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1 Introduction

The problem of estimating expected prevalence or apparent prevalence (AP) from observed
positive test results with imperfect tests is well known; Rogan and Gladen [7] described an
adjustment to apparent prevalence to give an unbiased point estimate of true prevalence. In
a set of patients K, the expected number of positive test results, or apparent prevalence,
E(AP ), is a function of prevalence, test sensitivity (sens) and test specificity (spec). A single

observation of apparent prevalence ÂP , is the rate of the positive test results per patient, Ik,
and this can be used to estimate true prevalence (prev). When prevalence is low, apparent
prevalence is an over-estimate due to false positives, and when high an underestimate due to
false negatives. There is a critical value of prevalence (prevcrit) at which false positives and
false negatives exactly balance and apparent prevalence is equal to true prevalence:

E(AP ) = prev × sens+ (1− prev)× (1− spec),

ÂP =
1

|K|
∑
k∈K

Ik,

prev ≈


0 ÂP ≤ (1− spec)
ÂP+spec−1
sens+spec−1

(1− spec) < ÂP < sens

1 sens ≤ ÂPN ,

prevcrit =
(1− spec)

(2− spec− sens)
.

In Fig 1 these relationships are plotted for a hypothetical test with known sensitivity (80%) and
specificity (95%). The density demonstrates sampling error of test positives in 100 observations
(in the y-direction). At a true prevalence of 0.05, we expect to see about 9 test positives in
100 observations (blue curve left hand panel). However a single observation of test positivity
may have arisen from a wide range of possible values of true prevalence (x-direction), and in
this case 9 positive observations may be quite feasibly due to a true prevalence between 0 and
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about 0.15 (blue curve bottom panel). The test positives are not binomially distributed and
binomial confidence intervals (blue bar in bottom panel) are biased with direction depending
on prevalence. It has been proven that the variance of true prevalence is always larger than the
variance of apparent prevalence [6, 7] and this is seen by the larger width than height of the
probability density in Fig 1.
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Figure 1: The relationship between true prevalence and expected test positivity for a test with
specificity of 95%, and sensitivity of 80%. Shading represents the probability of observing a
specific test positivity rate in 100 samples, which is also shown in the left panel for the examples
of true prevalence of 0.05 (blue) and 0.3 (red). In this figure the exact sensitivity and specificity
are assumed.

The uncertainty in true prevalence, from an observation of apparent prevalence, is also depen-
dent on uncertainty in sensitivity and specificity. This was quantified by Lang and Reiczigel
(2014) [3,6] in a frequentist framework and Gelman (2020) and Diggle (2011) [2–4] in a Bayesian
one, to estimate confidence intervals of the true prevalence given uncertainty of both test sen-
sitivity and specificity.

In this supplementary document, we extend these methods to the situation of multiplex testing
where the uncertainty in sensitivity and specificity may apply to multiple components of a
single test and where resulting test error is compounded.

2 Methods

2.1 Simulation

We previously described a distribution of serotypes in invasive pneumococcal disease (IPD) [5].
To test the methods described here we used the IPD distribution and simulated a set of synthetic
patients with known rates of disease super-types and subtypes, with a single example as shown
in Fig 2. These synthetic patients were assigned component multiplex test results (in this
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case representing individual pneumococcal serotypes), assuming specific values of sensitivity
and specificity. The simulated test results of the individual serotypes were then aggregated
into four panels: a PCV7 group, a PCV13 group, a PCV15 group and a PCV20 group. The
simulation was repeated for a range of defined prevalence levels, from 2.5% to 20%. In default
scenarios component sensitivity was set at 80% and specificity kept at 99.75%, or varied between
60%,75% and 90% (sensitivity) and between 99.75% and 90% (specificity).

