
 
 

 
 

 
Int. J. Environ. Res. Public Health 2023, 20, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/ijerph 

Type of the Paper (Article, Review, Communication, etc.) 1 

Effective Natural Language Processing Algorithms for Gout 2 

Flare Early Alert from Chief Complaints 3 

Lucas Lopes Oliveira 1+, Aryalakshmi Nellippillipathil Babu 2+, Xiaorui Jiang 3*, Poonam Karajagi 4, and Alireza 4 
Daneshkhah 5 5 

1 School of Computing, Mathematics and Data Sciences, Coventry University; lopesoll@uni.coventry.ac.uk  6 
2 School of Computing, Mathematics and Data Sciences, Coventry University; nellippila@uni.coventry.ac.uk 7 
3 Centre for Computational Sciences and Mathematical Modelling , Coventry University; xiaorui.jiang@cov- 8 

entry.ac.uk  9 
4 School of Computing, Mathematics and Data Sciences, Coventry University; karajagip@uni.coventry.ac.uk  10 
5 School of Computing, Mathematics and Data Sciences, and Centre for Computational Sciences and Mathe- 11 

matical Modelling, Coventry University; alireza.daneshkhan@coventry.ac.uk  12 
* Correspondence author. 13 
+ Equal contributions. 14 
 15 

Abstract: Early identification of acute gout is crucial, enabling healthcare professionals to imple- 16 
ment targeted interventions for rapid pain relief and preventing disease progression, ensuring im- 17 
proved long-term joint function. In this study, we comprehensively explored the potential of gout 18 
flare (GF) early detection based on nurse chief complaint notes in the Emergency Department (ED). 19 
Addressing the challenge of identifying GFs prospectively during an ED visit, where documenta- 20 
tion is typically minimal, our research focuses on employing alternative Natural Language Pro- 21 
cessing (NLP) techniques to enhance the detection accuracy. We investigate GF detection algorithms 22 
using both sparse representations by traditional NLP methods and dense encodings by medical do- 23 
main-specific Large Language Models (LLMs), distinguishing between generative and discrimina- 24 
tive models. Three methods are used to alleviate the issue of severe data imbalance, including over- 25 
sampling, class weights, and focal loss. Extensive empirical studies are done on the Gout Emergency 26 
Department Chief Complaint Corpora. Sparse text representations like tf-idf proved to produce 27 
strong performance, achieving higher than 0.75 F1 Score. The best deep learning models are RoB- 28 
ERTa-Large-PM-M3-Voc and BioGPT, with the best F1 Scores on each dataset with a 0.8 on the 2019 29 
dataset and a 0.85 F1 Score the 2020 dataset. We concluded that although discriminative LLMs per- 30 
formed better for this classification task, compared to generative LLMs, a combination of using gen- 31 
erative models as feature extractors and employing support vector machine for classification yields 32 
promising results comparable to those obtained with discriminative models.  33 

Keywords: Gout Flare; Natural Language Processing; Deep Learning; Large Language Models 34 
 35 

1. Introduction 36 
More than 9 million Americans suffer from gout [1], which is the most prevalent type 37 

of inflammatory arthritis among men, affecting over 5% of them. According to the U.S. 38 
National Emergency Department Sample (NEDS), gout accounts for more than 200,000 39 
visits to the Emergency Department (ED) every year, making up 0.2% of all ED visits and 40 
costing more than $280 million in annual charges [2]. It is important to improve the con- 41 
tinuity of care for gout patients, especially after an ED visit. Often, gout flares (GF) treated 42 
in the ED lack optimal follow-up care, necessitating the development of methods for iden- 43 
tifying and referring patients with GFs during an ED visit [3]. While retrospective studies 44 
have leveraged NLP for GF detection, the prospective identification of patients in real- 45 
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time ED settings presents a unique challenge, especially within the constraints of Emer- 46 
gency Department (ED) environments.  47 

Despite of the success of natural language processing (NLP) techniques in healthcare 48 
[4], NLP-based Gout Flare Early Detection (GFED) is in severe lack of study. Only a few 49 
were identified, like Zheng et al [5], which however worked on Electronic Medical Rec- 50 
ords. The problem of early warning of acute GFs becomes more challenging in the ED 51 
setting where only chief complaints of patients are taken by nurses in an extremely suc- 52 
cinct format. It is of paramount challenge to develop an effective GFED algorithm using 53 
such limited amount of information. The current study tries to address this critical gap by 54 
advancing the methodologies proposed by Osborne et al [3]. Our study builds upon the 55 
groundwork laid by Osborne et al., who annotated two corpora of ED chief complaint 56 
notes for GFs and paves the way for our exploration of effective text representation meth- 57 
ods and state-of-the-art medical/clinical Large Language Models (LLM).  58 

