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Abstract

Determining COVID-19 vaccination strategies presents many challenges in light of limited vaccina-
tion capacity and the heterogeneity of affected communities. Who should be prioritized for early
vaccination when different groups manifest different levels of risks and contact rates? Answering such
questions often becomes computationally intractable given that network size can exceed millions. We
obtain a framework to compute the optimal vaccination strategy within seconds to minutes from
among all strategies, including highly dynamic ones that adjust vaccine allocation as often as required,
and even with modest computation resources. We then determine the optimal strategy for a large
range of parameter values representative of various US states, countries, and case studies including
retirement homes and prisons. The optimal is almost always one of a few candidate strategies, and,
even when not, the suboptimality of the best among these candidates is minimal. Further, we find
that many commonly deployed vaccination strategies, such as vaccinating the high risk group first,
or administering second doses without delay, can often incur higher death rates, hospitalizations, and
symptomatic counts. Our framework can be easily adapted to future variants or pandemics through
appropriate choice of the compartments of the disease and parameters.
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1 Introduction

Since its beginning in December 2019, the
COVID-19 pandemic has resulted in nearly 750
million infections and over 6 million deaths as of
April 2023 [1]. Vaccines have proven to be the
most effective countermeasure to the pandemic
by limiting transmissions and protecting espe-
cially vulnerable populations [2]. During its early
stages, the vaccination drive was heavily capacity
constrained with demand far outstripping sup-
ply and administration capability – a challenge

that continues to plague Low- and Middle-Income
Countries (LMICs) [3]. This is bound to be the
case for vaccines developed for every infectious
disease.

The target population for COVID-19 is nat-
urally heterogeneous with different individuals
exhibiting different social contact patterns and
different risks for developing a serious form of
the disease and suffering hospitalization or death.
Thus, under capacity constraints, governments
and public health organizations must make the

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.12.10.23299100doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.12.10.23299100
http://creativecommons.org/licenses/by-nc-nd/4.0/


critical choice of whom to vaccinate first: 1) those
who are at high risk of hospitalization or death 2)
those who are likely to transmit the disease most,
3) a combination of the first and second set. The
first group, referred to as the “high risk group”,
is comprised of the elderly and the immuno-
compromised; vaccinating them protects them by
significantly reducing the risk of severe symptoms,
hospitalization, and death. The second, the “high
contact group”, are those who manifest high con-
tact rates, perhaps because of their professions,
and may spread the disease the most; thus, vacci-
nating them aims to prevent them from infecting
others, significantly reducing the reach of the dis-
ease in the populace, including in the high risk
group. For COVID-19, most public health bodies
first vaccinated the high risk group[4]1, adopting
the protection route. But was the choice optimal
even if we consider the objective of minimizing
only the death count? What if the prevention
route minimizes the death count instead, by vacci-
nating first those who constitute the most effective
vector of spread, which in turn reduces the spread
of the disease to the most vulnerable? In particu-
lar, if a small fraction of the populace have much
higher contact rates than the rest, then vaccinat-
ing them may inhibit in a short time the pathway
of the disease to the most vulnerable.

Next, while some vaccines have one dose, oth-
ers need two doses [5]. For the recipients who
opted for the vaccines that needed two doses, the
public health bodies, at least in the US, scheduled
the second dose right after the mandated mini-
mum time between the two doses, while others
await their first doses. But do public health met-
rics improve if first everyone is administered the
first dose and then the second doses are sched-
uled for those who need them? Or is the optimal
strategy a hybrid between the two extremes, i.e.
delay the second dose by a certain amount to
administer the first dose sooner to larger number
of individuals; the delay may be different for dif-
ferent contact and risk profiles as well. To answer
these questions, we need a systematic methodol-
ogy to determine the optimal vaccination strategy,

1Health care workers were vaccinated before the elderly and
immunocompromised, but they form of a negligible segment
of the high contact group. High contact groups typically also
include those with large and dynamic contact sets such as
shopkeepers, bank tellers, receptionists, drivers of taxis, shared
rides, waiters, bartenders, doormen, etc.

for attaining well-defined public health objectives,
considering both single dose and two-dose vac-
cines. Identifying the optimal vaccination strategy
is imperative also because it provides a valuable
benchmark for evaluation of any proposed vacci-
nation policy. Comparing a proposed policy with
the optimal informs by how much the former can
be outperformed through a smarter design.

The challenge in determining the optimal vac-
cination strategy for COVID-19 is multi-fold.
First, COVID-19 manifests some fundamentally
different characteristics in susceptibility and fatal-
ity rates as compared to other contagious diseases
such as various strains of influenza, rabies, which
have been known for a while, and, more recently
discovered ones such as Zika and Ebola [6]. Specif-
ically, vulnerability to COVID-19 has shown to
be much more lopsided with respect to age (pre-
senting greater risk to the elderly) as well as
other underlying health conditions such as dia-
betes, obesity, or hypertension [7]. Thus, given
the nature of transmission and vulnerability, the
extensive body of research that exists for vaccina-
tion for the other diseases mentioned above, could
justifiably assume either a fully homogeneous tar-
get populace or limit heterogeneity to age-based
compartments or geography [8, 9, 10]. For exam-
ple, studies of rabies have rightly focused primarily
on geographic movement of animal populations
which are common hosts (eg. [10]). The age or
geography based compartments were often consid-
ered to differ in contact rates, but not in risks,
even when they consider heterogeneity. Thus, the
literature on vaccinations for other diseases do
not incorporate the heterogeneity in both contact
rates and risk level which constitutes a defining
characteristic for COVID-19. Yet, incorporating
this multi-dimensional heterogeneity by consider-
ing each individual as a separate entity usually
leads us to optimizations of an inordinate size,
which are computationally intractable because of
the curse of dimensionality and the scale of spread
of Covid-19 [11]. On the other hand, homogeneous
abstractions, though computationally tractable,
lose the essential characteristics of the spread and
impact of COVID-19. Even the scale of spread
of some of the previous diseases such as Zika or
Ebola have been far more limited than COVID-
19, with Ebola outbreaks being largely confined
to West Africa [12], while COVID-19 afflicted all
the continents. The much larger target populace
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amplifies the computation challenges that arise in
determining the right prioritization based on indi-
vidual characteristics such as contact rates and
risk factors.

We redress the above challenges as follows.
We model the multi-dimensional heterogeneity for
COVID-19 by grouping different sections of the
populace in accordance with their risk factors
and contact rates. Individuals in each group are
assumed to be statistically identical in terms of
risk factors and contact rates among each other
and across groups, but those in different groups
can have different contact rates and risk fac-
tors. The contact rates between groups depend on
pairs in question. This group-based modeling pro-
vides a tradeoff between retaining analytical and
numerical tractability and capturing the inherent
heterogeneity. The number of groups and the spe-
cific criteria for the classification is a design choice.
Vaccination in different groups however remains
coupled due to capacity constraints on overall
rate of vaccination across all groups together. We
subsequently formulate the determination of the
optimal vaccination strategy that optimizes public
health metrics of choice (eg, death, hospitaliza-
tion, symptomatic counts) by allocating different
vaccine capacities to different groups at different
times subject to not exceeding the limit on the
number of doses that can be administered (i.e. the
vaccination capacity constraint).