In the formal description of the simulation that follows, N describes the 4 PCV panels, n each
individual component serotype. The simulation includes k synthetic patients (1000 was used
in all cases), and their simulated actual pneumococcal serotype status is represented by An,k.
The simulation of observed test result taking into account error is On,k. Each serotype has a
frequency, (freqn), which is scaled by an empirically determined factor (scale) to make sure
the simulation has the desired prevalence of PCV20 (prevPCV 20):

N ∈ {PCV 7, PCV 13, PCV 15, PCV 20},
PCV 7 ∈ {4, 6B, 9V, 14, 18C, 19F, 23F},
PCV 13 ∈ {1, 3, 5, 6A, 7F, 19A} ∪ PCV 7,

PCV 15 ∈ {22F, 33F} ∪ PCV 13,

PCV 20 ∈ {8, 10A, 11A, 12F, 15B} ∪ PCV 15,

prevPCV 20 ∈ {2.5%, 5% . . . 20%},

prevn =
scale× freqn∑

freqn
,

prevN = 1−
∏
n∈N

1− prevn,

sensn ∈ {80%, 60%, 75%, 90%},
specn ∈ {99.75%, 90%},
An,k ∼ Bernoulli(prevn),

On,k ∼ Bernoulli(An,k × sensn + (1− An,k)× (1− specn)),

AN,k = 1−
∏
n∈N

1− An,k,

ON,k = 1−
∏
n∈N

1−On,k,

ÂP =
1

|K|
∑
k∈K

I(Ok).

Methods for propagating uncertainty described below (Bayesian, Lang-Reiczigel, and resampled
Rogan-Gladen) were tested using matching, and mismatching prior assumptions for component
sensitivity and specificity including uncertainty, and the resulting predictions for true prevalence
compared to the simulated true prevalence. As there are a large number of free parameters, and
some of the methods are computationally expensive, only a restricted number of representative
scenarios were tested.
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Figure 2: The relative frequency of the 20 pneumococcal serotypes contained in PCV20, and
identified in invasive pneumococcal disease cases within the last 2 years, were converted to a
distribution of 20 subtypes to give an overall PCV20 pneumococcal prevalence of 10% (blue
lines). Test positive samples were created assuming each serotype test had a sensitivity of 80%
and a specificity of 99.75% (red lines) showing a mix of test positivity as an underestimate of
true prevalence (serotypes 3 and 8) and as an overestimate (the remainder). The simulated test
result of the individual serotypes were aggregated into a PCV7 group (consisting of serotypes 4,
6B, 9V, 14, 18C, 19F, 23F), a PCV13 group (PCV7 groups plus 1, 3, 5, 6A, 7F, 19A), a PCV15
group (PCV13 plus 22F and 33F) and a PCV20 group (all serotypes). In the right subfigure,
combined test positivity for the groups (apparent prevalence - red lines) all overestimate true
prevalence (blue line) for this scenario.

2.2 Rogan-Gladen estimator with resampling

As illustrated in Fig 1, there are three sources of uncertainty in estimates of true prevalence;
there is uncertainty in test sensitivity, test specificity and observed test positivity. In the panel
test there are three per component test which are combined in a non-linear fashion. A simple
empirical method involves creating a set of randomly sampled component test sensitivity, speci-
ficity and apparent prevalence (J). Uncertainty in sensitivity is expressed as a Beta distributed
quantity defined in terms of a disease positive control group, which consists of true positives
(TPdisease+) and false negatives (FNdisease+). Specificity on the other hand is defined in terms
of a disease negative control group, consisting of true negatives (TNdisease−) and false positives
(FPdisease−). Apparent prevalence is assumed to originate from a binomial sample of size k
representing the number of patients tested.

With the sampled set J we can directly apply the Rogan-Gladen estimator to derive a set of
estimates of component prevalence including uncertainty. The empirical quantiles of these can
be used as estimators of component prevalence.

Using the set J we also calculate panel test sensitivity and specificity using the methods de-
scribed in supplementary S1, and use these, and panel apparent prevalence in a Rogan-Gladen
estimator [7] to create a set of estimates for true prevalence of the panel. The empirical
quantiles and mean of this are taken as estimators for the true panel prevalence including
uncertainty.
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sensn,j ∼ Beta(TPdisease+,n, FNdisease+,n),

specn,j ∼ Beta(TNdisease−,n, FPdisease−,n),

APn,j ∼
1

k
Binomial(k, ÂPn),

specN,j =
∏
n∈N

specn,j,

sensN,j ≈ 1−
∏

n∈N (1− APn,j)−
∏

n∈N specn,j × sensn,j−APn,j

specn,j+sensn,j−1

1−
∏

n∈N
sensn,j−APn,j

specn,j+sensn,−1

,

prevN,j =


0 ÂPN ≤ (1− specN,j)
ÂPN+specN,j−1

sensN,j+specN,j−1
(1− specN,j) < ÂPN < sensN,j

1 sensN,j ≤ ÂPN

,

prevN =
1

|J |
∑
j∈J

prevN,i.

