
PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC 1

Supplementary Material: Rethinking
Transfer Learning for Medical Image
Classification

Le Peng1

https://lepeng.org

Hengyue Liang2

https://hengyuel.github.io

Gaoxiang Luo1

https://gaoxiangluo.github.io

Taihui Li1

https://taihui.github.io

Ju Sun1

https://sunju.org

1 Department of Computer Science and
Engineering
University of Minnesota
Minneapolis, USA

2 Department of Electrical and Computer
Engineering
University of Minnesota
Minneapolis, USA

A Additional experimental details

A.1 Experimental protocol

Training TL models All 2D experiments follow the same training protocol unless other-
wise stated: 1) the given dataset is split into 64% training, 16% validation, and 20% test;
2) ResNet50 is the default model for all 2D MIC tasks, and ResNet34 for 2D segmen-
tation; 3) all 2D images are center-cropped and resized to 224 × 224; 4) random crop-
ping and slight random rotation are used for data augmentation during TL; 5) the ADAM
optimizer is used for all TL methods, with an initial LR 10−4 and a batch size 64; The
ReduceLROnPlateau scheduler in PyTorch is applied to adaptively adjust the LR: when
the validation AURPC stagnates, the LR is decreased by 1/2. Training is terminated when
the LR drops below 10−7; 6) the best model is chosen based on the validation AUPRC.
Evaluating TL models We measure the runtime on a system with Intel Core i9-9920X
CPU and Quadro RTX 6000 GPU. We report AUROC/AUPRC for MIC, and Dice Coeffi-
cient/Jaccard Index for segmentation as performance metrics and Params, MACs, runtime
time as complexity metrics.

A.2 Extending TTL on segmentation models

We construct the TTL model in a manner similar to what we have done for the MIC tasks.
We take the U-Net architecture with ResNet34 and pretrained on ImageNet as our backbone

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC

model. To ensure the skip-connection structure can be preserved after truncation, we sym-
metrically truncate the backbone and segmentation head simultaneously. We do not include
a comparison with LWFT and TF, as the original papers do not discuss how to extend them
to segmentation and our MIC tasks above already show the superiority of our TTL.

Figure 5: Similar to TTL on ResNet/DenseNet, we identify the block structure in U-Net
and truncate at the intersection between blocks. The image of U-Net is adapted from Ron-
neberger et al. [2]

B Ablation studies

B.1 Impact of network architecture
To study the impact of network architecture on the result of TTL, we compare three network
models: ResNet50, DenseNet121, and EfficientNet-b0, which represent large-, mid-, and
small-size models, respectively, on COVID-19 classification. The results are summarized in
Table 3. It is clear that our TTL uniformly improves the model performance and reduces
the model size by at least several fold, compared to FTL. In particular, even for the most
lightweight model EfficientNet-b0, TTL still pushes up the performance by about 5% in
both AUROC and AUPRC, and reduces the model size by about 4-fold.

B.2 Impact of pooling
After truncation, we can either directly pass the full set of features or downsample them
before feeding them into the MLP classifier. For deep learning models, we can easily per-
form subsampling by inserting a pooling layer. For this purpose, we use PyTorch’s built-in
function AdaptiveAvgPool2d to downsample the feature map to 1× 1 in the spatial
dimension, which produces the most compact spatial features. We compare models with

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC 3

Table 3: Impact of network architecture on TTL performance. The best results in each group
are colored in red.

Method AUROC AUPRC Params(M) MACs(G)
Speed(s)

CPU GPU

RN501 FTL 0.853±0.004 0.861±0.002 23.5 4.12 80.0 6.72
TTL 000...888666555±±±000...000000111 000...888777000±±±000...000000777 8.55 3.31 60.9 5.83

DN1212FTL 0.852±0.002 0.856±0.004 18.2 3.31 107 24.0
TTL 000...888666666±±±000...000000666 000...888777111±±±000...000111222 1.53 2.11 46.2 5.94

ENb03 TL 0.795±0.004 0.794±0.002 3.63 0.378 30.0 8.33
TTL 000...888444222±±±000...000000111 000...888444333±±±000...000000777 0.896 0.255 24.0 6.46

Abbreviation: 1 ResNet50, 2:DenseNet121, 3 EfficientNet B0

vs. without this extra pooling layer on COVID-19 classification, and present the results in
Fig. 6. We observe no significant gap between the two settings in terms of peak performance
measured by both AUPRC and AUROC. However, the setting with pooling induces a lower-
dimensional input to the MLP classifier, and hence contains much fewer trainable parameters
compared to that without pooling.

