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Abstract (348) 

Importance: Systematic reviews are time-consuming and are still performed predominately 
manually by researchers despite the exponential growth of scientific literature. 

Objective: To investigate the sensitivity, specificity and estimate the avoidable workload 
when using an AI-based large language model (LLM) (Generative Pre-trained Transformer 
[GPT] version 3.5-Turbo from OpenAI) to perform title and abstract screening in systematic 
reviews. 

Data Sources: Unannotated bibliographic databases from five systematic reviews conducted 
by researchers from Cochrane Austria, Germany and France, all published after January 2022 
and hence not in the training data set from GPT 3.5-Turbo.  

Design: We developed a set of prompts for GPT models aimed at mimicking the process of 
title and abstract screening by human researchers. We compared recommendations from LLM 
to rule out citations based on title and abstract with decisions from authors, with a systematic 
reappraisal of all discrepancies between LLM and their original decisions. We used bivariate 
models for meta-analyses of diagnostic accuracy to estimate pooled estimates of sensitivity 
and specificity. We performed a simulation to assess the avoidable workload from limiting 
human screening on title and abstract to citations which were not “ruled out” by the LLM in a 
random sample of 100 systematic reviews published between 01/07/2022 and 31/12/2022. We 
extrapolated estimates of avoidable workload for health-related systematic reviews assessing 
therapeutic interventions in humans published per year. 

Results: Performance of GPT models was tested across 22,666 citations. Pooled estimates of 
sensitivity and specificity were 97.1% (95%CI 89.6% to 99.2%) and 37.7%, (95%CI 18.4% to 
61.9%), respectively. In 2022, we estimated the workload of title and abstract screening for 
systematic reviews to range from 211,013 to 422,025 person-hours. Limiting human 
screening to citations which were not “ruled out” by GPT models could reduce workload by 
65% and save up from 106,268 to 276,053-person work hours (i.e.,66 to 172-person years of 
work), every year. 

Conclusions and Relevance: AI systems based on large language models provide highly 
sensitive and moderately specific recommendations to rule out citations during title and 
abstract screening in systematic reviews. Their use to “triage” citations before human 
assessment could reduce the workload of evidence synthesis.  
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1. Introduction 

Evidence synthesis is defined as the “process of bringing together information and knowledge 
from many sources to inform decisions” 1. According to prominent researchers, it is 
considered as one of the most valuable contributions research can offer decision-makers 1,2. 
Yet, comprehensive evidence synthesis in the form of high quality systematic reviews, with or 
without meta-analysis, is limited by the fact that researchers still often manually  screen 
thousands of studies to determine whether they meet the eligibility criteria of reviews, despite 
the exponential growth of scientific literature 3. Manual screening is time-consuming because 
only a limited fraction (often less than 10%) of the screened studies is finally included. 
Worse, this screening process is conducted in duplicate because of the risk of error (with a 7 
to 11% error rate during abstract screening) 4-6. A review estimated that conducting a single 
systematic review required over a thousand hours of highly skilled manual labour, with hours 
increasing or decreasing proportionally to the body of evidence to be screened 7. 

Among methods to increase the efficiency of screening for evidence synthesis, automated 
tools using natural language processing and/or machine learning methods have been 
developed. Most tools work by prioritizing relevant studies learning from the researchers’ 
decision to include the study or not, via active “human-in-the-loop” learning 8-10. In a survey 
study, such tools provided on average 40% of time savings as compared to manual screening. 
Yet, these tools have limitations. For example, their performance depends on the proportion 
of relevant publications (i.e., publications that will be included) and the complexity of the 
inclusion criteria used by the research team 11,12. 

Recently, the development of general-purpose Artificial Intelligence (AI) systems based on 
large language models (LLMs), such as ChatGPT (OpenAI), has changed the paradigm of 
task automation. LLMs have shown excellent ability in answering health questions 13,14, 
diagnosing conditions 15, and  performing at (or near) the passing threshold for the exams of 
the United States Medical Licensing Exam (USMLE) 16, without any specialized training or 
reinforcement. LLMs can also accurately label unannotated data (accuracy 89% vs. 95% for 
human labelling) 17,18. Three studies have investigated the performance of LLMs to screen for 
systematic reviews in different fields (informatics and literature) with sensitivities ranging 
from 60% to 90% and specificities ranging from 10 to 60% depending on the dataset 
examined 19-21. Beyond their performance, LLMs also transform the accessibility of 
automated tools for non-specialists thanks to the use of chatbot interfaces where users can 
instruct the models in natural language.   

