
Protect or prevent? A practicable framework for the dilemmas of

COVID-19 vaccine prioritization

Supporting Information

Raghu Arghal1*, Harvey Rubin2, Shirin Saeedi Bidokhti1, Saswati Sarkar1

March 2023

1 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA,
United States

2 Division of Infectious Diseases, Department of Medicine, University of Pennsylvania School of
Medicine, Philadelphia, PA, United States

* Corresponding Author (rarghal@seas.upenn@edu)

1

mailto:rarghal@seas.upenn@edu


1 Symbol Tables and Values

The table below summarizes relevant system notation.

Table 1: System Notation

Symbol Description
N Total number of individuals
Si(t) Fraction of group i susceptible individuals at time t
Ei(t) Fraction of group i exposed individuals at time t
Pi(t) Fraction of group i pre-symptomatic individuals at time t
Ai(t) Fraction of group i asymptomatic individuals at time t
Ii(t) Fraction of group i early-stage infected individuals at time t
Li(t) Fraction of group i late-stage infected individuals at time t
Hi(t) Fraction of group i hospitalized individuals at time t
Vi(t) Fraction of group i vaccinated individuals at time t
Ri(t) Fraction of group i recovered individuals at time t
Di(t) Fraction of group i deceased individuals at time t
V0 Vaccination capacity constraint

Here we present the value(s) of the disease parameters used throughout our investigation (unless a
change is otherwise specified) along with the relevant sources. Note that we also analyzed the robustness
of our optimal policies to noisy estimates of such parameters in Section 4.3. Parameters governing
vaccination properties can be found in Table 3.

Table 2: Disease Parameters

Description Value(s) Ref.
τ Rate of transition out of exposed phase 4 [1]
si Probability of becoming pre-symptomatic after exposure for X,Y,Z {0.4,0.8,0.4} [2],[3]
η Rate of transition out of pre-symptomatic phase 2 [4]
ρ Transmissibility of pre-symptomatic individuals 0.8 [5]
ψ Rate of transition out of asymptomatic phase 10 [6]
µ Transmissibility of asymptomatic individuals 0.1 [5]
ϕ Rate of transition out of early-stage infected phase 3 [4]
ω Transmissibility of infected individuals 0.7 [5]
ζ Rate of transition out of late-stage infected phase 3 [2]
πi Probability of hospitalization after late-stage infection for X,Y,Z {0.19,0.57,0.19} [7]
σ Rate of transition out of hospitalized phase 11 [7],[3]
λi Probability of death after hospitalization for X,Y,Z {0.027,0.3,0.027} [8],[3]

2 Generalizations of the Basic Model

For simplicity of exposition, in the main body we presented a bare bones model in which 1) vaccinated or
recovered individuals are not infected 2) vaccine has only one dose. In truth, vaccinated and recovered
individuals can be infected, albeit with lower rates of infection, symptomatic infection, hospitalization,
and death [9, 10]. Also, while some vaccines have one dose, others need two doses [11]. We generalize
our model to consider 1) infections after vaccination and recovery (Section 2.1) 2) multi dose vaccines
(Section 2.2) and 3) several public health objectives of interest other than overall death count (Section
2.3). The ease of these generalizations demonstrate the flexibility of our model. These generalizations
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were used throughout our numerical investigation to compute and evaluate the optimal and near-optimal
vaccination strategies in Section 4.

2.1 Breakthrough Infections and Reinfection

We now consider that vaccinated individuals can be infected, though with lower rates of infection,
symptomatic infection, hospitalization, and death [9, 10]. Thus, the disease spread rate is lower when
at least one of the individuals in the pair involved in transmitting the virus is vaccinated than when
neither is vaccinated, transition rates to asymptomatic states are higher for the vaccinated and transition
rates to pre-symptomatic, hospitalized, dead are lower for the vaccinated. To allow for the differences
in these rates for the vaccinated individuals, a new set of exposed, pre-symptomatic, asymptomatic,
early stage infection, late stage infection, hospitalized are created for the vaccinated (Figure S1). The
ODE representation of the state dynamics is similar to Figure 1, with the difference that there are
now additional states, additional differential equations and additional quadratic terms (i.e. additional
red terms) in the differential equations representing disease transmission to the vaccinated individuals.
Overall, this leads to 48 differential equations and 48 variables. The optimal control formulation remains
the same except that the state trajectories are now provided by the new system of ODEs.