There is a growing literature attempting to
provide guidance on COVID-19 vaccine prioritiza-
tion. Most papers compare a set of pre-identified
policies using simulations e.g. [13, 14, 15, 16, 17,
18]. The most common among these policies pri-
oritize based on age (e.g. [13]), others based on
geographic locations etc [14, 15, 16]. Among these,
a small set focus on LMIC settings (e.g. [17]) with
the large majority confined to high income coun-
tries [18]. Incidentally, among prior pandemics,
influenza may be the closest to COVID-19, and
most vaccination strategies for influenza fall into
similar categories, relying either on simulation of
very few strategies (e.g. [19, 20]) or computation-
ally costly optimization with limits on the feasible
set of policies (e.g. [21, 22]). Such comparisons and
evaluations often provide valuable insights, but
the overall approach suffers from some fundamen-
tal limitations. First, in absence of the knowledge
of the optimal vaccination strategy for attaining
well-defined public health objectives, one does not

know whether and by how much a future strat-
egy, or even all past strategies, outperform the
proposed strategies. Second, simulations require
a large number of iterations to provide reliable
performance estimates and each such iteration
consumes significant time for even moderate size
populaces, and the computation time and proces-
sor memory requirement for each iteration grows
at least polynomially with the size of the popu-
lace. As a result, the works in this category which
consider populations of the size that pandemic
spread affects rely heavily on access to power-
ful computing resources like high performance
computing clusters (e.g. [23, 24]). These simula-
tions cannot therefore be conducted in settings
which have limited computational resources such
as local public health bodies in small towns of the
US and throughout LMICs, which prevents the
choice between strategies from being fine-tuned to
parameters that evolve with time and can only
be locally estimated. Barring few exceptions, most
works consider single dose vaccines, though sev-
eral COVID-19 vaccines require two doses. For
example [25, 26] consider two dose vaccines, but
both of these prioritize based only on age, as per a
predetermined order, and choose between few pre-
determined delays for the second dose. The joint
optimization of group prioritization and second
dose delay has remained open even in the category
that compares a set of predetermined strategies.

Another computational approach chooses the
optimal vaccination strategy for COVID-19
among the policies that do not vary the vaccina-
tion rates to groups over time (i.e. among static
policies) (e.g. [27]), or among those that vary
allocations over large predetermined time inter-
vals (e.g. [6]). The limitation of these approaches
is that they a priori rule out highly-dynamic
vaccine allocations without considering if these
can attain substantially better values of pub-
lic health metrics. Besides, the appropriate time
scale of optimization can not be determined a
priori and universally, as different public health
domains have different inherent flexibilities. The
available approaches that optimize over predeter-
mined fixed intervals can not easily generalize to
different, specifically higher, numbers of intervals,
i.e. they do not scale. For example Buckner et.
al. deploy a two-step genetic algorithm with sim-
ulated annealing [6]. The computation time of
genetic algorithms increases exponentially in the
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number of optimization variables. The number
of optimization variables for Buckner et al. lin-
early increases in the number of intervals. Thus,
the computation time significantly increases if
the number of intervals increases (refer to Sup-
porting Information E for more details). Again,
these approaches may be prohibitively difficult
in areas lacking advanced computing or the nec-
essary expertise. All of the above only consider
single dose vaccinations, and the generalization
to two doses is not direct and is expected to
increase the computation time even further and
significantly so.

We adopt a different design approach alto-
gether. We do not restrict to any preselected set
of vaccination strategies, or any predetermined
decision interval. We instead consider the prob-
lem in its most general form, optimizing over all
potential vaccination strategies, including arbi-
trary functions of time which can vary over any
time scale and arbitrary variations across the
groups, towards the desired public health met-
ric subject to the vaccination capacity constraint.
We obtain a flexible framework that can accom-
modate different number of doses and different
public health metrics (e.g. death, hospitalization,
symptomatic counts), and tailor the vaccination
strategy to any contact and risk heterogeneity
of the target populace, population demography,
disease parameters, and vaccination capacity con-
straints. We accomplish this in three broad steps:
(1) capturing the heterogeneity of the populace
in both contact rates and risk factors through a
novel partition of the populace into three groups:
high contact, high risk, and baseline (Section 2)
(2) modeling the spread of the contagion and the
progression of the stages of the disease within and
across the groups, as a system of a small num-
ber of ordinary differential equations (ODEs) in a
small number of variables, regardless of the size
of the populace (Section 2) (3) posing the choice
of the optimal capacity constrained vaccination
strategy as an optimal control problem with the
ODEs providing the state trajectories (Section
2). Optimal control has been deployed in design-
ing dynamic vaccination prioritizations for several
other contagious diseases (e.g. [28, 29]), but the
deployment for COVID-19 will fundamentally dif-
fer on account of its distinctive characteristics.
Overall, very few papers have applied optimal
control to design of COVID-19 vaccine strategies

[30, 31, 16]. [30] and [31] both deploy optimal
control to determine the optimal budget alloca-
tion between several different types of mitigation
strategies for COVID-19 (e.g. social distancing,
vaccination, testing) assuming that the target
populace is fully homogeneous. [16] focuses on
allocation of available vaccines among large sub-
regions (e.g. provinces of a nation, with Italy as
their case study) of a geographic region so as to
minimize cumulative infections. They consider the
population in each sub-region to be homogeneous
in that every individual has the same risk factor
and contact rate therein. In the above respec-
tive scenarios, the fully homogeneous abstraction,
or the homogeneity assumptions within each sub-
region rules out design of vaccine prioritization
among individuals based on their contact rates
and risk factors. Thus,the problems they seek to
solve are complementary to those in this paper.
Also, note that in practice different individuals
within large or even small sub-regions (e.g. neigh-
borhoods) have widely diverging contact rates
(e.g. due to their professions) and risk factors (e.g.
due to their age and underlying health conditions).
Thus, even the vaccine rollout processes deployed
in practice have enacted different priorities among
different individuals living even in proximity [4].
Thus,our consideration of heterogeneity captures
a crucial element of reality.

We compute the optimal vaccination strategy
for 911,250 instances of realistic parameters (see
Supporting Information D.2 for parameter selec-
tion), spanning different variants, disease parame-
ters and population demographics of 139 countries
and all states of US as well as specific case stud-
ies such as retirement homes, prisons, LMICs.
The optimal solution, or a close approximation
thereof, turns out to be easily deployable, and can
mostly be computed within seconds regardless of
the population size using standard numerical tool-
boxes and modest computation resources, which
are usually accessible in local public health offices
throughout US and in most LMICs. Owing to this
computational tractability, we are able to evaluate
the impact on the solution of 1) a range of disease
and population parameters that arise in practice
including in divergent case studies of interest, 2)
restrictions on decision intervals, 3) error in esti-
mating the parameters. Finally, we show how our
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framework can be used by public health author-
ities in designing vaccine rollout strategies for
future pandemics (Section 4).

We summarize some specific findings from our
work. We first list those that are particularly
relevant for practitioners.

• For one dose vaccines, we could narrow down
the set of optimal strategies to only two can-
didates: one which first vaccinates the high
contact group, then the high risk group and
finally the baseline group, the other reverses
the order between the high contact and high
risk groups (Section 3.2). One or other of these
two policies optimizes important public health
metrics among all policies for the bulk of the
parameters considered, and nearly minimizes in
the limited number of remaining instances. This
is a significant reduction starting from the set
of all possible vaccination strategies. Further,
both candidate policies are easy to deploy. In
many realistic cases (e.g. nursing homes and
LMICs), the high contact priority policy has
a lower death count than the high risk prior-
ity policy which is currently the most widely
deployed policy; for some realistic cases the high
risk priority policy has higher death count than
even a policy that accords uniform priority to
all individuals i.e. randomly selects among them
(Sections 3.3 and 3.4). This is somewhat coun-
terintuitive because the high risk priority policy
prioritizes the vaccination of those at greatest
risk to die once infected, but has been explained
through the insights the computations provide.

• For two dose vaccines, we find that the set of
optimal vaccination strategies can be narrowed
to three easy to deploy candidates, which vary
in the order of selection of groups for vaccina-
tion and on whether the second dose is delayed
until everyone receives the first dose or each
group gets the two doses in succession while oth-
ers wait for the first dose (Section 3.6). It is
again not obvious a priori that the candidate
set for two doses will increase only by a small
number compared to that for one dose given the
several additional decision variables in the for-
mer, including one decision variable, namely the
delay for the second dose, assuming uncount-
ably infinite number of possible values being a
real number.