In this study, we aimed to appraise how a LLM-based system could perform title and abstract 
screening in systematic reviews. We 1) developed a set of prompts for the Generative Pre-
trained Transformer (GPT) 3.5-Turbo model (OpenAI) aimed at mimicking the process of 
title and abstract screening by human researchers; 2) evaluated the performance of the 
developed prompts in five high quality systematic reviews; and 3) performed a simulation 
study to estimate the avoidable workload when using LLMs to screen citations for inclusion 
in systematic reviews. 
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2. Methods 

We investigated the sensitivity, specificity and avoidable workload when using GPT 3.5-
Turbo models for screening in systematic reviews. 

2.1. Data sources 

Unannotated bibliographic databases from five systematic reviews conducted by researchers 
from Cochrane Austria, Germany and France were used in this study: 1) a review on the 
efficacy of primary treatment of confirmed COVID-19 in outpatient settings (Sommer et al., 
2022) 22; 2) a review on the efficacy of outpatient treatment options for the omicron variant of 
SARS-CoV-2 (Sommer et al., 2023) 23; 3) a methodological review on the epidemiology and 
reporting characteristics of non-randomized studies of pharmacologic treatment 
(unpublished); 4) a review on the effects of dairy intake on intermediate disease markers in 
adults (Kiesswetter et al., 2023) 24; and 5) a Cochrane review on systemic pharmacological 
treatments for chronic plaque psoriasis (Sbidian et al., 2023) 25. In all systematic reviews, 
decisions to include a citation beyond title and abstract screening were performed by two 
reviewers in duplicate and independently. All systematic reviews were published after 
January 2022 and hence were not in the training data set from GPT 3.5-Turbo. 

Unannotated bibliographic databases contained the deduplicated list of citations (i.e., studies 
identified by their title and abstracts) retrieved from electronic search, the list of citations 
selected after examination of title and abstracts only, and the list of citations selected based on 
their full texts. In addition to the bibliographic databases, the registered the protocols were 
used for the inclusion and exclusion criteria of studies in the reviews (PROSPERO 
CRD42022323440, CRD42023406456, and CRD42022303198, OSF https://osf.io/ywr8s/, 
and https://doi.org/10.1002/14651858.CD011535). 

2.2. Prompt development 

One investigator (VTT) developed five prompts for the GPT 3.5-Turbo model aimed at 
mimicking how humans apply the PICOS framework (Population, Intervention, Control, 
Outcomes and Study design) during title and abstract screening. Each prompt was focused on 
one element of the PICOS framework and instructed the model to 1) extract relevant 
information from the title and abstract of citations retrieved from electronic searches and; 2) 
assess whether the extracted information corresponded to the criteria reported in the protocol 
of the systematic review (using the same words as those used in the protocol); and 3) give a 
recommendation to “include” or “exclude” the citation 26. For example: “Read the following 
text and pay close attention to details. Proceed step by step. First, assess the control. Second, 
answer with the words "YES" or "NO" by using the following algorithm: 1-If the control is a 
placebo, or usual care, or a different dose or duration of the intervention, answer "YES". 2-If 
the control is an active treatment, different from the intervention, answer "NO". 3-If unclear, 
answer "NO"." We used temperature hyperparameters of “0”, so as to have deterministic 
outputs. Final prompts for each review are detailed in Appendix 1. 
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The investigator (VTT) designed a program applying the series of prompt to each citation so 
as to sequentially assess the design, population, intervention, control and then outcomes. The 
program was instructed to stop whenever the title or abstract did not fit the inclusion and 
exclusion criteria of the review. Both prompts and the program were developed with 10 to 
20% of citations by comparing the output from the model to the decisions from the authors of 
systematic reviews and optimizing the ability of the model to “rule out” citations. Final 
prompts were run on all citations through the application programming interface (API) of 
GPT. Final output for each review was a binary recommendation (Yes/No) to include or not 
each citation. 

2.3. Evaluation of the performance of GPT models to screen 
citations for inclusion in systematic reviews 

For each systematic review, we compared the recommendations from GPT models 
(considered as the index test) to rule-out citations based on title and abstract and the original 
decisions from the authors of the systematic review, at title and abstract level, (considered as 
the reference standard) by calculating the sensitivity and specificity with 95% confidence 
intervals. As the systematic reviews were not in the training data set from GPT 3.5-Turbo, we 
can consider that decisions from GPT models and from authors were completely independent. 