Confidence intervals are determined from the empirical quantiles of prevN,j, Qemp(prevN,j; zcrit)
and Qemp(prevN,j; 1− zcrit).

2.3 Lang-Reiczigel estimator

The Lang-Reiczigel estimator [6] includes uncertainty in test sensitivity and specificity which
can be directly used to estimate the uncertainty in prevalence of component tests. There
may be uncertainty in published data on panel test sensitivity and specificity, which can be
adopted to use directly with a Lang-Reiczigel estimator. However this is not often available. In
our example here, we combine component tests in multiple ways to generate 4 different PCV
groups, each of which act as having their own sensitivity and specificity. Such combinations are
unlikely to have published sensitivity and specificity. It should also be considered that panel
test specificity is a function of component prevalence so is not generalisable between different
sampled populations.

To deal with this, we again express uncertainty in sensitivity and specificity as Beta distributions
and proceed to generate a set of samples as before. From these we derive a set of panel test
specificity and sensitivity estimates as before:

sensn,j ∼ Beta(TPdisease+,n, FNdisease+,n),

specn,j ∼ Beta(TNdisease−,n, FPdisease−,n),

APn,j ∼
1

k
Binomial(k, ÂPn),

specN,j =
∏
n∈N

specn,j,

sensN,j ≈ 1−
∏

n∈N (1− APn,j)−
∏

n∈N specn,j × sensn,j−APn,j

specn,j+sensn,j−1

1−
∏

n∈N
sensn,j−APn,j

specn,j+sensn,j−1

.

We then calculate the parameters required for the Lang-Reiczigel method [6], which are ex-

pressed as central estimates of the panel sensitivity (Ŝe) and specificity (Ŝp), and respective
sample sizes (Beta distribution concentration parameters - nSe and nSp). We determine these
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from the set of panel test specificity and sensitivity estimates obtained above, by assuming
matching the moments of their empirical distributions to that of a Beta distribution:

Ŝe =
1

|J |
∑

sensN,j,

nSe =
Ŝe(1− Ŝe)

1
|J |

∑
(sensN,j − Ŝe)2

− 1,

Ŝp =
1

|J |
∑

specN,j,

nSp =
Ŝp(1− Ŝp)

1
|J |

∑
(specN,j − Ŝp)2

− 1.

These parameterised uncertain panel test sensitivity and specificity estimates are applied to
Lang-Reiczigel equations (4 and 11-19) [6], to generate central estimates (which are calcu-
lated using the Rogan-Gladen formula) and confidence limits. Their method is not replicated
here.

As the empirical distribution of panel test sensitivity and specificity is approximated by a Beta
distribution we may expect additional uncertainty in this method, compared to resampling,
however the central estimates are both generated using Rogan-Gladen methods so should be
similar.

2.4 Bayesian model

Both the methods described above both suffer from the same weakness in that at low (and
high) prevalence, the Rogan-Gladen estimator must be truncated. This could lead to undesir-
able effects at low prevalence. In certain real life scenarios we do not have estimates of both
sensitivity both specificity information at the individual component level, but rather at the
level of the combined panel. In a Bayesian framework we can incorporate prior assumptions
about the sensitivity and specificity with specific control group test results, at both component
and panel levels to inform estimates of true prevalence.

In this model we are trying to estimate the true prevalence of Ksample subjects tested with
a panel with n component subtypes. We assume informed priors for sensitivity and speci-
ficity expressed as a logistic transform of normal distributions with parameters µ and σ (i.e.
P (N (µ, σ2)) where P is the standard logistic function), and a set of disease negative controls
(Kdisease−) for specificity, and disease positive controls (Kdisease+) for sensitivity. To make this
model identifiable some weak prior information is also required about the true prevalence of the
components. We also require the component prevalence to follow a logistic normal distribution
with parameters µ and σ. Based on the work of Gelman et al. [4], we propose the following
model to describe the result of an individual’s test result for a single component (I(On,ksample

) -
with I as an indicator of test positivity), using the two hyperparameters µ and σ for the sensitiv-
ity, specificity, and prevalence of each component tests, and data TPdisease+,n, TNdisease−,n, and
I(On,ksample

) describing the observed control group results and the sample under investigation
repectively:
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sensn ∼ P (N (µdisease+,n, σ
2
disease+,n)),

specn ∼ P (N (µdisease−,n, σ
2
disease−,n)),

TPdisease+,n ∼ Binomial(|Kdisease+,n|, sensn),
TNdisease−,n ∼ Binomial(|Kdisease−,n|, specn),

prevn ∼ P (N (µsample,n, σ
2
sample,n)),

APn = prevn × sensn + (1− specn)× (1− prevn),

ÂPn =
∑

Ksample

I(On,ksample
),

ÂPn ∼ Binomial(|Ksample|, APn).