These two findings imply that the optimal
vaccination strategy, or a close approximation
thereof, can be determined by comparing a small
set (i.e. either two or three) of vaccination strate-
gies, for both one and two dose vaccines. The
comparisons can again be done in a few seconds
using our framework even when the computation
resources are modest. This facilitates the universal
deployment of the framework by enabling fine tun-
ing the choice between the few candidate policies
to specific parameters that can only be identified
locally.

We now highlight the findings that have signif-
icance from a methodological view.

• We show that despite segmenting the popu-
lation into only three groups (baseline, high
risk, and high contact), when the parameters
are chosen correctly, our model is able to accu-
rately predict both the spread of infection and
death count of COVID-19 as observed over the
course of the pandemic for all US states and 139
other countries including most LMICs (Section
3.1). Thus, our model is universally applicable.
We also demonstrate that any decrease in the
number of groups substantially undermines the
accuracy of prediction. In this sense, our model
has just enough complexity to characterize the
state dynamics of COVID-19 so as to match
actual data of spread and inflicted mortality.

• We demonstrate the use of optimal control as an
alternative to simulation or other, more compu-
tationally expensive optimization techniques for
determining vaccine prioritization strategies for
pandemics in which the target populace man-
ifests heterogeneity in both contact rates and
risk factors.

Overall, our framework for the determination
of the vaccination prioritization is practicable in
(1) the ease of deployment of all the resulting
candidate solutions, (2) the fast computation of
the optimal solution even when the computation
resources are modest as in local public health units
in US and LMICs which allows such units to fine
tune the solution they deploy in accordance with
the local pandemic parameters, and (3) the abil-
ity of the underlying model to capture key public
health metrics almost universally.
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2 Methods

COVID-19 manifests heterogeneity both in the
evolution of the disease in individuals and in the
manner of the spread. Different sections of the
populace constitute the most potent vector of
spread while others have high risk for develop-
ing a severe form of disease once infected. We
capture this heterogeneity through a simple clas-
sification of the populace. We divide the populace
of N people into three groups: 1) baseline (X)
2) high risk (Y), and 3) high contact (Z). We
describe the rationale and method underlying this
classification. The high risk are those who are
old or have underlying health conditions, which
exacerbate the risk of developing severe forms
of the disease, namely symptoms, hospitalization
and death, once infected, e.g. retirees [7]. The high
contact group are those who have a large set of
potential contacts spanning entire neighborhoods
or even cities, but establish actual contact with
any individual in their set of potential contacts
infrequently. The baseline is the rest of the pop-
ulace, i.e. those who are neither high contact nor
high risk.

The high contact group includes shopkeepers,
bank tellers, receptionists at hotels, restaurants,
waiters at restaurants, doctors, nurses, drivers of
buses, cabs and shared ride, etc. For example the
set of potential contacts of a shopkeeper or a
driver includes entire neighborhoods or cities, but
a shopkeeper or a driver meets any given mem-
ber in their neighborhood or city infrequently.
This group has overall high rates of contact with
both of the other groups. Given their large and
dynamic contact sets, individuals in this group
are the most likely to imbibe an infectious disease
early on and pass the same to a large number.
Thus, this group constitutes the most potent vec-
tor of spread. The individuals who are not high
contact, have small sets of “regular” contacts, (e.g.
family members, colleagues, friends), with whom
they connect frequently, and outside this set infre-
quently connect with members of the high contact
group. The baseline group includes but is not lim-
ited to workers of the tech sector, financial sector,
manufacturing sector, homemakers, and scientists.
Note that a tech worker or a scientist would reg-
ularly meet their friends, family, colleagues - all
of whom constitute a small set; and infrequently
meet shopkeepers, bank tellers, waiters, drivers in

their neighborhood or city. Thus, members in this
group largely, albeit indirectly, connect through
those of the high contact group.

Considering publicly available data for the
infection and death counts as a function of time in
all states of US and 139 countries, we later show
that the decomposition of the populace in these
three groups helps capture the temporal variation
of infection and death counts observed in reality
(Section 3.1). The classification based on contact
patterns and risk factors also allows us to cap-
ture the tension between focusing vaccination on
high risk or high contact groups. Clearly the clas-
sification is comprehensive in that it includes all
individuals. In principle there can be an overlap
between high contact and high risk groups, but
in practice this overlap is minimal because the
individuals in high contact group are of working
age and usually in good health. Thus, their risk
of developing a severe form of the disease is gen-
erally low. In principle, the vaccination priority
for the small fraction of individuals who are both
high contact and high risk ought to be the high-
est. Thus, they can be excluded from the decision
problem we consider, i.e. we consider the problem
of allocation of vaccines to individuals after those
who are both high contact and high risk are vacci-
nated. Thus, the classification consists of disjoint
groups which together cover the populace.

We also show, using the above mentioned data,
that decomposition into fewer groups, namely one
(i.e. entire population is one homogeneous group)
or two (separating individuals based only on risk
factor or only on contact patterns) can not capture
the temporal variation of both infection and death
counts (Section 3.1). Thus, our classification is the
simplest possible for capturing the heterogeneity
in the contact and risk patterns of the popu-
lace which determine the spread and evolution of
COVID-19.

To describe state transitions modelling the
contraction and evolution of COVID-19 in indi-
viduals, we employ an expanded compartmental
model that accounts for the disease states associ-
ated with COVID-19 as well as our three group
partition. We imbue each group with a compart-
mental model of the disease progression which
includes 10 states: susceptible (S), exposed (E),
pre-symptomatic (P), asymptomatic (A), early
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(a) Simplified COVID state diagram

Baseline 
 

Vaccination rate 
SX(t), IX(t)

uX(t)

High Contact 
 

Vaccination rate 
SZ(t), IZ(t)

uZ(t)

High Risk 
 

Vaccination rate 
SY(t), IY(t)

uY(t)

∑
i∈{X,Y,Z}

Si(t)ui(t) ≤ V0

(b) Contact and vaccination model

Fig. 1: In 1a we present a simplified state diagram in the case where vaccinated individuals and recovered
individuals cannot become infected. Note that these assumptions are relaxed for our numerical computa-
tions (see Supporting Information B.1 for further detail). Red arrow indicates exposure to a contagious
individual, black arrows denote natural disease progression, and blue arrow denotes vaccination. Each
transition (apart from exposure which depends on infected population) is labeled with the associated
rate. Note that probability of becoming symptomatic (si), hospitalized (πi), and dying (λi) are group-
dependent as denoted by subscript i. Here τ , η, ϕ, ψ, ζ, and σ are the reciprocals of the expected durations
of the exposed, pre-symptomatic, early infection, asymptomatic, late infection, and hospitalized states,
respectively. Refer to Supporting Information A for notation tables. 1b depicts our three group model
which dictates how susceptible and infectious individuals of different groups come in contact to spread the
disease and how vaccines are allocated. Here I denotes a group’s vector of all infectious disease states. Note
that as vaccination rate ui(t) for a group increases the fraction of individuals that transitions to the path
that takes them to hospitalization or dead states decreases. Given the respective vaccination rates and
number of susceptibles, the vaccination capacity constraint is expressed as

∑
i∈{X,Y,Z} Si(t)ui(t) ≤ V0.

stage infected (I), late stage infection (L), hos-
pitalized (H), recovered (R), vaccinated (V), and
dead (D). In general, we refer to the fraction of

individuals in a disease state with the group as
a subscript and indexed by time i.e. SX(t) is the
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fraction of individuals who are susceptible and
type X at time t.

For ease of exposition, we first present a sim-
plified model in which vaccines confer perfect
immunity to infection (see Figure 1), an assump-
tion relaxed in the model we actually use for all
our numerical results (refer to details of this model
in Supporting Information B.1).

The vaccine policy is specified as the frac-
tion of the susceptibles of each group who will
receive the vaccine at a given time instant t
(uX(t), uY (t), uZ(t)). Thus, 0 ≤ ui(t) ≤ 1 at any
given time t.