As human reviewers can make errors during title and abstract screening, their decisions can be 
considered as an imperfect reference standard. We therefore considered two reference 
standards. Reference standard 1 was the original decisions from authors, after title and 
abstract screening. Reference standard 2 involved the reappraisal of all discrepancies between 
recommendations from GPT models and original decisions from authors (i.e., “over 
inclusion”, “missed citation because of a screening error” or “correct original decision”) 27,28. 

Pooled estimates for sensitivity and specificity across all reviews were obtained using the 
bivariate model from Reitsma et al. for meta-analysis of diagnostic accuracy studies. This 
model preserves the two-dimensional nature of the underlying data (i.e., sensitivity and 
specificity) as compared to models relying solely on the diagnostic odds ratio 29. Results were 
presented by plotting estimates of the paired observed sensitivities and specificities, for each 
review, and a summary receiver operating characteristic (SROC) curve obtained from the 
bivariate model aforementioned.  

We performed a sensitivity analysis where the performance of GPT models was tested only in 
citations not used to fine-tune models (i.e., from 80 to 90% citations per review).  

2.4. Avoidable workload when using of GPT models to 
screen citations for inclusion in systematic reviews  

To assess the workload arising from title and abstract screening, one reviewer (FA) searched 
PubMed via MEDLINE for all systematic reviews (with or without meta-analyses) evaluating 
the effectiveness of a pharmacological or biological therapeutic or preventive intervention in 
humans published between July 1, 2022 and December 31, 2022 (Appendix 2). The reviewer 
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excluded studies focused solely on natural medicine, animal studies, diagnostic studies and 
protocols. The search was performed on October 24, 2023. Among identified reviews, we 
randomly selected 100 and assessed: 1) the number of citations obtained from the electronic 
database searches, after deduplication; 2) the number of citations kept after title and abstract 
screening; 3) the number of citations kept after full-text assessment; 4) the number of 
reviewers involved in the screening; and 5) whether an automated tool was used to accelerate 
screening. 

We estimated the time required to perform screening using the estimates reported in the 
Cochrane Handbook, which considers that the results of a database search can be screened at 
the rate of 60–120 per hour 26. Workload was multiplied by the number of reviewers 
performing screening independently. Whenever the number of reviewers was not reported, we 
made the conservative hypothesis that only a single reviewer was involved. If the review 
reported the use of machine learning tool to accelerate screening, we considered 40% average 
time savings 9. To obtain estimates over a one-year period, we hypothesized that 1) our 
sample of 100 reviews was representative of the identified reviews; and 2) the number of 
reviews published per year was twice the number of reviews identified over a 6-months 
period. For example, we considered that the number of citations to be screened over one year, 
was twice average number of citations observed in the sample multiplied by the number of 
systematic reviews and meta-analyses identified in the search. To obtain person-years 
estimates, we arbitrarily considered that a human reviewer was working 8 hours a day for 200 
days per year. 

Time required for the use of GPT models for title and abstract screening involved 1) human 
screening for 20% of the number of citations retrieved from electronic searches and 2) a 
conservative and arbitrary quantity of 8 hours of work to adapt and fine-tune the prompt.  

Avoidable workload was obtained by subtracting the time required for human screening and 
the time required to use GPT models in two hypothetical scenarios: 1) in systematic reviews 
and meta-analyses where two reviewers performed screening on title and abstract, one 
reviewer was replaced by the use of a GPT model; and 2) human screening on title and 
abstract was limited to citations which were not “ruled out” by a GPT model.  