With the relationships determined in supplementary information S1 we can determine panel
sensitivity and specificity, and aggregate component test results to panel results (I(ON,ksample

))

per test subject and hence observed test positivity in all subjects (ÂPN):

prevN = 1−
∏
n∈N

(1− prevn),

specN =
∏
n∈N

specn,

sensN = 1−

∏
n∈N

(
(1− sensn)prevn + specn(1− prevn)

)
−
∏

n∈N specn(1− prevn)

1−
∏

n∈N (1− prevn)
,

I(ON,ksample
) = 1−

∏
n∈N

1− I(On,ksample),

ÂPN =
∑

Ksample

I(ON,ksample
).

From this we can also describe the observed panel apparent prevalence, and, if available, in-
tegrating any prior information we have about panel test sensitivity and specificity expressed
as logistic normal distributions with hyperparameters µ and σ as for the individual compo-
nents:

sensN ∼ P (N (µdisease+,N , σ
2
disease+,N)),

specN ∼ P (N (µdisease−,N , σ
2
disease−,N)),

APN = prevN × sensN + (1− specN)× (1− prevN),

ÂPN ∼ Binomial(|Ksample|, APN).

Maximising the log-likelihood of the combined model allows for simultaneous estimation of
component and panel prevalence, and posterior estimates of component and panel sensitivity
and specificity.

Choice of priors in this model depends on the nature of the control group data available. In all
cases, component prevalence priors should only be weakly informative as it is a key output of the
model. In this implementation, the µ value is automatically set to the Rogan-Gladen estimate
and the σ value set to a large value. If good control group data is available for control group
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specificity and sensitivity then prior estimates of these quantities can be weakly informative,
and sensible default values encompassing a wide range of possibilities can be used. In this
implementation we used µ = 2.217, σ = 2.202, to give a wide range of sensitivity of 10.9% —
99.9% and a narrower µ = 18.47, σ = 8.966, to give a range of specificites of 71% to 100%. A
scenario encountered in real life is for reasonable amounts of control group data to be available
for component specificity but very limited information for component sensitivity. In this case,
we may have some additional information from studies of the performance of the panel test,
which can be incorporated as a prior for panel sensitivity (further details are included in the
documentation of the R package [1]).

3 Results

From Fig 1 we expect overestimation at low prevalence and underestimation at high prevalence.
For the components this underestimation is clearly seen (Fig 3 left subfigure). Correction takes
place and all methods produce estimates of true prevalence that are very close to the true value
(blue line). For panel test results (Fig 3 right subfigure) the underestimation is much clearer
as the panel specificity is lower that that of the individual components. Again, all correction
methods result in an adjusted estimate closer to the true panel prevalence.
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simulated component sensitivity 80.00%, specificity 99.75%
prior component sensitivity 80.8% [63.0%—92.7%] (N=26.0), specificity 99.8% [99.3%—100.0%] (N=800.0)

bayes (logit): estimated panel sensitivity 81.17% [72.11% – 86.98%], specificity 94.84% [93.09% – 96.11%]
lang-reiczigel: estimated panel sensitivity 81.24% [72.29% – 88.25%], specificity 95.17% [93.55% – 96.51%]

rogan-gladen (samples): estimated panel sensitivity 81.32% [72.48% – 88.31%], specificity 95.15% [93.57% – 96.47%]

Figure 3: Apparent and adjusted prevalence estimates for component serotypes (right) and
PCV20 panel (left) in the IPD simulation, at 8 different pre-set levels of overall prevalence. The
red crosses show apparent prevalence, and the estimates of adjusted prevalence with associated
uncertainty are shown in shades of grey, by methodology, including Bayesian, Rogan-Gladen
or Lang-Reiczigel. The sensitivity and specificity parameters this simulation is based on are
shown in the right margins and the prior estimates of component sensitivity and specificity that
are used in the individual methods are shown in the top margins of each plot. In this example
the priors are set to be equal to the simulation parameters but with uncertainty (displayed as
95% confidence intervals). All component tests are assumed to have the same sensitivity and
specificity.
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In Fig 4, left panels (A,C,E), the scenario is repeated for a range of different component
test sensitivities. As expected, in the components the degree of underestimation at higher
prevalence is related to sensitivity, but all three methods of correction behave similarly. Lower
sensitivity levels result in larger confidence bounds. In the right panels (B,D,E) the panel
adjusted prevalence is again close to the expected value which is contained in the confidence
intervals.