Note that all vaccination policies can be repre-
sented through appropriate choice of the functions
ui(·). For example, one can consider policies which
sequentially vaccinate groups, e.g. ui(t) is as high
as possible for a certain group initially, while
uj(t) = 0 for other groups in the same period, then
the focus changes to uj(t) for another group, etc.
Or, 0 < ui(t) < 1 for all groups in a certain inter-
val, which represents “mixed” policies which split
vaccine capacity between multiple groups. In fact,
uX(t), uY (t), uZ(t) are allowed to be arbitrary
functions of time, Thus, highly dynamic, com-
plex policies are included among the vaccination
strategies we consider.

We consider that the vaccination capacity is
limited, i.e. V0 fraction of the population (NV0
individuals) can receive vaccines on any given day.
Thus,

∑
i∈{X,Y,Z} ui(t)Si(t) ≤ V0 for each t. This

vaccination capacity constraint is motivated by
staffing and infrastructure limitations that arise in
particular for emerging infectious diseases. Specif-
ically the health care workers who administer the
vaccines are limited. Also, only a certain number
of doses can be stored on any given day in a health
care unit due to limitations on cold chain storage
space [33]. Thus, only a certain maximum num-
ber of doses can be administered on any given day
leading to the hard constraint under consideration
[33].

The dynamics of the system can be captured
by a system of ODEs 2 provided in Figure 2. The

2While the set of ODEs described is deterministic, the state
transitions are usually stochastic. It can be shown, however,
that, under certain mild regularity assumptions, the fraction
of individuals in any given state and group in the stochastic
system converges to the solution of the ODEs at each time t in
the asymptotic limit that the size of the population increases
to infinity ([34]; Supporting Information C, [32]). The assump-
tion is that the duration of each state for every individual is

state dynamics of the three groups are connected
through (1) the infection across groups and (2) the
dependence between the vaccination rate {ui(·)}
allocated to each group at time t. The depen-
dence arises because of the vaccination capacity
constraint. If the capacity allocated to one group
is high at any given time, those allocated to the
other groups must be low because of this capacity
constraint.

We now seek to optimize public health metrics
of our choice through a judicious selection of the
vaccination strategy, namely the {ui(t)} for i =
X,Y, Z, t ∈ [0, T ]. Unless otherwise specified, we
focus on minimizing the overall death count by the
end of the time horizon under consideration, i.e.
DX(T ) +DY (T ) +DZ(T ) (this is also the cumu-
lative death count in [0, T ]). We later describe
how our framework can be adapted to minimize
other public health metrics such as symptomatic
counts, hospitalization counts, or socioeconomic
costs related to the pandemic (Supporting Infor-
mation B.3).

The optimal vaccination strategy is the one
that minimizes the overall death count among all
vaccination strategies that satisfy the vaccination
capacity constraint. Since the available choices
include arbitrary functions of time, the optimal
vaccination strategy can not be obtained by stan-
dard optimization, but needs to be characterized
by solving an optimal control formulation, which
we will shortly describe.

The first question however is if the vacci-
nation strategy that minimizes the cumulative
death count needs to be obtained by solving any
optimization or optimal control problem at all.
Wouldn’t vaccinating all individuals in the high
risk group first accomplish this goal always? To
see why not consider the case that the high
risk and high contact groups are respectively
large and small in size, and the contact rates

exponentially distributed; under this assumption the distribu-
tion of the number of individuals across the states and groups
constitutes a continuous time Markov chain. Thus, under this
assumption, the solution of the ODEs becomes a more and
more accurate approximation of the temporal evolution of the
actual state distribution as the population size increases to
infinity. This constitutes an important computational strength
as the system of ODEs can be readily solved regardless of the
population size, while the time required to compute the prob-
ability of different population distributions across states and
groups from the continuous time Markov chain representation
increases exponentially in the population size. Thus, this lat-
ter computation is intractable for all practical purposes for
populations of even moderate size.
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i ∈ {X, Y, Z}

Fig. 2: The figure presents a set of ordinary differential equations (ODEs) which captures the dynamics
of the states shown in Figure 1. All notation and associated parameters are defined and presented in
full detail in Supporting Information A. These ODEs have been obtained through an adaptation of the
metapopulation model of epidemiological differential equations [32]. Each equation governs the rate of
change of the fraction of individuals of a specific group and disease state. The equations are composed
of both quadratic and linear terms. The quadratic terms (terms in red) correspond to the transmission
of the virus, which involves interaction between two individuals, one contagious and another susceptible.
The number of such interactions per unit time is linearly proportional to the number of such pairs, which
is in turn linearly proportional to the product of the fraction of susceptibles and contagious individuals in
the respective groups. The proportionality constant is the disease spread rate. Linear terms correspond to
either (1) the progression of an individual through disease states (terms in black) or (2) the vaccination
of susceptible individuals (terms in blue). The proportionality constants for (1) are the transition rates in
and out of the states which are different for different groups. The proportionality constants for (2) are the
vaccination rates which are functions of time and group. This system of ODEs consists of only 30 ODEs
involving 30 variables, regardless of the population size. Note that this represents the simplified setting
in which vaccinated and recovered individuals cannot become infected (corresponding to Figure 1).

between the high contact group and other groups
is much higher than the contact rates between
other groups and within other groups. The ini-
tially infected individuals are all in the baseline
group. Then, if the high risk group is vaccinated
first, it will take some time to complete the vacci-
nation strategy given the group’s size. During this
time the infection may be transmitted from the
baseline group to the high risk group through the
high contact group. Once the infection reaches the
high risk group it kills many individuals in this
group before they can be vaccinated. Instead if the
high contact group would be vaccinated first, its
vaccination would be completed in a short time
because of its small size and the virus may not be
able to reach the high risk group in this time. Once
the high contact group is vaccinated in its entirety,
the virus can not reach the high risk group as it
lacks a path to it from the baseline group in which
the infection had originated. Thus,the death count

in the high risk group is low. The mortality risk is
low in other groups, so very few individuals therein
die even if they are infected. Thus, the overall
death count is low. In other words, vaccinating
the high contact group before the high risk group
may in fact reduce the death count as compared
to when this order is reversed. Thus, the optimal
vaccination strategy is not a priori obvious. We
therefore proceed to formulate the optimal control
problem:

minimize
∑

i∈{X,Y,Z}

Di(T )

subject to x ∈ S (1)

x(0) = x0,

0 ≤ ui(t) ≤ 1 ∀i ∈ {X,Y, Z}, t ∈ [0, T ]
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∑
i∈{X,Y,Z}

ui(t)Si(t) ≤ V0 ∀t ∈ [0, T ]

where x refers to a state trajectory. x(0) is the
state vector at the initial time, i.e. at t = 0, and
its components are non-negative. S refers to the
collection of state trajectories conforming to the
system dynamics as specified by the ODEs. The
last constraint in (1) represents the vaccination
capacity constraint.

The optimal control problem can be solved
using standard numerical toolboxes to yield the
optimal vaccination strategy. We use the numer-
ical toolboxes Yop [35] and CasADi [36] for this
purpose.

Finally, we rule out “mixed” policies which
split vaccine capacity between multiple groups
(until at least one group runs out of susceptibles to
fully utilize the vaccine capacity). We prove that
there exists an optimal vaccination strategy that
devotes full capacity to a single group while the
susceptibles of each type exceed the vaccine capac-
ity. Only after the number of susceptibles decreases
below capacity will such a policy ever vaccinate
two groups simultaneously (see Supporting Infor-
mation C) [37]. This analytical result yields a
significant reduction in the set of potential opti-
mal strategies. This reduction is also of practical
importance: strategies which focus on one group at
a time can be deployed more easily and align with
the common practice of phased vaccine rollout to
target groups.