(i) (ii)
Figure 6: ResNet50 transferred from ImageNet to BIMCV using our TTL. We report the
performance in both AURPC (i) and AUROC (ii). The red and green curves represent TTL
performance with and without the extra adaptive pooling layer between the final convolution
layer and the MLP classifier. Arrows point to the peak performance.

C Exploratory studies

C.1 Detecting the near-best truncation point
Our two-stage search strategy for good truncation points (see Section 3.2) is effective as
verified above, but can be costly due to the need for multiple rounds of training, each for
one candidate truncation point. In this subsection, we explore an alternative strategy to cut
down computation: the idea is to detect the transition point where feature reuse becomes
negligible. For this, we recall the SVCCA analysis in Fig. 4: we use the distribution of
the SVCCA coefficients to quantify the correlation of features before and after FTL. To
determine when the correlation becomes sufficiently small, we compare the correlation with
that between random features.

We quickly test the new strategy on both COVID-19 and CT-based PE classification,
shown in Fig. 7 left and Fig. 7 right, respectively. From Fig. 7, we can see that for COVID-
19 classification, feature reuse diminished after the 12-th candidate truncation point: from

4 PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC

Figure 7: Left: SVCCA on ResNet50 transferred from ImageNet to BIMCV. The plot is
inherited from Fig. 3 (ii). The gray boxes and the associated bars represent the distribu-
tions of CCA coefficients between random features. Right: SVCCA on ResNeXt3D-101
transferred from Knetic-600 to CTPA. Truncating at layer 30 (marked in green) significantly
outperforms FTL (marked in red).

13-th onward, feature correlation becomes very close to that between random features, sug-
gesting that the features are almost uncorrelated. As expected, the 12-th truncation point
also achieves near-optimal performance as measured by AUPRC. Similarly, for CT-based PE
classification in Fig. 7 right, this strategy suggests the 30-th truncation point, which yields
the same result as that we have obtained using the two-stage search strategy as reported in
Table 2 bottom left, in both AUPRC and AUROC. Note that in Fig. 7 right, the SVCCA co-
efficients slightly increase after the 30-th truncation point due to dimensionality: the channel
sizes are doubled there compared to the previous blocks, and the raised dimension induces
higher correlation coefficients. But to decide if feature reuse becomes trivial, we only need
to check if the two SVCCA-coefficient distributions are sufficiently close, not their absolute
scalings.

Thus, this new strategy seems promising as a low-cost alternative to our default two-stage
search strategy. We summarize the key steps as follows.

Step 1: perform FTL on the target dataset;
Step 2: compute SVCCA coefficients between the features before and after FTL, at all

candidate truncation points;
Step 3: compute SVCCA coefficients between random features, at all candidate trunca-

tion points;
Step 4: locate the truncation point where the distribution of the two groups of SVCCA

coefficients from Step 2 and Step 3 becomes substantially overlapped, and take it as the
truncation point;

Step 5: fine-tune the model with the truncation point selected from Step 4.
Compared to our two-stage strategy that entails numerous rounds of model finetuning,

the new strategy only requires two rounds of finetuning: one from Step 1 on the whole
model, and the other from Step 5 on the truncated model.

C.2 Inter-domain TL

All we have discussed above are intra-domain TL where the source domain is distinct from
the target domain. It is tempting to think inter-domain TL might be more effective. To

PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC 5

Table 4: Symptom of lung disease in CheXpert
Diseases Shape Edge Contrast level of features
No Finding □✗ □✗ □✗ None
Enlarged Cardiom. □✓ □✗ □✓ low and high
Cardiomegaly □✓ □✗ □✓ low and high
Lung Opacity □✗ □✗ □✓ low
Lung Lesion □✓ □✗ □✓ low and high
Edema □✗ □✗ □✓ low and high
Consolidation □✗ □✗ □✓ low
Pneumonia □✗ □✗ □✓ low
Atelectasis □✓ □✗ □✓ low and high
Pneumonthorax □✗ □✓ □✓ low
Pleural Effusion □✗ □✗ □✓ low
Pleural Other □✗ □✗ □✓ low
Fracture □✓ □✓ □✓ low and high
Support device □✓ □✓ □✓ low and high

Figure 8: ResNet50 transferred from CheXpert to BIMCV. (top) test AUROC score; (bottom)
test AUPRC score. “Mix", “High", and “Low" mean finetuning from pretrained models on
the original CheXpert, CheXpert-high, and CheXpert-low, respectively. TTLx means the
truncation point is chosen at the transition point between block x and block x+1.