1.1 Rationale for Using Large Language Models 59 
Large language models, such as BERT [6] (Bidirectional Encoder Representations 60 

from Transformers), [7] (Generative Pre-trained Transformer 3), and their variants, have 61 
demonstrated remarkable success in a wide range of natural language processing tasks. 62 
The use of large language models in text classification offers several compelling reasons: 63 

Contextual Understanding: Large language models leverage deep learning tech- 64 
niques to encode contextual information and relationships between words in a sentence. 65 
This contextual understanding allows them to capture subtle nuances and semantics, 66 
which is especially relevant in the medical domain where precise interpretation of clinical 67 
text is vital. 68 

Transfer Learning: Pre-training on vast corpora of textual data enables large lan- 69 
guage models to learn general language patterns. This pre-trained knowledge can be fine- 70 
tuned on domain-specific datasets, making them adaptable and effective for text classifi- 71 
cation tasks in the medical field with relatively limited labelled data. 72 

These technologies have the potential to revolutionize the healthcare industry by en- 73 
hancing medical decision-making, patient care, and biomedical research. Some tasks in 74 
NLP could be automated using LLM such as text classification [8, 9], keyword Extraction 75 
[10, 11], machine translation [12], and text summarization [13]. Furthermore, NLP and 76 
LLM can assist in the early detection and diagnosis of diseases by sifting through vast 77 
datasets to identify patterns, symptoms, and risk factors. 78 

1.2 Gaps and Limitations of Current Literature 79 
While some studies have compared a single generative LLM (GPT) with discrimina- 80 

tive LLMs, a comprehensive comparison between multiple domain-specific generative 81 
LLMs and discriminative LLMs for disease detection is lacking. Such comparisons are es- 82 
sential to determine the performance disparities between different LLM types and guide 83 
the selection of the most suitable model for our specific medical intent classification task. 84 

In light of these gaps, our research aims to bridge these deficiencies in the current 85 
literature. We specifically focus on GFED by leveraging domain-specific generative LLMs 86 
as feature extractors. Additionally, our study includes comparative analyses of multiple 87 
domain specific generative LLMs and discriminative LLMs to gain comprehensive in- 88 
sights into their performance on this particular medical classification task. 89 

1.3 Our contributions  90 
In this paper, we make three contributions to the task of gout flare detection from 91 

nurse chief complaints. First, we compare the performance of domain specific discrimina- 92 
tive and generative models that are fine-tuned for the task. Second, we propose an alter- 93 
native approach that uses domain specific generative LLMs as feature extractors and sup- 94 
port vector machine as classifier. Third, we benchmark our methods against a baseline 95 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.11.28.23299150doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.28.23299150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 12 
 

 

that uses sparse text representation (tf-idf). Our results demonstrate the effectiveness of 96 
using LLMs, such as Roberta-Large-PM-M3-Voc, BioElectra, and BioGPT, for processing 97 
medical text and detecting GFs. 98 

2. Materials and Methods 99 

2.1 Data Collection 100 
We utilized the dataset of ED chief complaint notes which were annotated by Os- 101 

borne et al. for the presence of GFs [3]. Each CC text in the dataset was annotated to de- 102 
termine its indication of a GF, a non-GF, or remained unknown in terms of the status of 103 
GF. Following this, a manual chart review was conducted by a rheumatologist and a post- 104 
doctoral fellow to ascertain the GF status for a small portion of the ED counters. These 105 
were served as the gold standard annotations of the real GF status. The corpora contain 106 
two datasets for the year 2019 and 202, namely GOUT-CC-2019-CORPUS and GOUT-CC- 107 
2020-CORPUS respectively. Table 1 shows the annotation statistics of the two datasets 108 
(from Osborne et al. [3]), while Table 2 illustrates some examples. In out experiments, we 109 
used the human-annotated samples using Chart Review, as what Osborne et al. did. 110 

 111 

Table 1: Annotation Statistics of the Gout Flare Chief Complaint Datasets (Osborne et al. [3]) 112 

Dataset	Name GF-POS	
(Positive)	

GF-NEG	
(Negative)	

GF-UNK	
(Unknown)	