3 Results

3.1 Model Validation

We first validate our model by demonstrating its
applicability to COVID-19 infection and fatality
data over a period of 9 months (1 April 2020 - 1
January, 2021, the period preceding the introduc-
tion of vaccines). We show that despite segmenting
the population into only three groups (baseline,
high risk, and high contact), when the param-
eters are chosen correctly, our model is able to
accurately predict both the spread of infection
and mortality of COVID-19 as observed over the
course of the pandemic in all the US states and 139
countries. We also demonstrate that any decrease
in the number of groups substantially undermines
the accuracy of prediction.

We consider publicly available data on infec-
tion and death counts [38]. From census and sur-
vey data, we estimate the size of the three groups.
Elderly populations are categorized as high risk
while specific service industry and essential work-
ers are high contact (see Supporting Information
D.1 for further detail) [39, 40, 41]. Disease param-
eters are obtained from WHO, CDC, and Johns
Hopkins (see Supporting Info A).

We select the contact rates within each group
and across groups using regression, such that the
mean squared normalized error (MSNE)3 between
the infection and death counts predicted by our
model and the true values of the same is min-
imized. The minimum mean squared normalized
error will be abbreviated as MMSNE. Different
contact rates were chosen for different periods to
account for changes in both government policy
(e.g. start, relaxation, and end of lockdowns) and
school openings which happen at low frequency.

We now compare the infection and death
counts predicted by our model with the above
choice of parameters and those that were actually
recorded. Although the numbers that were actu-
ally observed were used to determine the contact
rates in our model, the prediction using those need
not match the reality, and the MMSNE may be
high. This happens when the parameter space of
the minimization is not large enough to capture
the complexity of the pandemic progression, e.g.
if the population needed to be segmented into a
larger number of groups to capture the complex-
ity. We show that this is not the case for different
locations with different population demograph-
ics and government responses throughout US and
worldwide. Specifically, in Figure 3 we consider
2 US states (California, Florida) and an LMIC
(Bangladesh) to demonstrate that the predicted
values closely match the values actually recorded,
the average difference between the predicted and
actually recorded values is less than 1% for both

3The square normalized error for infection (death, respec-
tively) on a given day is the square of the difference between
the predicted and actual infection (death, respectively) counts
normalized by the actual infection (death, respectively) count
on that day. The mean square normalized error for infection
(death, respectively) is the average of the square normalized
errors for infection (death, respectively) over all days. The
mean square normalized error is the average of the mean square
normalized error for infection and death. Square is a smoother
function than the absolute value particularly when the square
and absolute values near zero. Thus,we choose the contact rates
to minimize the mean square normalized error rather than the
mean absolute value of the normalized error.
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Fig. 3: Here we show the accuracy of our model (’Predicted’) when applied to the real infection and
death counts of (a) California, (b) Florida, and (c) Bangladesh. The blue curves show the ground truth
data [38]; orange and green show the predictions from our contact model and from a fully homogeneous
model, respectively. Finally the red and purple show the predictions when only one type of heterogeneity
is accounted for, contact rate and risk, respectively.

infections and death. From the US, we choose
California and Florida because these two states
have divergent age demographics and government

responses. Florida has a significantly older popu-
lation as well as among the most laissez-faire NPI
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restrictions while the opposite is true of Califor-
nia [42]. We choose Bangladesh as an example of
an LMIC – in general LMICs have significantly
younger population demographics and different
government responses as compared to the US. The
MMSNE for California, Florida, and Bangladesh
are very small, 0.0005, 0.001, and 0.001, respec-
tively. Thus, our reasonably simple model has
distilled the essential heterogeneity innate to the
system.

We now consider all the states of US and 139
different countries surveyed. Here, four countries
for which death and infection counts are available
are excluded due to apparent irregularities in the
available data (see Supporting Information D.1 for
further detail). As seen in Figure 4, the MMSNE
was very low, below 0.006, for all US states. Across
the MMSNE for all countries, the median, mean,
first and third quartile are 0.002, 0.005, 0.0006,
0.005, 0.05. While this error is slightly higher
than that of the states, it is still quite low. The
increased error is mostly due to low population
sizes and abrupt, non-smooth changes in infection
and death counts (further detail in Supporting
Information D.1). The low fitting error across the
board shows that our model captures reality of
geographical locations all over the world.

We now examine if our model can be sim-
plified further while retaining the quality of the
fit between the predicted values and reality. We
again study California, Florida, and Bangladesh.
We first consider the model that assumes a homo-
geneous populace – that is, there is only one group.
There is therefore only one contact rate, that
within the group. The mortality risk for the homo-
geneous populace is chosen as average over all age
groups. We determine the contact rate in different
time periods using the same regression technique.
Figure 3 shows that the predicted counts do not
closely match the counts observed in reality; the
average error in predicted infections was 1.86%
and the average error in predicted deaths was
82.91%. Thus, a homogeneous model can at best
match only one count, and greater degrees of free-
dom are necessary to match both counts. We now
examine if increasing the number of groups to
two provides the necessary degrees of freedom. We
consider two groups with different contact rates
but uniform mortality risk throughout the popu-
lace (which is average over the entire populace).
The mismatch between predicted and recorded

values remains similar, the average differences for
the infection and death counts are respectively
1.93% and 82.85%. We now consider two groups
with uniform contact rates throughout but one has
higher mortality risk. Now, average error for the
infection count increased to 6.95% while average
death error decreased to 66.46%. Thus, all three
groups are necessary for error values to be low,
as three groups allows for heterogeneity in both
mortality risks and contact rates. The heterogene-
ity innate to the evolution of the pandemic over a
diverse population can not in general be captured
by models simpler than ours. Having validated the
model as above, we henceforth utilize the values of
the parameters we extracted for three groups for
all subsequent numerical computations using the
model.

3.2 Structure of Optimal
Vaccination Policies

Unless otherwise specified, we assume that our
objective is to minimize the total death count.
Recall that the challenge in determining optimal
policies is that the space of potential vaccina-
tion strategies is very large – it can include
straightforward strategies which vaccinate groups
sequentially, complex time-dynamic policies which
change focus day-to-day, and policies which split
vaccine capacity among multiple groups at once.
But our theoretical results (see Supporting Infor-
mation C) have ruled out the last class of policies.
Using extensive numerical computations we show
that the optimal policies lie in the first class in
most of the cases that arise in practice, and the
suboptimality of the strategies in the first class
is limited even when the optimal strategy lies
elsewhere.

We vary disease parameters, initial population
seroprevalence, and vaccine efficacy parameters
over representative ranges based on best available
estimates [43, 38, 44, 45]. Detailed derivations of
all parameters and relevant sources are included
in Supporting Information A and D.2. We obtain
the demographic data from census as in the previ-
ous section. The default assumption is that initial
infections are seeded only in the baseline group;
we explicitly specify when we deviate from the
default assumptions. We used the contact rates
obtained from the real evolution of the pandemic
as in the previous section. We also use additional
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Fig. 4: This figure shows the MMSNE of the predictions from our fitted model when compared to actual
case and death counts [38]. In (a) we show the error in all 50 US States and DC. In (b) we show the error
over 139 countries.

contact rates from ranges of contact rates within
and across age groups in 139 countries obtained
from surveys and the sizes of the different groups
[46]. Overall, the large range of contact rates we
consider capture varying degrees of implemen-
tation and compliance with non-pharmaceutical
interventions (NPIs) such as social distancing and
lockdowns in different US states and the 139
countries. Over all these parameter ranges, our
model was instantiated and run on a fine grid of
approximately 911, 250 settings (see Supporting
Information D.2). We also demonstrate that our
model is robust to parameter estimation errors
(see Supporting Information D.3).

In 93.4% of the cases we considered, the opti-
mal solution was either to (1) vaccinate the high

contact group fully, next vaccinate the high risk
group fully (2) vaccinate the high risk group fully,
next vaccinate the high contact group fully. In
both these cases, the baseline group is vaccinated
at the end. We refer to the first as high contact
prioritization and the second as high risk priori-
tization. In the rest of the cases there is an extra
step where the optimal policy switches from high
contact vaccination to high risk before returning
to the high contact. In these few cases, the bet-
ter performer of the above two simple policies had
only 2.2% more deaths than the optimal policy.
Coupled with our theoretical result, this simpli-
fies our potential policy space down to two easily
deployable policies even without any assumed
restrictions on policy complexity.
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(a) The increase in mortality caused by static vaccination
policies over the optimal vaccination policy
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(b) The increase in mortality caused by policies that
change allocations only monthly over the optimal vacci-
nation policy
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(c) The benefit of more dynamic vaccination policies.