Figure S1 shows the state diagram augmented to allow for breakthrough infection i.e. vaccinated
individuals becoming infected. This is done by duplicating the disease progression states to allow for the
decreased rates of infection, symptoms, hospitalization, and death in vaccinated individuals (see Table
3).
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Figure S1: The above diagram depicts the generalized disease states in the single dose vaccine model
when expanded to allow for breakthrough infections.

Recovery also provides some degree of immunity from COVID-19, though like vaccination the im-
munity is not foolproof [9]. To allow for reinfection (i.e. recovered individuals becoming infected), we
consider that recovered individuals may become exposed, symptomatic, hospitalized, and deceased at
decreased rates by making another copy of the disease states. The set of additional states can model
differences in the level of protection afforded via vaccination versus that of acquired immunity.

Both breakthrough infections and reinfection introduce multiplicative factors that represent the de-
creased rate of exposure, symptoms, hospitalization, and death for vaccinated and recovered individuals
[12, 9]. Note that the factors need not be the same for vaccinated and recovered. We now provide
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the notation and typical values for the respective decreases in the table below along with the relevant
sources.

This generalization was used throughout all numerical results presented in Section 4.

Table 3: Vaccine Parameters

Description Value(s) Ref.
ve Multiplicative factor in exposure rate due to vaccination 0.5 [12],[13]
vs Multiplicative factor in symptomatic rate due to vaccination 0.3 [12],[13]
vh Multiplicative factor in hospitalization rate due to vaccination 0.2 [12],[13]
vd Multiplicative factor in death rate due to vaccination 0.1 [12],[13]
re Multiplicative factor in exposure rate due to reinfection 0.5 [9]
rs Multiplicative factor in symptomatic rate due to reinfection 0.3 [9]
rh Multiplicative factor in hospitalization rate due to reinfection 0.2 [9]
rd Multiplicative factor in death rate due to reinfection 0.1 [9]

2.2 Multi-Dose Vaccination

We also generalize our model to allow for two dose vaccinations. Results for our multi-dose model can
be found in Section 4.6. For simplicity we illustrate for the case that an individual does not contract
the disease either after recovery or after receiving both doses. These assumptions can be relaxed by
expanding the state space as in Section 2.1.
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Figure S2: In this expanded two dose state diagram, we introduce the interim ”1 Dose Vaccinated” state
in which infection is possible but with lower rates as well as decreased risk of symptoms, hospitalization,
and death (denoted by ŝi < si, π̂i < πi, and λ̂i < λi, respectively). Again, for ease of depiction, we
present the simplified case in which fully vaccinated and recovered individuals cannot become infected.

We now describe how the ODE formulation for one dose vaccines can be adapted to represent the
dynamics when vaccines have two doses. We append to our model an intermediate vaccination state
as in Figure S2 in which individuals can be infected, develop symptoms, are hospitalized, and die with
lower probability than susceptibles [14, 12, 13]. Susceptibles transition to this state after receiving
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one dose. After individuals receive both doses they transition from this state to the fully vaccinated
state. Let u∗i (t) refer to the vaccination rate for the second dose of group i. This is reflected in similar
augmentation to the system of ODEs in Figure 2. We refer to the set of state trajectories for this
appended 2 dose system as S ′.