3. Results 

3.1. Systematic reviews 

The five systematic reviews used in this study identified a total number of 22,666 citations 
from electronic searches on the Epistemonikos COVID-19 LOVE platform (n=2), the iSearch 
COVID-19 portfolio (n=1), MEDLINE (n=3), Cochrane Central Register of Controlled Trials 
(n=2), EMBASE (n=2), Web of Science (n=1), and LILACS (Latin American and Caribbean 
Health Science Information database) (n=1). After screening of title and abstracts, 1,485 
(6.5%) citations were included (ranging from 1.2% to 35%). After full-text screening, 432 
(1.9%) citations were included (ranging from 0.1% to 4%) (Table 1). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2023. ; https://doi.org/10.1101/2023.12.15.23300018doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.15.23300018
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2. Evaluation of the performance of GPT models to screen 
citations for inclusion in systematic reviews 

Considering the reference standard 1 (i.e. original decisions from authors), sensitivity of GPT 
models to rule out citations during title and abstract screening for systematic reviews ranged 
from 81.3% (95% CI 77.1 to 84.9) for the review on the efficacy of primary treatment of 
confirmed COVID-19 in outpatient settings; to 99.2% (95% CI 99.0 to 99.4) for the review on 
dairy intake on intermediate disease markers in adults 22,24. Specificity ranged from 9.1% 
(95%CI 6.4 to 12.7) for the review on dairy intake on intermediate disease markers in adults 
to 56.6% (95%CI 50.8 to 62.2) for the review on the efficacy of primary treatment of 
confirmed COVID-19 in outpatient settings 22,24 (Table 2).  

Considering the reference standard 2 (i.e., decisions from authors and reappraisal of all 
discrepancies), 97 citations (median 27 (IQR 2 to 27) per review) were excluded on title and 
abstract by human reviewers despite being eligible for full-text review (i.e., screening errors) 
and identified by GPT models. On the contrary, GPT models excluded 187 citations (median 
19 (IQR 6 to 64) per review) that were considered eligible by human reviewers and included 
after full-text review (Appendix 4). Using the reference standard 2, sensitivity ranged from 
87.5% (95%CI 83.9 to 90.5) to 99.6% (95%CI 99.5 to 99.8). Specificity ranged from 9.7% 
(95%CI 7.0 to 13.4) to 66.0% (95%CI 60.3 to 71.2) (Table 2). 

Figure 1 summarizes information, displaying the pooled estimates for sensitivity of 97.1% 
(95% CI 89.6 to 99.2) and for specificity of 37.7% (95% CI 18.4 to 61.9), using reference 
standard 2. The figure also shows the coherence between sensitivity and specificity across the 
different reviews, hinting that the performance estimated was not driven by outlier results. 
Similar information is displayed in Appendix 3 for the reference standard 1. 

Performance was unchanged in a sensitivity analysis where the performance of GPT models 
was tested only in citations not used to fine-tune models (i.e., from 80 to 90% citations per 
review) (Appendix 5). 

3.3. Avoidable workload when using GPT models to screen 
citations for inclusion in systematic reviews 

In total, we identified 2507 systematic reviews evaluating the effectiveness of therapeutic or 
preventive pharmacological interventions in humans, published between 01/07/2022 and 
31/12/2022. In a random sample of 100 studies (Appendix 3), the median number of citations 
1) identified from electronic search was 662 (interquartile range (IQR 202 to 1740), 2) 
included after title and abstract screening was 36 (IQR 23 to 74) (median proportion of 
citations retrieved from electronic searches: 8%, IQR 3 to 21), and 3) included after full-text 
screening was 13 (IQR 8 to 22) (median proportion: 2.5%, IQR 0.8 to 6.1). The cumulated 
time to perform title and abstract screening for the 100 reviews was 4208 to 8417 person-
hours (i.e., 2.6 to 5.3 person-years of work). By extrapolating these results to 2507*2 
systematic reviews evaluating the effectiveness of therapeutic or preventive pharmacological 
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interventions published in 2022, we estimate the workload of title and abstract screening to 
211,013 to 422,025 person-hours (i.e., 132 to 264 persons-year of work), every year.  

Using GPT models to replace one reviewer in reviews where title and abstract screening was 
performed in double and independently would reduce workload from 11 to 21% of the 
workload of title and abstract screening and would save a cumulated time of 24,136 to 88,385 
persons hours (15 to 55 person-years of work) per year, as compared to human screening 
alone. At review level, average time saved by review ranged from 4 to 17 hours per review.  

Limiting human screening to citations which were not “ruled out” by GPT models, 
independently would reduce workload from 50 to 65% of the workload of title and abstract 
screening and save a cumulated time of 106,268 to 276,053 persons hours (i.e.,66 to 172 
person-years of work) per year, as compared to human screening alone. At review level, 
average time saved by review ranged from 5 to 55 hours per review. 