Fig. 5: Figure (a) shows the increase in the death counts of the static vaccination policy over that of
the optimal policy as a percentage of the latter. The x-axis is the ratio of death rates of the high risk
and baseline groups (this is also the ratio of the symptomatic rates and hospitalization rates of the two
groups). The y-axis is the ratio of daily average contacts of the high contact and baseline groups. As these
ratios increase, our contact network becomes more heterogeneous and the suboptimality of the static
policy increases. Figure (b) shows the same for the monthly policy, i.e. when the vaccine rate allocation
to groups is allowed to change only on a monthly basis.
Figure (c) shows the decrease in the number of deaths in the US baseline instance as one increases the
number of decision intervals. The allocation of the vaccination capacity to groups remain constant over
each interval. Number of days in each interval equals 365 divided by the number of intervals. Thus,
more decision intervals allow for more dynamic policies. The death count is normalized by the maximum
number of deaths across all data points.

Seeing that the aforementioned simple policies
perform well, one may question whether all simple
policies, even static ones, perform similarly well
in reducing mortality. To answer this question, we
compare the death counts of the overall optimal
policy with two more restricted policies: (1) the

optimal policy among those whose vaccine capac-
ity allocations to the groups are constant over the
entire time horizon (static policy) and (2) the opti-
mal policy among those whose vaccine capacity
allocations to the groups are constant in periods
of one month (monthly policy). The first policy is
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completely static while the vaccination capacities
allocated by the second can vary with time but
over large time scale. In contrast the overall opti-
mal policy has been obtained by optimizing among
policies that can vary their vaccination capac-
ity allocation to groups as frequently as deemed
necessary. We find that even at their best, the
less dynamic classes of policies under considera-
tion perform significantly worse than the general
optimal. In particular, Figures 5a and 5b, show
the additional mortality incurred by each of these
restricted policies when compared to the optimal
policy mortality as a percentage of the latter. The
axes are measures of the two types of hetero-
geneity: the ratio of risk parameters of the high
risk and baseline groups (x-axis) and the ratio of
daily average contact of the high contact and base-
line groups (y-axis). We see that as heterogeneity
increases, the difference in mortality between the
optimal and the two static variations is magni-
fied. Over all instances, the average increase in
death counts under the two restricted policies
as compared to the overall optimal vaccination
strategy were 206.3% and 72.16%, respectively. In
the extreme, the mortality of the static policy is
over thrice that of the optimal. We note that the
monthly policy has both lower death count and is
more dynamic than the static policy.

Motivated by the above observations, we inves-
tigate the importance of policy dynamism for
mortality reduction (Figure 5c). We consider one
specific instance for this purpose: the US base-
line setting in which contact rates and popula-
tion demographics are averaged over the data
reported in different states [40, 47, 46]. Figure
5c depicts how mortality substantially decreases
as we increases the number of decision intervals,
expanding our optimization space to allow for
more dynamic policies. The dynamism of our opti-
mal policies is integral to their performance in
reducing mortality. If such dynamic policies are
ignored, we do not have a proper foundation for
reasoning about the efficacy of vaccination poli-
cies because such restrictions preclude identifying
the minimum possible death count.

A strength of our framework is its computa-
tional tractability. The mean computation time
needed to determine the optimal vaccination strat-
egy over all aforementioned parameter settings

was just 10.86 seconds with a standard devia-
tion of 39.88 seconds. Excluding outliers4, the
mean computation time was just 8.04 seconds
with a standard deviation of 14.45 seconds and a
maximum of 142.42 seconds (a histogram of run-
times can be found in the Supporting Information
E). These computation times were obtained using
modest computational resources, namely an Intel
i7 2.7 GHz machine with 16 GB RAM, which could
also be readily available in local public health
bodies and resource-constrained settings such as
LMICs.

3.3 Comparison of mortalities under
high contact and high risk
prioritization across different
parameter ranges

It is noteworthy that most public health author-
ities implemented a strategy closest to high risk
prioritization with the caveat of early vaccination
for health care workers. High contact prioritiza-
tion, on the other hand, was not often recom-
mended, especially with the broader definition of
high contact which we use. Yet, in the previous
section we found that the high contact prioriti-
zation was optimal in several realistic settings.
In this section we compare the mortalities under
high contact and high risk prioritization policies
by varying different combinations of parameters.
We find that the high contact prioritization has
substantially lower mortality than the high risk
prioritization in several instances; thus the preva-
lent norm has been suboptimal in those cases.

To compare the two strategies, in each case,
we vary two parameters as shown in the two axes
of Figures 6 and 7, for given choice of one vari-
able and include the relative decrease of mortality
of one policy over another for all values of other
parameters as considered in Section 3.25. The
default assumption is that the variant is Alpha;
we explicitly specify when we deviate from the
default assumptions. After all other parameters
are set, R0 is computed via the next generation
matrix method (see [48]) and contact matrices

4In less than 0.6% of instances, the computation time
exceeded the maximum allotted time of 500 seconds

5We evaluate the death count of any given policy by utilizing
the system of ODEs in Figure 2 with vaccination rates {ui(·)}
that correspond to the policy.
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(a) The effect of different COVID-19 variants on optimal vaccination policy
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(b) The effect of initial seroprevalence on optimal vaccination policy
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(c) The effect of R0 on optimal vaccination policy

Fig. 6: Each heatmap displays the difference in resultant mortality between high contact prioritization
vaccination and high risk prioritization as a percentage of the mortality of high risk prioritization policy.
(a), (b), (c) respectively demonstrate the impact of 1) variants with different transmissibility and mortality
characteristics 2) different values of initial seroprevalence 3) different values of R0.

are normalized to achieve the desired R0, when-
ever we choose values of R0. Refer to Supporting
Information D.2 for further details.

Fig. 6 shows the effect of COVID variants,
level of initial infection and R0 on the mortalities
under the two policies. We considered the three

major variants thus far (Alpha, Delta, and Omi-
cron) by choosing the transmissibility (probability
of transmission upon contact with an infective
individual) and mortality characteristics accord-
ing to recent clinical data for each strain [49]. In
particular, relative to the Alpha variant, Delta was
nearly twice as contagious and with double the
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(a) The effect of demography on optimal vaccination policy
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(b) The effect of transmissibility on optimal vaccination policy
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(c) The effect of NPI Efficacy on optimal vaccination policy

Fig. 7: Each heatmap displays the difference in resultant mortality between high contact prioritization
vaccination and high risk prioritization as a percentage of the mortality of high risk prioritization policy.
(a), (b), (c) respectively demonstrate the impact of 1) different population distributions, i.e. different
values of the percentage of the total population that is in the high contact cluster 2) transmissibility of
the virus 3) NPIs (e.g. social distancing, masking, lockdowns).

hospitalization risk while Omicron was more con-
tagious still but with lower mortality rates [50].
The variant parameter in Figures 6b and 6c is
applied as a multiplicative factor on transmissi-
bility – this range allows us to consider potential
future variants of concern. Figure 6 shows that,
among the three variants, Omicron has the highest

relative benefit of high contact prioritization and
Alpha the least. This happens because Omicron
and Alpha respectively have the highest and least
transmissibilities. And, vaccinating high contact
individuals reduces the overall transmission signif-
icantly which is particularly effective in decreasing
the overall mortality when the virus has higher
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transmissibility. We also note that the relative
benefit of high contact prioritization decreases
with increase in the level of initial infection. This
happens because if the initial infection is high the
virus spreads in the high risk group during the ini-
tial time in which the high contact group is being
vaccinated, which in turn substantially increases
the mortality of the high risk group because of
the innate high mortality rates of the infected in
this group. The effect of R0, however, was non-
monotonic with high risk prioritization attaining
lower mortality than the high contact prioritiza-
tion at extreme values of R0. We will explain the
non-monotonic behavior in the next paragraph.