Obtaining the optimal vaccination strategy requires the solution of an additional decision problem:
the order of the second dose among different groups. For example, should the first dose be administered
to as many people as possible first and administering the second dose ought to start only after everyone
had received the first dose? Or should an individual be administered the second dose right after the
minimum mandated period from the first dose, while others await their first dose? There can be several
combinations of the above extremes, eg, depending on which group they belong to, some individuals
ought to wait for their second dose until everyone receives the first dose, others receive their second dose
as soon as possible after the first dose. We describe the optimal control formulation that will determine
the optimal rates for administering first and second doses for different groups and times subject to the
capacity constraint for vaccine delivery.

minimize
∑

i∈{X,Y,Z}

Di(T )

subject to x ∈ S ′ (1)

x(0) = x0,

0 ≤ ui(t), u
∗
i (t) ≤ 1 ∀i ∈ {X,Y, Z}, t ∈ [0, T ]

U∗(t) ≤ V0 ∀t ∈ [0, T ]

where U∗(t) =
∑

i∈{X,Y,Z} Siui + Viu
∗
i is the fraction of individuals vaccinated at a given time.

The optimal vaccination strategy can be obtained by solving the above optimal control formulations
using the numerical tools described in Section 3.

In 2 dose vaccination, we define parameter α that denotes the partial protection (as fraction
of two dose protection levels in Table 3) afforded by one dose of the vaccine. That is, the
multiplicative factor on exposure after 1 dose will be 1−α(1−ve). We vary α between 0.4 and 0.8 in line
with clinical estimates [15]. Findings from our numerical computations using this model are included
in Section 4.6.

2.3 Different Objective Functions

Our computational framework is also flexible enough to cater to different public health objectives as
shown in Section 4.5. Public health objectives other than the total death count can be minimized by
appropriately replacing the objective function. One can minimize the time average of the hospitalization
count, total years of life lost (YLL), time average of the symptomatic count, or some combination of
these or other metrics of interest. This is noteworthy as an increasing body of work seeks to grapple with
the socioeconomic costs of pandemics or even the impacts on social justice [16, 17, 18]. To minimize the
time average of the hospitalization count, the objective function in the optimal control formulation in

1 needs to be
∑

i∈{X,Y,Z}
∫ T
0

Hi(t)dt

T . From the ODEs in Figure 2, Di(T ) = σλi
∫ T

0
Hi(t)dt. The objective

function can therefore be expressed as a weighted sum of the cumulative death count in each group:∑
i∈{X,Y,Z}

Di(T )
Tσλi

. YLLs are computed as a weighted sum of death counts over the different groups
where the count in each group is weighted according to the difference between overall life expectancy
and the group’s mean age (the weight is set to 0 if the difference turns out to be negative). To minimize

the time average of the symptomatic count, the objective function has to be
∑

i∈{X,Y,Z}
∫ T
0

(Ii(t)+Li(t))dt

T .
The time average of the hospitalization counts and symptomatic counts represent number of hospitalized
and symptomatic individuals per day respectively; these also respectively represent the number of man
days lost due to hospitalization and symptoms normalized by the size of the interval under consideration.
The framework as a whole and the optimal control formulation remains the same otherwise.
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3 Theorem and Proof

We now state and prove the theorem referred to in Sections 3 and 4.2.

Theorem 1. Let t0 be the first time at which Si(t) < V0 for some i. Then there exists an optimal
vaccination strategy such that

ui(t) ∈
{ V0
Si(t)

, 0
}

∀t < t0

i.e. until t0 the optimal vaccination strategy devotes all vaccine capacity to one group at a time.

Here we present a proof of Theorem 1 in the simplified system which does not allow for reinfection
or breakthrough infection. After formulating vaccine prioritization as an optimal control problem, we
use Pontryagin’s Maximum Principle to obtain necessary conditions for an optimal control from which
we discern structural properties [19], [20].

We first formulate the Hamiltonian and Lagrangian as follows:

H :=
∑

i∈{X,Y,Z}

(λSi Ṡi + λEi Ėi + λPi Ṗi + λai Ȧi + λIi İi + λLi L̇i + λHi Ḣi) (2)

L := H− µ

 ∑
i∈{X,Y,Z}

Siui − V0

 (3)

where the λ costate functions are absolutely continuous and satisfy

λ̇Si = − ∂L
∂Si

λ̇Ei = − ∂L
∂Ei

λ̇Pi = − ∂L
∂Pi

λ̇Ai = − ∂L
∂Ai

λ̇Ii = − ∂L
∂Ii

λ̇Li = − ∂L
∂Li

λ̇Hi = − ∂L
∂Hi

(4)