4. Discussion 

AI systems based on LLMs provide highly sensitive and low to moderate specific 
recommendations to rule out citations during title and abstract screening in systematic reviews 
and meta-analyses, without specific training. Using these models as a “triage tool”, used 
before human screening, could reduce human workload up to 65% and save up to 275,000 
person-hours of work per year for systematic reviews evaluating the effectiveness of 
therapeutic or prophylactic pharmacological interventions on humans and referenced in 
Medline.  

The use of LLM based AI systems to perform title and abstract screening in systematic 
reviews differ from existing automated tools which learn from the researchers’ decisions to 
prioritize citations by relevance 9,30. First, the tool functions as a zero-shot classifier: decision 
to exclude a citation is provided without prior training, using solely a prompt based on the 
PICOS elements reported in the protocol of the review 31. As a result, the tool’s performance 
is not dependent on the proportion of citations that will be included by researchers, nor is it 
subject to the lack of appropriate stopping criteria faced by prioritization tools 32. Second, 
GPT models use instructions in human language and can therefore be used widely without 
specific training nor configuration. Third, they function independently from humans, without 
fatigue. Finally, newer generative AI are multimodal, accept larger inputs, including the 
upload of documents, potentially suggesting that an AI could bypass title and abstract 
screening and use all data available to make a recommendation. 

In this study, sensitivity of GPT models to rule out citations from title and abstract was high 
(>87%). However, specificity was more heterogeneous and varied from 10% to 50%. Two 
factors may have played a role in this result. First, specificity seemed to be associated with the 
complexity of inclusion and exclusion criteria in our study. For example, in the review 
evaluating the effect of dairy intake on cardiometabolic health 24, decisions often required 
expert knowledge beyond simply understanding the text (e.g., the protocol described eligible 
interventions as “Non-bovine milk and dairy products (e.g. from sheep, goats, buffalos, 
camels), milk/ protein isolates (e.g. whey or casein), capsules, fortified dairy products (e.g. 
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fortified with Vitamin D, plant sterols/ stanols, prebiotics, probiotics or omega-3 fatty acids) 
and fermented milk products with additional microbiota strains added (beyond those 
naturally occurring) will be excluded). Second, performance also depended on human 
researchers’ tendency and habits to “over include” at title and abstract screening. This was 
highlighted by the reassessment of discrepancies between human and AI decisions which 
could improve specificity up to 10%. Despite low specificity, GPT models are still useful to 
rule out citations and reduce human workload during the conduct of reviews. For example, in 
the aforementioned review, pre-screening of citations by GPT models could rule out 
6148/6478 (95%) references, helping human reviewers focus on the 330 remaining citations.  

Despite high sensitivity, GPT models excluded some citations that had been finally included 
in reviews after full texts. In particular, we chose to include “outcomes” in the prompt so as to 
balance sensitivity and specificity, despite some researchers advising not to select on title and 
abstract based on this information, because some outcomes may not be reported in the abstract 
or because of selective outcome reporting bias. Furthermore, some exclusion of eligible 
citations came from the unreliable ability of GPT models to provide expected answers to 
prompts (“YES” or “NO”) and because the program was designed to capture these answers. 
This led to a reduction in sensitivity. This highlights that these models are not yet ready to 
replace humans but may rather be used to complement human assessment (e.g., serving as a 
second or third reviewer). In all, we show that use of LLM based models can reduce the 
workload of title and abstract screening by human researchers. For some reviews, a low loss 
in precision may be acceptable, in particular when considering the time gained, e.g., when 
conducting rapid reviews for urgent decision-making. Furthermore, use of GPT models might 
allow to broaden the scope of the searches (e.g., increasing time ranges, relaxing search terms, 
adding another electronic database in the search, or searching in clinical trial registries) 
thereby increasing overall comprehensiveness of study inclusion. In particular, the ability of 
AI-based systems to drastically reduce the human workload is of critical importance with the 
rise of network meta-analyses and living network meta-analyses 33, which typically involve 
larger literature streams than traditional reviews; as well as rapid reviews, which require the 
timely analysis of these literature streams 34. 

We chose to use GPT 3.5-Turbo models to ensure that none of the systematic reviews were in 
the training data set of the model and that no information about the reference standard results 
were available to inform the index test. GPT-4 models have shown better performance in most 
tasks as compared to GPT 3.5-Turbo models and the performance estimates we show here are 
likely to improve quickly in the next months or years.  