Fig. 7 shows the impact of the high con-
tact population size, viral transmissibility, and
NPI (non-pharmaceutical intervention, i.e. social
distancing, masking, lockdowns) efficacy on the
two policies under consideration. Note that while
the variants considered in the previous para-
graph have different transmissibilities and mor-
tality risks, here we study the impact of both
these factors in isolation. We choose multiplica-
tive factors of 1.0, 1.5, and 2.0 respectively on
the baseline transmissibility to obtain the low and
high transmissibility environments. NPI efficacy
is modeled as a multiplicative factor on contact
rates to capture different extents of social distanc-
ing, masking, and lockdowns. The low, moderate
and high values of NPI efficacy respectively corre-
spond to multiplicative factors of 1.0, 0.7, and 0.4,
that is, no reduction in contacts, 30% reduction in
contacts, and 60% reduction in contacts. Higher
viral transmissibility increases the relative benefit
of high contact prioritization due to larger reduc-
tions in potential infections. However, the relative
benefit of the early vaccination of the high con-
tact group is decreasing in the group’s size. This
happens because larger groups need more time to
be vaccinated. Thus, according vaccine priority to
large sized high contact groups significantly delay
vaccination to high risk groups; the disease may
spread in the high risk group during this delay
leading to high death counts owing to higher mor-
tality rates therein. Note that R0 is increasing
in both transmissibility and size of high contact
groups. Thus, an increase in R0 can shift the rel-
ative benefits of high contact prioritization policy
in either direction.

Finally, the range in Figures 6 and 7 which
exceed 20% difference or fall below -20% difference

between the two policies includes values consider-
ably higher than 20% or lower than -20%. Figure
8 shows the histogram of percent differences in
mortality between the two strategies. Specifically,
for certain parameter values in the above range,
the percentage difference was as high as 71.71%
and as low as -81.85%. Overall, the numerical
computations reveal that for a considerable range
of realistic parameters, high contact prioritization
lowers the mortality considerably over high risk
prioritization (and the reverse holds as well).

3.4 Case Studies

We now compare the death counts of the high
contact and high risk prioritization vaccination
strategies and a benchmark vaccination strategy
for three important case studies which arise in
practice. These cases: (1) LMICs, (2) prisons, (3)
long-term care facilities, have different character-
istics, suffer from high vulnerability to the disease,
and are hotbeds for the generation of new vari-
ants [51, 52, 53]. In particular, LMICs have a
smaller elderly population, but, due to the greater
prevalence of inter-generational households, high
risk individuals are less able to isolate. They also
have generally lower vaccine capacity [3]. Prisons
also have a smaller elderly population, but have
high levels of transmissibility due to unhealthy
living conditions and presence of a large num-
ber of individuals in a relatively small confined
space. Long-term care facilities have a large elderly
population alongside a small core group of employ-
ees that have high contact rates with those at
high risk. These differences were modeled by set-
ting appropriate vaccination capacity constraints,
contact rates between groups and sizes of the dif-
ferent clusters according to vaccine records, census
data, government statistics, and contact surveys
(for further detail see Supporting Information A,
D.2) [3, 38, 54, 55] . We also consider the US
baseline as described in Section 3.2. The bench-
mark vaccination strategy, referred to as Uniform,
distributes vaccines among groups proportionally
to each group’s size. Uniform is similar to vac-
cinating randomly chosen individuals subject to
vaccination capacity constraints.

Fig. 9(a-b) shows the differing efficacy of vac-
cine policies between the US baseline model and
LMIC. Unlike the US baseline, the high contact
prioritization strategy minimized mortality in the
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Fig. 8: Histogram of the percent difference in mortality between high contact prioritization and high risk
prioritization vaccination strategies over all instances.

LMIC setting among the policies considered. This
is because high risk individuals are in more fre-
quent contact with the high contact group in
LMICs than in the US. Thus, the high contact
group constitutes a greater vector of spread to
the high risk group in LMICs than in the US,
and vaccinating the former on a priority basis
helps protect the latter. Fig. 9(a) and (b) also
show how vaccine scarcity enhances the impact of
right vaccine prioritization. Note that 0.5%, 0.2%
of overall populace can be vaccinated every day in
US baseline and LMIC respectively. We see that
the difference in infections, hospitalizations, and
YLLs between the best performing strategy and
the alternatives is much greater in the LMIC than
in the US Baseline. Even when considering deaths,
the difference between uniform and high contact
prioritization is much greater in the LMIC.

Next, due to the large high risk population,
long-term care facilities have relatively high mor-
tality rates [56]. Even with high individual mor-
tality, high contact prioritization more effectively
minimizes mortality (Figure 9(d)). Intuitively,
because the high risk group is large in this setting,
vaccinating the group fully would be a lengthy
process during which the infection can spread
amongst the group. Thus, cutting off the high
contact group as a vector of the spread more

effectively reduces mortality. The opposite is true
in the prison setting because the high contact
group is large and viral transmissibility is high
due to living conditions [57]. Both of these ensure
widespread infections. The best recourse is to vac-
cinate the small size high risk group first, this can
be accomplished in a short time (Figure 9(c)).

In all settings, the better of the high risk
and high contact prioritizations, reduces mortal-
ity more than uniform vaccination. But the worse
of the two prioritizations is sometimes worse than
uniform vaccination. This is the case in the US
baseline and nursing home as seen in Figure 9(a)
and (d). Simply using one of the two prioriti-
zations in all cases, without verifying which one
has lower mortality count, incurs higher mortality
even compared to uniform (i.e. random) vacci-
nation in some cases. Thus, one must tailor the
prioritization to the specific context.

3.5 Different Objective Functions

We now consider optimal vaccination strategies
that minimize the time averages of symptomatic
and hospitalization counts as the public health
objectives. The optimal control formulations that
minimize these objectives can be found in Sup-
porting Information B.3. Again we found that
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Fig. 9: Each figure compares the infections, hospitalizations, deaths, and years of life lost (YLLs) under
uniform (blue), high risk (orange), and high contact (green) prioritization vaccination policies. We depict
the percentage reduction of these attributes under each policy relative to the no vaccination scenario. (a)
(top left) is instantiated on US demography, NPI efficacy, and topology. (b) (top right) is instantiated
on an LMIC model with lower elderly population, greater high contact population, and higher transmis-
sibility. (c) (bottom left) is instantiated on a prison model comprised of guards (high contact), facility
employees (baseline), and prisoners (baseline, high risk). This environment corresponds to low elderly
population and high transmissibility. (d) (bottom right) is instantiated on a nursing home model with a
large elderly population (high risk), medical staff (high contact), and administrative staff (baseline).

in most cases (90.91%) the optimal vaccination
strategies was either the high contact or the
high risk prioritization strategies. In the remain-
ing cases, the average suboptimality of the better
of the two was 2.26% and 5.99% for the two
objectives respectively.

Figure 10 shows how the change in objec-
tive function affects the relative performances
of the high contact and high risk prioritization
strategies. The high contact prioritization strategy
outperforms the high risk prioritization strategy

for greater number of instances when minimiz-
ing symptomatics rather than deaths is the public
health objective because the increased rates of
hospitalization and death of the high risk individu-
als do not affect the symptomatic count. Similarly,
minimizing hospitalizations reveals an intermedi-
ate result where high risk prioritization is more
important than when minimizing symptomatics
but less important than when minimizing deaths.
This aligns with our intuition that the high risk
group drives the largest share of the death count
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while the high contact group is predominantly
responsible for spreading the disease.