6 PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC

test this, we take the x-ray-based COVID-19 classification task again, but now finetune the
ResNet50 model pretrained on CheXpert, a massive-scale x-ray dataset (∼ 220K images) for
disease prediction covering 13 types of diseases (see Table 4) [1]. These diseases correspond
to varying levels of visual features. Hence, we categorize them into two groups: CheXpert-
low includes diseases that need low-level features only, and CheXpert-high covers those
needing both low- and high-level features. A summary of the categorization can be found
in Table 41. We pretrain ResNet50 on 3 variants of the dataset, respectively: full CheX-
pert, CheXpert-low, and CheXpert-high, and then compare FTL and our TTL on the three
resulting models. For TTL, we only perform a coarse-scale search and pick the 3 transition
layers between the 4 blocks in ResNet50 as truncation points. As always, all experiments
are repeated three times.

From the results summarized in Fig. 8, we find that: (1) Our TTL always achieves com-
parable or superior performance compared to FTL, reaffirming our conclusion above; (2)
Transferring from the model pretrained on the original dataset substantially outperforms
transferring from those pretrained on the CheXpert-high and CheXpert-low subsets. This
can be explained by the diversity of feature levels learned during pretraining: on the subsets
more specialized features are learned; in particular, on CheXpert-low, perhaps only relatively
low-level features are learned; and (3) Notably, our results show that medical-to-medical TL
does not do better than TL from natural images, when we compare the results in Fig. 8 with
those in Table 1. We suspect this is because feature diversity is the most crucial quality
required on the pretrained models in TL, and models pretrained on natural images perhaps
already learn sufficiently diverse visual features.

D Sample images of Grad-CAM analysis

To find out what visual features are learned by different models, we conduct a feature analysis
study using Grad-CAM[3]. Our empirical findings show that deep models tend to produce
spatially extensive features that spread over the image. In contrast, shallow models such as
those produced by TTL tend to find spatially localized features that often capture the infected
area around the lungs and the mitotic region, as shown in Fig. 1 and Table 2. In particular,
those localized regions often take the form of the abnormal texture of boundary changes and
are invariant to the global object (e.g., the shape of the ribs and cells), which demonstrates
the effectiveness of TTL in learning more discriminative features for MIC.

E Feature visualization on pretrained CNN

To gain insights into the features acquired by layers in a CNN pre-trained on a general natural
image dataset, we employed visualization techniques to elucidate the learned features across
various layers in a VGG19 network pretrained on ImageNet. The results are shown in Fig. 9.
Our empirical observation reveals that bottom layers (e.g., layer 1, 5, and 10) mostly learn
low-semantic patterns such as color and simple structured patterns. As delve deeper into top
layers (e.g., layer 20 and 30), it progressively refines its knowledge, capturing higher-level
semantic characteristics, including specific object-related local regions.

1Disease symptoms information obtained from Mayo clinic: https://www.mayoclinic.org/
symptom-checker/select-symptom/itt-20009075

Citation
Citation
{Irvin, Rajpurkar, Ko, Yu, Ciurea-Ilcus, Chute, Marklund, Haghgoo, Ball, Shpanskaya, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Selvaraju, Cogswell, Das, Vedantam, Parikh, and Batra} 2017

https://www.mayoclinic.org/symptom-checker/select-symptom/itt-20009075
https://www.mayoclinic.org/symptom-checker/select-symptom/itt-20009075

PENG ET AL.: RETHINKING TRANSFER LEARNING FOR MIC 7

Figure 9: Visualized features learnt at different layers in VGG19 pretrained on ImageNet.
To get the visualized images, we optimize the inputs with respect to the output value from a
certain filter.

References
[1] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris

Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chex-
pert: A large chest radiograph dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 590–
597, 2019.

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241. Springer, 2015.

[3] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626, 2017.