0 = λSi (T ) 0 = λEi (T ) 0 = λPi (T ) 0 = λAi (T ) 0 = λIi (T ) 0 = λLi (T ) 0 = λHi (T )
(5)

and µ is an integrable function satisfying

µ

 ∑
i∈{X,Y,Z}

Siui − V0

 = 0, µ(t) ≥ 0 a.e. (6)

ni(t) = −λSi Si − µSi a.e. where ni(t) ∈ N[0,1](u
∗
i (t)) (7)

where N[0,1] denotes the normal cone to [0, 1].
PMP then states that u∗ ∈ argmax H where u∗ refers to an optimal control function. Plugging in

expressions for H and our system dynamics, we obtain:

u∗(t) ∈ argmaxu∈U
∑

i∈{X,Y,Z}

−λSi Siui (8)

where U = {v : 0 ⪯ v ⪯ 1,
∑

i∈{X,Y,Z} Sivi ≤ V0} denotes the set of admissible controls.
This directly leads to Theorem 1 which, put simply, states that as much vaccine as possible is

allocated to the highest priority group (the group which maximizes −λSi Si) with the remainder going
to the next highest priority until no vaccine capacity remains or no susceptible individuals remain.
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4 Numerical Evaluations

4.1 Model Validation

We first describe how we obtain the parameters of our model for validation as described in Section 4.1.
We consider publicly available data on infection and mortality counts in all US states and 139 countries
[21]. Overall we considered a period extending from 04/01/2020 to 01/01/2021, the period between early
reported deaths and the introduction of vaccines. We assume all initially infected individuals are in the
baseline group. We obtain the initial values of the states from the publicly available infection counts
on 04/01/2020 and the sizes of the different groups. We fix all individuals in age groups exceeding
sixty as high risk. We obtain the fraction of the population in this group from publicly available
population demographics [21]; this is the fraction of the population that is high risk. Percentage of
workers characterized as essential workers1 in US states is available in publicly available databases [23].
We use this fraction times the fraction of individuals of working age (20-60 years) as the fraction of
the population that is high contact. Note that this estimate undercounts the fraction of high contact
individuals as this does not consider unorganized private sector employees such as rideshare drivers
who have high contact rates. For countries other than the US, we estimated the fraction of high
contact individuals from economic data (percentage of GDP in service industries) and demographics
(age-stratified population counts). That is, if x% of the country’s economy was in the service industry
(retail trade, transportation, and real estate being the largest share), then the high contact population
was set to x% of people aged 20 to 60 [24]. We obtained disease parameters from CDC and WHO
(Table 1, Supporting Information). After choosing the parameters as above, we determine the contact
rate matrix using regression. The matrix consists of contact rates within each group (baseline, high
risk, high contact) and across groups. These contact rates were selected to minimize mean squared
normalized error (MMSNE) between the true infection and death counts in the respective area, and
those projected for these locations via our model. We selected different sets of contact rates for different
periods, each with a duration of two months (encompassing the time of investigation from 04/01/2020
to 01/01/2021). Different contact rates were chosen for different periods to account for changes in both
government policy (e.g. start, relaxation, and end of lockdowns) and school openings which happen at
low frequency.

Model Validation Outliers When regressing against actual infection and death counts [21], there
were four countries (out of the total 139) that had outlying high MMSNE: Japan (JP), Lesotho (LS),
Gambia (GM), and Mauritania (MR). While the max MMSNE of all other countries was 0.05, these
four countries had MMSNE of 2.08, 10.16, 4.92, and 10.10, respectively. Here we seek to understand
the factors that led to the poor fit. Each following subsection illustrates the fit of our model to the
respective country’s infection and death counts and posits feasible explanations for the high mismatch.

Japan is notable as the one country of the four outliers with a relatively high population size. In
fact, Japan is the only of the four included in the top 125 countries by population [25]. As such,
one would expect to see convergence between the system of ODEs and real data based on the Central
Limit Theorem. However, the available case count data for Japan is flawed as the cumulative infection
decreases over time which is impossible in practice. This artifact of the data collection did not allow us
to fit real data. We therefore do not consider Japan.