Review	 Agreement Cohen’s k 

GOUT-CC-2019-CORPUS 93 194 13 CC 0.883 0.825 
GOUT-CC-2019-CORPUS* 70 118 9 Chart 0.849 0.774 
GOUT-CC-2020-CORPUS 14 7992 129 CC 0.977 0.965 
GOUT-CC-2020-CORPUS* 25 232 7 Chart 0.904 0.856 

* Used for experiments as Osborne et al. [3] 113 
  114 

Table 2: Examples of Chief Complaint Notes for Gout Flare (Osborne et al. [3]) 115 

Chief	Complaint	Text Predicted* Actual** 
AMS, lethargy, increasing generalized weakness over 2 weeks. Hx: 
ESRD on hemodialysis at home, HTN, DM, gout, neuropathy 

No No 

I started breathing hard” hx-htn, gout, anxiety, No No 
R knee pain x 8 years. pmh: gout, arthritis Unknown No 
Doc N Box DX pt w/ R hip FX on sat. Pt states no falls or injuries. 
PMH: gout 

Unknown No 

out of gout medicine Yes Yes 
sent from boarding home for increase BP and bilateral knee pain 
for 1 week. Hx of HTN, gout. 

Yes Yes 

*Consensus predicted gout flare status determined by annotator examination of CC 116 
**Gout flare status determined by chart review. 117 

2.2 Feature Extraction 118 
In the feature engineering approach, we extracted the n-grams (n = 1, 2, 3) and tested 119 

different combinations of n-grams and different feature sizes. CC texts were converted 120 
into sparse representations using tf-idf (Term Frequency-Inverse Document Frequency) 121 
[14] as initial feature values. A linear support vector classifier (Linear SVC) was trained. 122 
All implementations were done using the scikit-learn library1.  123 

 
1 https://scikit-learn.org/  
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It was hard to extract more advanced syntactic or semantic features due to the noisi- 124 
ness of CC texts. As can be observed from Table 2, CC texts are extremely succinct, often 125 
containing a sequence of medical terms or abbreviations, which record the facts reported 126 
by patients. Such CCs are not meaningful sentences for us to extract features from the 127 
syntactic analysis results. Semantic analysis tools are either immature or nonexistent in 128 
this particular area. However, we could still observe quite good performances from fine- 129 
tuning a machine learning model using the right sparse feature representation of CC texts.   130 

2.3 Large Language Models 131 
We employed several LLMs tailored for the medical domain, for their ability to cap- 132 

ture intricate patterns within medical text, making them well-suited for discerning nu- 133 
ances in chief complaints related to GF. All LLMs belong to the Transformers family [15] 134 
because we hoped that the multi-headed self-attention mechanism of the Transformers 135 
architecture could be able to learn the meaningful association between certain words of 136 
CC texts to indicate the existence of GF.  137 
2.3.1 Discriminative models  138 

We strategically incorporated three robust discriminative LLMs renowned for their 139 
discriminative power—Roberta-PM-M3-Vo2, BioElectra3 [16], and BioBART4 [17]. These 140 
are the domain-specific versions of the RoBERTa [18], Electra [19] and BART [20] models 141 
respectively. Although BART was a language model pretrained in a sequence-to-sequence 142 
fashion, it can be used equally well and in the same way as a discriminative model [20]. 143 
So, we treated it as one representative of the discriminative category. The details of the 144 
discriminative LLMs are shown in Table 3. 145 

Table 3: Description of Discriminative LLMs Implemented 146 

Model Roberta-PM-M3-Voc BioElectra BioBART 

Model Size 355M Parameters --- 139M Parameters 
Hidden Size 1024 768 768 
Model Size 24 Layers, 16 heads 12 Layers, 12 heads 12 Layers, 12 heads 
Base Model RoBERTa-large Electra Base BART Base 

Training Data PubMed articles and 
MIMIC-III corpora5 [21] 

PubMed articles PubMed abstracts and 
articles 

 147 
2.3.2 Generative models  148 

In the realm of generative LLMs, we strategically chose BioGPT6 [22], BioMedLM7, 149 
and PMC_LLaMA_7B8 [23] for their renowned scale and exceptional performance in nat- 150 
ural language processing tasks. BioGPT and PMC_LLaMA_7B are the domain-specific 151 
versions of the GPT-2 [24] and LLaMA [25-26] models respectively, while BioMedLM is a 152 
bespoke LLM pretrained for medical applications. These models represent the forefront 153 
of generative language understanding, and their comprehensive specifications, training 154 
data, and architectural features are elucidated in Table 4. 155 