In the results thus far, the adjustment has been done using prior estimates of sensitivity and
specificity that are the same as those employed in the simulation. If however our prior assump-
tions around sensitivity are too high compared to simulation, the compensation will tend to
push corrected true prevalence estimates too low (subfigure A in Fig 5). Conversely, if prior
sensitivity is an overestimate, corrected true prevalence estimates will be too high (Fig 5 sub-
figure B). The accuracy of adjustment is more heavily influenced by prior assumptions of test
specificity. Assuming too low a specificity causes frequentist methods to interpret all positives
as false positives and in the majority of situations collapse estimates of true prevalence to zero
(Fig 5, subfigure C), Bayesian approaches are better at compensating in this scenario, as the
implausible combination of low test positives and low specificity is excluded. In the situation
where specificity is assumed to be much higher than it is, the considerable false positive rate
is misinterpreted as true positives and all methods fail to adjust (Fig 5, subfigure D). These
mis-specifications are very large and in reality some degree of informed prior for sensitivity is
required but more importantly for specificity.
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in all scenarios component test specificity is constant at 99.75%
and the prior for specificity is 99.8% [99.3%—100.0%] (N=800.0)

in the 60% simulation the prior for sensitivity is 60.3% [41.0%—77.6%] (N=26.0)
in the 75% simulation the prior for sensitivity is 75.6% [57.1%—89.3%] (N=26.0)
in the 90% simulation the prior for sensitivity is 91.0% [76.2%—98.1%] (N=26.0)

Figure 4: Apparent and adjusted prevalence of components and panels in a range of scenarios
where tests sensitivity is varied. The red crosses show apparent prevalence, and the estimates of
adjusted prevalence with associated uncertainty are shown in shades of grey, by methodology,
including Bayesian, Rogan-Gladen or Lang-Reiczigel. The top row shows 60% sensitivity, the
middle row, 75%, and the bottom row 90%. Prior distribution assumptions are kept in line
with simulation parameters. As test sensitivity increases the raw panel result more often is an
overestimate. All three methods are able to correct the bias resulting from using the apparent
prevalence as estimator for true prevalence.
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Figure 5: Adjustment of panel test error with extreme misspecification of test sensitivity and
specificity parameters. The red crosses show apparent prevalence, and the estimates of adjusted
prevalence with associated uncertainty are shown in shades of grey, by methodology, including
Bayesian, Rogan-Gladen or Lang-Reiczigel. Subfigure A represents an overestimate of test
sensitivity, B is an underestimate of test sensitivity, C is an underestimate of test specificity
and D is an overestimate of specificity. The three adjustment methods fail in different ways, as
informed priors are required to make accurate adjustments.

4 Discussion and Conclusions

We present three methods for correcting the bias in prevalence estimates in multiplex panel
tests. These are implemented in an R package ”testerror“ [1]. These methods are all able
to correct apparent prevalence estimates of components and panels with uncertain test sensi-
tivity and specificity. No method is robust to misspecification, although Bayesian approaches
can exclude some combinations of sensitivity and specificity based on the observed positive
tests, (particularly combinations with comparatively low specificity, which would tend to make
observations with low number of positives unlikely), the main adjustment requires accurate
assessment of test parameters to produce an unbiased estimate but all methods are able to
propagate imprecision in those estimates into the final prevalence estimates.

11



We have not formally quantified the performance of the various methods as there are a very
large number of potential scenarios in which we could deploy them, and some of the methods
are computationally expensive. On the evidence we have so far the three methods are each able
to adjust the apparent prevalence of a simulated panel test results back to the true prevalence
values the simulation is based on, with reasonable agreement between the methods. Within the
software package released with this paper further validation of the methods is available.
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