Lesotho, with a population just over 2.2M, exhibits very low case counts and deaths [25]. As shown
in Figure S3, this leads to non-smooth behavior in the real data which inhibits our ability to fit our
model well.

Next, we consider Gambia. In addition to low overall counts, Gambia’s data shows a sharp, sudden
increase in death count as seen in Figure S4b. This is likely an artifact of delayed or imperfect record
keeping of COVID-19 deaths and inhibits the fitting of smooth system dynamics.

1This group is composed of those working in critical industries who are not able to self isolate such as child care, energy,
and transportation [22].
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(b) Our model fit to Lesotho’s death counts

Figure S3: Lesotho COVID-19 Dynamics Fitting
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(b) Our model fit to Gambia’s death counts

Figure S4: Gambia COVID-19 Dynamics Fitting

Mauritania, though it has a small number of cases, does exhibit relatively smooth case and death
curves. However, at the onset of our time window, Mauritania had very few confirmed cases. Thus,
with low initial infections, possibly due to undercounting, we see that our model shows delayed infection
and death curves in Figure S5.
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(a) Our model fit to Mauritania’s infection counts

0 50 100 150 200 250
Time

150

175

200

225

250

275

300

325

# 
of

 P
eo

pl
e

MR Model Validation Deaths
fitted death count
true death count
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Figure S5: Mauritania COVID-19 Dynamics Fitting

4.2 Enumeration of Parameters Used for Numerical Evaluations

The sizes of different groups are determined as specified in Section 4.1. Contact rates between these
groups were determined in one of two ways: (1) via modified survey-based contact matrices from [26]
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or (2) by regressing our model to fit real world infection and death counts from [21]. The latter case is
described in Section 4.1. Here we discuss the former.

Country-specific contact matrices are obtained from [26]. These are provided in age increments of
five years. To produce our contact matrices, we take the contact rate of the high risk group to be the
weighted average of the contact rates of each 65+ age group with weight corresponding to the population
of each age group obtained from [21]. The contact rate of the high contact group is set to be a multiple of
that of the average contact rate over working age individuals. The contact multiple for the high contact
group is varied between 1.2 and 6. Finally, R0 is computed via the next generation matrix method
and normalized (by scalar multiplication of the contact matrix) to a fixed value in our parameter range
(following the methodology of [27]). By default we set the vaccination capacity constraint to be at 0.5%
of the total population daily unless otherwise specified [28].

We obtain the demographic data from census data as in the previous section. We consider the
level of initial infection specified as the fraction of the overall populace. Initial infections are varied
between 0.1% and 1% – this range captures the seroprevalence upon the introduction of vaccines in all
US States and nearly all countries for which data was available2 [21]. The default assumption is that
initial infections are seeded only in the baseline group; we explicitly specify when we deviate from the
default assumptions. We fix the efficacy of vaccine at preventing infection, symptoms, hospitalization,
and death as 50%, 70%, 80%, and 90%, respectively unless otherwise specified [12]. We used the contact
rates obtained from the real evolution of the pandemic as in the previous section. We also use additional
contact rates from ranges of contact rates within and across age groups in 139 countries obtained from
surveys and the sizes of the different groups [26]. Over all, the large range of contact rates we consider
capture varying degree of implementation and compliance with non-pharmaceutical interventions (NPIs)
such as social distancing and lockdowns in different US states and the 139 countries. Finally we vary
the vaccine efficacy, that is, the rates at which vaccinated individuals become infected, symptomatic,
hospitalized, and deceased, over ranges drawn from clinical studies of various vaccines [12, 13]. Over all
these parameter ranges, our model was instantiated and run on a fine grid of approximately 911, 250
settings. The associated ranges are included below and are used for the results detailed throughout
Sections 4.2, 4.3, 4.5, and 4.6.