Another issue is the reproducibility and transparency of results from GPT models: for 
example, researchers have shown important differences in models’ performance over a one-
month interval 35. In this study, highest performance was observed with the first reviews 
assessed. While we cannot ascertain that time and modification of the models was responsible 
for the change in performance, this affects the reproducibility of results in reviews. Potential 
solutions may involve the development and use of “fixed” LLM systems for research tasks.  

Our study has several limitations. First, estimates of sensitivity and performance used five 
reviews from researchers from Cochrane Austria, Germany and France, which involved 
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experienced reviewers and larger searches. Results may therefore differ in other settings. 
Second, estimation of the avoidable workload relied on multiple hypotheses which may have 
impacted the final results. As we used conservative hypotheses and given the magnitude of 
the avoidable workload of evidence synthesis, we believe that AI-based LLM should be 
considered as a “triage tool”, used before human screening, when performing systematic 
reviews. Third, it is known that performance of LLM is driven by the prompt used. In this 
study, we chose a standardized prompting style across all reviews, always following the same 
structure, and incorporating the PICOS extracted from review protocols. While this approach 
facilitates the use of our results in different contexts, it is possible that fine-tuned prompts 
may improve the performance of GPT models in specific reviews.  

AI systems based on LLMs provide highly sensitive and low to moderately specific 
recommendations to include citations during title and abstract screening, in systematic 
reviews and meta-analyses. Using these models to rule out citations before human screening 
could significantly reduce human work in evidence synthesis. 
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Table 1. Characteristics of included reviews 

Review 

Number of 

citations identified 

from electronic 

searches* 

Number of 

citations included 

after title and 

abstract 

screening* 

Number of 

citations included 

after full-text 

screening* 

Sommer et al. (2022) 673 235 (35%) 26 (4%) 

Sommer et al. (2023) 4077 120 (3%) 8 (0.1%) 

Yaacoub et al. (unpublished) 6334 722 (11%) 200 (3.2%) 

Kiesswetter et al. (2023) 6478 77 (1.2%) 19 (0.2%) 

Sbidian et al. (2023) 5104 331 (6.4%) 179 (3.6%) 

Total 22666 1485 (6.5%) 432 (1.9%) 

*Figures may be slightly different from published articles due to the way duplicate citations were 

handled   

 

Table 2. Sensitivity and specificity of GPT models to rule out citations during title and abstract 

screening. *Reference standard 2 accounts for the imperfect nature of reference standard 1: all 

discrepancies between decisions from authors and from AI were reassessed by the authors of 

reviews. **Obtained by using a bivariate model  

 Reference standard 1 Reference standard 2* 

Review 
Sensitivity 

[95%CI] 

Specificity 

[95%CI] 

Sensitivity 

[95%CI] 

Specificity  

[95%CI] 

Sommer et al. (2022) 81.3 

[77.1 – 84.9] 

56.6 

[50.8 – 62.2] 

87.5 

[83.9 – 90.5] 

66.0 

[60.3 – 71.2] 

Sommer et al. (2023) 98.1 

[97.6 – 98.5] 

38.6 

[30.2 – 47.8] 

99.1  

[98.7 – 99.3] 

38.6 

[30.2 – 47.8] 

Yaacoub et al. 

(unpublished) 

92.0 

[91.3 – 92.7] 

52.2 

[47.8 – 56.6] 

94.6  

[94.0 – 95.1] 

57.7 

[53.5 – 62.2] 

Kiesswetter et al. 

(2023) 

99.2 

[99.0 – 99.4] 

9.1 

[6.4 – 12.7] 

99.6 

[99.5 – 99.8] 

9.7 

[7.0 – 13.4] 

Sbidian et al. (2023) 91.6 

[90.7 – 92.3] 

24.8 

[21.7-28.3] 

92.5 

[91.7 – 93.2] 

31.7 

[28.3-35.4] 

Pooled statistic** 95.3 

[86.2 – 98.5] 

33.0 

[16.5 – 55.1] 

97.1 

[89.6 – 99.2] 

37.7 

[18.4 – 61.9] 
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Figure 1: Bivariate summary estimates of sensitivity and specificity for the ability of GPT models to 

screen for title and abstract in the five systematic reviews. We used reference standard 2 which 

accounts for imperfect nature of human decisions by reanalysis of all discrepancies by the authors of 

reviews.  
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