectal cancer
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Figure S1. Cell-based in vitro assay of MUTYH function. A) We first generated knock-in HEK293
cells expressing different MUTYH variants. B) We then transfected in a GFP reporter containing an
8-0x0G: A mispair, which turns cells green when the A is replaced with a C. Flow cytometry was used to
sort cells based on GFP fluorescence. (Panel was generated using biorender.com) C) Results of the
GFP-off assay, with the relative repair activity measured as the frequency of each variant in the GFP+
fraction compared to the frequency before sorting.
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Figure S2. DNM calling and assessment. A) DNM calling and filtering workflow diagram. B) An
example of the density filtering method used in the sibling-as-surrogate-parent calling method applied to
C22 as the offspring of surrogate parent C21. Candidate DNMs are “sparse,” meaning they are in regions
where no more than 7 mutations were identified in sliding window sizes of 15MB (with step size of
3MB). Sparse mutations are outlined in red, while “dense” mutations (that did not pass this density filter)
are outlined in blue, and likely represent regions of the genome where the two siblings did not share the
same paternal haplotype.
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Figure S3. DNM visual inspection. An example of a validated DNM that was visually inspected using
igv-reports (github.com/igvteam/igv-reports).
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Figure S4. Number of Accessible Bases Calculated per Individual. The number of accessible bases
identified per each sequenced individual (excluding S1 and S3). Individuals that did not require the
surrogate DNM calling approach (C11, C12, C32, C32) share the same maximum number of accessible
bases. Individuals in Families 2 and 4 and the parent generation all have a lower amount of accessible
bases, which is dependent in each case on the number of shared paternal haplotype bases seen in each
surrogate parent sibling combination. As there is only one combination for offspring of Family 4, the
number of accessible bases is lowest in these individuals.




frequency

frequency

Frequency

Frequency

o
=)

"
=

e
K

o
<]

@

o

ES

~

VAF Distribution for C11 VAF Distribution for C12 VAF Distribution for C21 VAF Distribution for C22

30 175
25 15.0
125
20
> > 2
3 9 9
5 g g
E] 3 £ 100
3 15 g g
& -3 &
75
10
5.0
5 25
0 0.0
02 ¥ 0.6 . 00 01 02 03 04 05 06 07 . 2 03 04 05 06 07 08 09 02 03 04 05 0.6
VAF VAF VAF VAF
VAF Distribution for C23 VAF Distribution for C31 VAF Distribution for C32 VAF Distribution for C41
200 16

2 = =
g 9 9
H H H
g s s
El El El
g g8 g
& & &
6
4
2
0
00 01 02z 03 04 05 06 07 08 03 04 05 06 0.1 02 03 04 05 06 01 02 03 04 05 0.6
VAF VAF VAF VAF
VAF Distribution for C42 VAF Distribution for P1 VAF Distribution for P2 VAF Distribution for P3
50
17.5
15.0 40
12.5
30
g ol g
£ 100 H 5
] ] ]
g g g
i & =
75 20

w
o

~
n

3
o

02 03 X 0.5 0.6 07
VAF

VAF Distribution for P4

Figure S5. VAF distributions of all candidate DNMs per individual. Distributions of variant allele
frequency (VAF) scores are displayed for all identified DNMs of the 13 studied individuals. Two modes
are frequently observed across individuals, typically centering below and above 0.40- these likely reflect
clonal somatic mutations and germline mutations, respectively. Note that P2 is a clear outlier, with a VAF
distribution heavily skewed to the left with relatively few mutations in the candidate germline part of the
distribution.
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Figure S6. Ratio of accessible genome size for the individuals in this study over the average accessible
genome size reported in Jonsson et al. (2017) (2,682,890,000 base pairs). Individuals C21, C22, C23,
C41, C42, P1, P2, P3, and P4 all have accessible genome ratios substantially <1 due to the use of the
surrogate-parent DNM calling method.
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Figure S7. The probability (from the Poisson cumulative distribution) under the parental age model
(Jonsson et al. 2017) of observing an overall mutation count greater than or equal to what we observe.
The dashed line indicates the p-value threshold of 0.05 (significant points colored in red). All individuals
other than C42 have overall DNM counts that are compatible with the parental age model. See the
Methods for more detail on how probabilities are calculated.
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Figure S8. Deviations from the parental age model in Sherwood et al. A) Comparing observed and
expected DNM burdens from individuals in this study (triangles) and individuals from Sherwood et al.
(2023) (circles). Expected DNM burdens are based on parental age and accessible genome size for the
individuals in this study, and based on parental age only for Sherwood et al. (2023), since accessible
genome size was not reported (and was therefore assumed to be ~equivalent to the accessible genome size
used to generate the parental age model in Jonsson et al.). “POLE” and “POLD1” refer to individuals in
Sherwood’s dataset that have variation in those polymerase genes and show an extreme effect on the
germline mutation rate. The y = x line is shown in black. As in Sherwood et al., individual MUTYH C:II.1
was excluded due to high levels of somatic variant bleed-through. B) The probability (from the Poisson
cumulative distribution) under the parental age model of observing an overall mutation count greater than
or equal to what Sherwood et al. observed. The dashed line indicates the p-value threshold of 0.05
(significant points colored in red). Most of Sherwood et al.’s control individuals (except for two) have
overall mutation counts consistent with the parental age model, as do all their individuals with
monoallelic MUTYH parents. However, one of their individuals with a biallelic MUTYH mother has a
significantly elevated DNM burden, and the majority of individuals with the more severe variants in
POLE and POLD] show extremely significant elevations of overall mutation count.
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Figure S9. Comparing observed and expected (under the parental age model) mutation spectra. A)
Comparing observed (dark blue) mutation counts for each 1-mer mutation type to expectations (light

blue) under the parental age model. B) Comparing observed and expected mutation fractions (proportion
of the total mutations) across mutation types.