Table 4: Model Instances

Parameter Setting(s) Ref.
Contact matrices 150 country estimates [26]
COVID-19 Variants {alpha, delta, omicron} [30], [31]
R0 {1, 1.5, 2, 2.5, 3} [32]
NPI Efficacy {0, 0.3, 0.6} [33]
Initial Infections [0.1%, 0.25%, 0.5%, 0.75% 1%] [21]
Vaccine Efficacy baseline, baseline ± 20% [12],[13]
High Contact Population Size {10%, 15%, 20%} [23]
Transmisibility Multiplier {1, 1.5, 2} [34]

For our case studies in Section 4.4, we depart slightly from the above methodology where necessary.
In our case study of LMICs, the vaccination capacity constraint is tightened to 0.2% to reflect scarcity
[28]. For the prison and nursing home case studies, population demography was obtained from the
Bureau of Prisons and the CDC, respectively [35, 36]. Contact matrices for the US Baseline and LMIC
were obtained as specified above. For prisons and nursing homes, contact rates were obtained from [37]
and [38, 39], respectively.

2There is a single country (Gibraltar) which had an initial infection rate higher than our range. In addition, there
are countries which are relatively isolated and/or have low population (i.e. New Zealand) that have initial infection rates
below our range. Finally, there are a few large countries, notably India and China, which fall below this range, but this
may be attributed to suspected undercounting of cases [29].
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4.3 Robustness Study

The estimates of parameters, particularly the disease parameters, will inevitably have some errors. We
therefore investigate the robustness of the computation framework for the optimal vaccination strategy
to estimation errors as mentioned in Section 4.2. Toward this end, we inject additive white Gaussian
noise into transmissibility and fractions of individuals who become symptomatics (from the exposed
state), are hospitalized (from late stage infection) and die (after hospitalization). That is, for each
such parameter, the value was multiplied by (1 +N (0, σ2)) where N (µ, σ2) is the normal distribution
with mean µ and standard deviation σ 3 These parameters affect transition rates into some states.
We took σ2 ∈ {0.05, 0.1, 0.15}. While the true dynamics of the evolution were determined by the
original parameter, the computation framework only had access to these noisy estimates. The optimal
vaccination strategy computed using these noisy estimates is referred to as ’noisy optimal.” The average
increase in death count due to utilization of the noisy optimal strategy was below 2%, although, in
extreme cases it was as high as 84.6%. Between high contact and high risk policies, the policy that has
lower death counts was identified correctly under the noisy parameters in 89.1%, 88.2%, and 86.2% of
cases, respectively for σ2 ∈ {0.05, 0.1, 0.15}. Thus, overall the framework is robust to estimation error.

When evaluating the vaccination policy made with noisy information, 88.2% of all instances exhibited
a subpotimality of less than 1% when the controller only had access to noisy disease parameters (noise
powers of 5%, 10%, and 15%). The histogram of the suboptimality in the remaining 11.8% of cases is
included below in Figure S6.
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Figure S6: Histogram of suboptimality of noisy vaccination policy when suboptimality exceeds 1%

3We ignore the few cases in which the erroneous estimates become negative. Whenever the erroneous estimate of the
fractions exceed 1, we consider the fraction to be 1.
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5 Runtime Performance and Comparison

Throughout our paper we refer to the computational efficiency of our framework (see Sections 2, 4.2,
5). Here we evaluate the runtime of computing the optimal vaccination policy over the landscape of
instances defined in Section 4.2. As shown in Figure S7, the runtimes of our algorithm, omitting the
small number of instance that reached the cutoff time of 500 seconds, were heavily concentrated under 10
seconds. This is a drastic improvement over simulation based techniques or more complex optimization
protocols and allows us to survey broad parameter landscapes to map optimal policies as presented in
Section 4.3.
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Figure S7: Histogram of runtimes for our optimal control-based vaccine prioritization method