3.6 Two Dose Vaccines

We formulate the problem of determining the opti-
mal two dose vaccination strategy in Supporting
Information B.2. When considering two dose vac-
cination, our decision space becomes richer as the
second dose can be delayed by any given amount
to accommodate the first doses for all or some
groups. The decision problem therefore consists
of the amount of delay for each group and the
ordering of both doses. Different countries have
implemented different delays and orderings for the
two doses [58, 59]. There is an additional con-
straint now: the first dose must precede the second
dose for every individual. In addition to the con-
tributory factors considered so far, the optimal
decision also depends on the degree of immunity
provided by the first dose.

We ran our two dose model on the same param-
eter combination detailed in the first subsection.
The range of single dose efficacy was 40% to 80%
in intervals of 10% in line with clinical data from
multiple available vaccines [60]. In the 4,556,250
instances we considered, the three most common
optimal policies were those that administer (1)
both doses to high risk group, then both doses to
high contact group, then both doses to the base-
line group (60.91% of instances); (2) both doses
to high contact group, then both doses to high
risk group, then both doses to the baseline group
(7.27% of instances); and (3) first dose to high con-
tact group, then first dose to high risk group, then
second dose to high contact group, then second
dose to high risk group, then both doses to base-
line group (30% of instances). Together these cover
98.18% cases. Clearly these three candidates are
easy to deploy6. Overall, 68.18% (policies (1) and
(2)) did not delay second doses to accommodate
first doses to multiple groups; in these “non-delay”
cases the optimal strategy follows either the high
contact or high risk prioritization policies and pro-
vides both doses to these entire groups in one go.

6Two other easily deployable policies constitute the remain-
ing 2%: administer 1) both doses to high risk group, first dose
to high contact group, first dose to baseline group, first dose
to high contact group, then second dose to baseline group; 2)
first dose to high contact group, both doses to high risk groups,
second dose to high contact group, then both doses to baseline
group. Each constitutes about 1% of instances.

In the remaining cases, the optimal policy opted to
delay second doses for one or more groups. Thus,
there are regimes where delaying second doses can
provide significant additional mortality reduction.

Here it is useful to characterize when delaying
second doses is beneficial in relation with our sin-
gle dose studies. We will refer to instances where
high risk prioritization was optimal in the single
dose model as high risk prioritization regime and
the same for high contact prioritization. We find
that delaying the second dose is never beneficial in
high risk prioritization regime. In this regime the
optimal strategy focuses on those most vulnerable
to the pandemic, therefore, interim efficacy after
just one dose is not sufficient for this strategy. In
high contact prioritization regimes, for sufficiently
high interim vaccine efficacy (> 70%), we see that
delaying the second dose of the high risk group
and accommodating first doses to others within
this delay can lead to significant mortality reduc-
tion (31.62% on average) over the best alternative
non-delay policy. Put simply, if the protection of
one dose is sufficiently high, then delaying sec-
ond doses and accommodating first doses to others
can help reduce mortality. It is also effective in
reducing the number of infections and, thus, may
effectively reduce the burden on health systems or
economic impact of the pandemic in some regions.

4 Discussion

We now summarize how our contributions have
advanced the state of the art on research on
COVID-19 vaccination strategy. We have provided
a framework for obtaining vaccination strategies
that attain several desired public health objec-
tives (e.g. minimizing symptomatic events, hos-
pitalization, death counts) subject to vaccination
capacity constraints. The framework incorporates
both single dose and multidose vaccines, arbi-
trary combination of parameters and attributes
that occur in practice such as reinfection, break-
through infections. Our framework relies on the
following methodological innovations: 1) captur-
ing the innate heterogeneity of COVID-19 in
contact and risk profiles through classification of
the populace into three groups 2) formulating the
optimization of a variety of public health objec-
tives subject to vaccination capacity constraints as
an optimal control problem with the state space
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Fig. 10: Each heatmap displays the difference in resultant objective function between high contact
prioritization and high risk prioritization vaccination strategies as a percentage of the objective value
of high risk prioritization policy. (a), (b), (c) respectively demonstrate the policy landscape when the
objective is to minimize time average of symptomatic counts, time average of hospitalization counts, and
overall death counts.

evolution modeled as ODEs. We optimize vaccina-
tion strategy among literally all possible strategies
including highly dynamic ones and without any
constraint on how often the capacity allocations
can be changed among groups. Such an optimal
strategy, even when difficult to deploy, provides a
valuable benchmark for comparisons of any pro-
posed policy. Our work provides this benchmark,
and goes beyond by providing a few (two to three
depending on the number of doses of vaccines)
easy-to-deploy strategies, at least one of which
is optimal or near-optimal in a wide array of
parameter combination. Our framework typically
identifies optimal vaccination strategies within
seconds for single dose vaccine using modest com-
putation resources which are usually available in
public health centres including in the LMICs. For
multi-dose vaccines the computation time merely
increases to minutes. Owing to this computational
tractability we could present results for large land-
scapes of 911,250 instances involving variations of
parameters in large realistic ranges (Section 3).
Large landscapes allow for more reliable conclu-
sions on how the optimal strategy and the optimal
value of the public health objective changes with
variations in parameter values; large landscapes
also help identify near-optimal, easy-to-deploy
vaccination strategies which we accomplish. In
contrast, even for the simplest scenario of sin-
gle dose vaccines, no breakthrough or reinfection,
the previous works are largely computationally
intensive. Most of the previous published work
has been limited to evaluations and comparisons

of a handful of vaccination strategies by simula-
tions; a smaller class of previous work optimized
among a restricted class of strategies which either
do not change capacity allocation to groups at
all (i.e. fully static strategies) or change once
in a large predetermined decision intervals (i.e.
limited dynamism). We show that allowing fully
dynamic allocation of vaccine capacities among
different population groups (i.e. not restricting the
size of decision intervals) substantially enhances
public health metrics; the performance in fact
improves with increase in the allowed dynamism.
Our vaccination strategy is therefore able to signif-
icantly outperform the static or limited-dynamism
strategies.

COVID-19 is not over yet and new variants
are emerging in different parts of the world. It is
unclear if the same vaccines will be effective for
future variants. If not, then the vaccination pro-
cess will need to restart from scratch. In addition,
given how frequently pandemics have recurred in
recorded human history [61], an entirely new pan-
demic is likely to emerge at some point in future,
and it is imperative to be prepared for coun-
tering the same with a well-founded vaccination
strategy. We describe how this paper can pro-
vide a vaccination strategy for a future variant or
pandemic.

The stages of the disease we consider appear
with some variation in different contagious dis-
eases which spread through contact. The vari-
ations are likely to be in the transition rates
between the stages and in risk profiles. The dis-
tinguishing aspect of our model is that the risks
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of hospitalization and death significantly increase
with age and poor health. Our framework will
provide the optimal, or near-optimal vaccination
strategy, whenever these general principles hold.
This is likely to be the case for future variants and
possibly for one or more future pandemics. In such
instances, the framework will proceed as follows:

1. Following the classification strategy we pro-
posed for COVID-19 (Section 2), divide the
populace into the same three groups: 1) high
risk (e.g. retirees) 2) high contact (those with
large and dynamic contact sets owing to pro-
fessional requirements) 3) baseline (rest).

2. For single dose vaccine, compare the value of
the objective function of interest (death, hos-
pitalization, symptomatic counts) for high con-
tact and high risk priority vaccination strate-
gies. Deploy the better of the two.

3. For two dose vaccines, compare as above the
three candidate optimal vaccination strategies
of Section 3.6 and deploy the best. The com-
parisons can be performed using the heat maps
of Figures 6, 7, 10 or from the ODEs of Figure 2
and the ODEs associated with the generalized
model (see Supporting Information B).

For possible future pandemics, and current
evolving pandemic response strategies, our frame-
work’s flexibility, computational efficiency, and
usability present a new practicable pathway for
systematically reasoning about optimal vaccina-
tion policies.

Supplementary information. Additional
methodological details and results are presented
in the supporting information.

Data & Code Availability. All relevant data
and links to code are available in the3 Supporting
Information
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