Sherwood et al.: Mutation types that are significantly elevated
above expectations of parental age model (spectra summed per group)
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Figure S10. Elevated C>A counts in biallelic MUTYH, POLD1 and POLE groups from Sherwood et
al. Under our significance testing framework, the mutation spectra summed per group from Sherwood et
al. (2023) (summarized in the heatmap in Figure 4A) show a significantly elevated C>A count for the

biallelic MUTYH family, as well as the groups of individuals with more severe POLDI and POLE
variants.
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Comparing observed and expected proportions of mutations phased
to each parent. Expectations from parental age model * phasing rate
(all mutation types combined)
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Figure S11. No significant differences in the amount of mutations phased to the carrier parents are
observed. Counts (A) and relative fractions (B) of phased mutations assigned to either the maternal (dark
blue) or paternal (dark green) haplotypes. Expectations (light blue and light green) are based on the
number of mutations expected to come from each parent under the parental aging model (corrected for
accessible genome size and individual phasing success rate). C) The probability (from the Poisson
cumulative distribution) of observing greater than or equal to the number of mutations phased to each
parent under the parental age model (corrected for accessible genome size and individual phasing success
rate). Dashed line indicates p < 0.05 threshold. No individual shows significantly more mutations phased
to either parent than in expectation. See the Methods for more details on how probabilities are calculated.
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A Sherwood et al. observed counts phased to each parent, C Testing for significant deviations from expectations
with expectations under parental age model in the number of mutations phased to each
MUTYH_Mother biallelic parent (all mutation types)
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Sherwood et al. observed fractions phased to each parent,
with expectations under parental age model
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Figure S12. Significantly more DNMs were phased to the biallelic MUTYH mother in Sherwood et
al. (2023) in both of her children (MUTYH B.I1.1 and MUTYH BII1.2). A) The counts of mutations
phased to maternal (dark blue) and paternal (dark green) haplotypes reported by Sherwood et al. (2023),
with expectations from the parental age model in light blue and light green. B) As in (A), but showing the
fraction of phased mutations phased to each parent. Note the substantial elevations of maternally-phased
mutations that they report. C) Under our significance testing threshold, both children of the biallelic
MUTYH mother from Sherwood et al. show a significant elevation of overall mutations phased to the
maternal haplotype than what is expected under the parental age model.
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A Per—family: Comparing observed and expected
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Figure S13. Significantly more C>A mutations phased to the children of Family 1 (biallelic mother)
than expected. A) The ratio of observed/expected (under the parental age model (corrected for accessible
genome size and individual phasing success rates) mutations phased to maternal and paternal haplotypes
across the three biallelic MUTYH families in this study. B) The probability of observing greater than or
equal to the number of mutations phased to each parent under the parental age model (corrected for
accessible genome size and individual phasing success rates). Only Family 1 shows a significant result for
C>A mutations phased to the carrier parent (biallelic mother).
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A Per-individual analysis
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Figure S14. Mutational signature extraction does not find activity of SBS18 or SBS36. Results of
SigProfilerExtractor, which extracts novel mutation signatures from the 3-mer mutation spectrum either at
the per-individual level (A), or across spectra summed across siblings within the same family (B). The
novel signature is then deconvoluted into known COSMIC signatures. The novel signature is shown in
each row as "SBS96A (original)", and its reconstruction based on known COSMIC signatures is shown
below ("SBS96A (reconstructed)"). The COSMIC signatures used to reconstruct the signatures are shown
to the right of the brackets (SBS1 + SBSS5). The cosine similarity reported is between the original and
reconstructed signatures, indicating how well COSMIC signatures can be used to reconstruct the
signatures extracted from the empirical data. The inferred activities (numbers of mutations contributed) of
each signature is shown in the "COSMIC signature activities" plots.
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Observed and expected C>A DNM counts
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Figure S15. Estimating the minimum per-individual MUTYH effect sizes that we have power to
detect in the male and female germlines. As in main text Figure 5, but based on individuals’ C>A
DNM counts rather than C>A DNM counts summed per family. A) Observed (dark blue) and expected
(light blue) C>A mutation counts per individual in biallelic carrier parent families. Horizontal black lines
show the number of mutations needed to reject the null parental age model (“mutator detection
threshold”). As can be seen in Figure 3C, among the children of biallelic carriers, only C12 and C23
reach that threshold. B) Estimates of the effect size of MUTYH on the number of C>A mutations
transmitted by the carrier parent relative to expectations under the parental age model. Orange points
indicate an estimate based on observed mutation counts, if all excess C>A mutations beyond the parental
age expectations are assigned to the carrier parent. The horizontal black lines show the minimum effect
size

that exceeds a one-tailed 95% confidence interval above the Jonsson (2017) parental age model
expectation (corresponding to the mutation counts denoted by the horizontal lines in (A)). Note that the
minimum detectable effect size in the children of the biallelic father is much lower than that of the
children of biallelic mothers, as fathers transmit much higher numbers of mutations to their offspring.
Despite this lower threshold, we observe no significant elevation of the C>A count in the biallelic father
family.
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