To our knowledge, the closest work to consider the optimal selection of dynamic COVID-19 vacci-
nation policies is the paper authored by Buckner et. al. [40]. Here they utilize a genetic algorithm
based on the work in [41] followed by a simulated annealing algorithm to more precisely identify their
optimal. Genetic algorithms and simulated annealing can optimize only discrete variables but not arbi-
trary functions of time. Thus these can optimize vaccination strategies only among a reduced strategy
space, namely, among strategies that allocate piece-wise constant vaccination rates to different groups.
Specifically, the overall time horizon under consideration is partitioned into intervals and the fraction
of overall capacity allocated to different groups in each interval are considered as constants over time
in the interval. The fractions in different intervals are the optimization variables, which are chosen
optimally, to optimize the public health objective in this restricted policy space. The policy space
becomes closer to the space of all vaccination strategies as the number of intervals increase. But the
computation time for the genetic algorithm is exponential in the number of time intervals [41]. Thus
the computation time increases rapidly as the number of intervals increase. Buckner et. al. considered
a time horizon of 6 months and the interval size of 1 month; thus the vaccination rates across the
groups they consider can change only once a month [40]. But even with such coarse granularity their
genetic algorithm step alone can take hours to converge to an optimal in a single instance, even without
including the subsequent simulated annealing. Since the computation time is exponential in the number
of time intervals, runtime becomes intractable when considering highly dynamic policies as shown in
Table 5, which rules out obtaining solutions using current computing capabilities and thereby using
such solutions even as benchmarks for comparison let alone for actual deployment. This is an inherent
limitation on the ability of genetic algorithms to consider highly dynamic policies. In contrast, our
computation framework optimizes the vaccination policy in much broader policy space than the above,
among policies whose choices can arbitrarily vary at any time granularity; still our framework yields the
optimal policy in seconds. Even considering policies that can change allocations only once every month,
Buckner et. al. presented the optimal in this reduced space only for a small number of instances [40],
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Runtime Comparison
Length of Decision
Intervals (days)

Our Method Buckner et al.
Mean Runtime (s) Mean Runtime (s)

90 2.86 2470.71
30 9.59 3076.86
10 10.50 6277.54 (projected)
7 14.54 8258.43 (projected)
1 160.59 4.30× 107 (projected)

Table 5: This table shows the mean runtime of determining the optimal vaccination policy when instan-
tiated on different contact matrices and demography [21, 26]. For shorter decision interval lengths, the
runtime of Buckner et al.’s algorithm is projected using an exponential fit with the number of decision
variables as the independent variable because their algorithm is exponential in this dimension.

perhaps due to the long computation time of their method, whereas we could present results for large
landscapes of 911,250 instances involving variations of parameters in large realistic ranges (Section 4).
Large landscapes allow for more reliable conclusions on how the optimal strategy and the optimal value
of the public health objective changes with variations in parameter values; large landscapes also help
identify near-optimal easy-to-deploy vaccination strategies which we accomplish. Next, generalizations
to consider several attributes of practicality inevitably increases the state space of the set of trajectory
(e.g. when breakthrough infections and reinfections are considered), and in many instances the number
of functions that need to be optimized (e.g. for two dose vaccination). All these increase the computa-
tion time for each instance further and therefore renders the computations even more formidable if they
are involved in the simplest case. Thus computational tractability of the basic framework is imperative
for its adaptability to more involved albeit realistic settings. Next, most works in this genre (including
Buckner et al partition the populace into a larger number of groups than us, and based on a different
criteria (age and in one case profession) [40, 27]. Our computation time for each instance is lower
also because we consider fewer groups (though the primary reason is the choice of the optimal control
formulation rather than the genetic algorithm and simulated annealing combo). As mentioned before,
our model is able to accurately predict the evolution and spread of COVID-19 in geographical units
of different scale and locations all over the world, despite consideration of partition criteria that yields
fewer groups. Finally, our optimal strategy is structurally different from that obtained by Buckner et
al because of 1) the significant difference in time granularity over which vaccination rates allocated to
different groups can change (ours can change any time, theirs can change only once a month) and 2)
different criteria for partition of the populace into groups. For example, the policy obtained by Buckner
et al is always mixed, i.e., vaccinates multiple groups simultaneously, whereas we analytically argue that
the death count does not increase if the policy space is limited to those that vaccinate one group at
a time, while the susceptibles in each group exceeds the vaccine capacity (i.e. while each group has
enough individuals to vaccinate if it is given the full vaccination capacity). If we optimize in a restricted
policy space where the allocations can change only once a month, our optimal strategy is also mixed
from the start.
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