 
2 https://huggingface.co/Sedigh/RoBERTa-large-PM-M3-Voc  

3 https://github.com/kamalkraj/BioELECTRA  

4 https://github.com/GanjinZero/BioBART  

5 https://www.nature.com/articles/sdata201635  

6 https://huggingface.co/docs/transformers/model_doc/biogpt  
7 https://github.com/stanford-crfm/BioMedLM  

8 https://github.com/chaoyi-wu/PMC-LLaMA  
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Table 4: Description of Generative LLMs Implemented 156 

Model BioGPT BioMedLM PMC_LLaMA_7B 
Model Size 347M Parameters 2.7B Parameters 7B Parameters 
Hidden Size 1024 2560 4096 
Model Size 24 Layers, 16 heads 32 Layers, 20 heads 32 Layers, 32 heads 
Base Model GPT2-medium GPT2 LLaMA_7B 

Training Data 15M PubMed abstracts 
from scratch 

All PubMed abstracts 
and full texts from The 

Pile benchmark [27]. 

4.8 million Biomedical 
publications from the 
S2ORC dataset [28]. 

2.4 Fine-tuning 157 
Fine tuning was implemented to improve the models’ ability to understand and cap- 158 

ture the nuances in the texts. For the discriminative models full fine tuning was imple- 159 
mented, but for the generative models due to the size of the models and hardware con- 160 
straints full fine tuning was not possible.  161 
2.4.1 Fine-tuning of Discriminative LLMs  162 

All three discriminative LLMs use a bidirectional encoder as BERT [29]. The encoder 163 
part of these models was used to encode each CC text, and the “[CLS]” token was used as 164 
the dense representation. For Roberta-PM-M3-Voc and BioElectra, a further feature trans- 165 
formation was applied. Essentially, the classification head was a Multiple Layer Percep- 166 
tron (MLP), the hidden layer of which made a nonlinear transformation (of the same size). 167 
On the contrary, BioBART used a linear classification head following the tradition of 168 
BART usage.   169 

In the fine-tuning process, the following hyperparameters were used: learning rate = 170 
1e-5, epoch number = 10, batch size = 14, early stopping patience = 3. The AdamW opti- 171 
miser was used for training [30].  172 
2.4.2 Fine-tuning of Generative LLMs  173 

Similarly, generative LLMs were used for encoding CC texts, and the “Extract” token 174 
(for all three models as they all belong to the GPT family) were used to extract the dense 175 
representation, which was then sent to a linear classification head. Due to their large sizes, 176 
the generative LLMs were not fully fine-tuned. Instead, we used LoRA (Low Rank Adap- 177 
tation) to efficiently adapt LLMs to specific tasks by only modifying a small portion of the 178 
whole parameter space.  179 

The main idea behind LoRA is to exploit the low-rank structure of the model’s weight 180 
matrices during task adaptation, resulting in reduced memory usage and computational 181 
complexity [31]. The idea was inspired by Aghajanyan et al.’s finding that pre-trained 182 
language models have a low “intrinsic dimension” meaning that they can still lean effi- 183 
ciently even when their weight matrices are randomly projected to a smaller subspace 184 
[32].  185 

 186 

 187 
Figure 1: Parametrization of LoRA. Only A and B are trained. [30]  188 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 15, 2023. ; https://doi.org/10.1101/2023.11.28.23299150doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.28.23299150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 6 of 12 
 

 

More precisely, LoRA hypothesizes that updates to model’s weight matrix, 𝑊!, can 189 
be represented by a low-rank decomposition, which is given by 𝑊! +	∆𝑊 =	𝑊! + 𝐵𝐴, 190 
where 𝐵 ∈ 𝑅"×$ , 𝐴 ∈ 𝑅$×% , and 𝛥𝑊 = 𝐵𝐴  represents weight updates. During training 191 
(i.e., fine-tuning), 𝑊! is frozen while 𝐴 and 𝐵 contain the trainable parameters.  192 

In our fine-tuning process, we applied the following LoRA parameters: 193 
• The rank (𝑟) of 𝐴 and 𝐵 was set to 8. 194 
• The LoRA regularization coefficient 𝛼 was set to 16. 195 
• To prevent overfitting and enhancing model generalisation, we applied a LoRA 196 

dropout rate of 0.1. 197 
• A learning rate of 3e-4 was used, enabling efficient convergence during training. 198 

2.5 Classification 199 
In the feature engineering approach, a Linear SVC was trained. When finetuning dis- 200 

criminative LLMs, either an MLP or a linear classifier was applied. Similarly, a linear layer 201 
was used for classification with generative LLMs. In the experiments, we also tested using 202 
generative LLMs only as the feature extractor and trained a Linear SVC for classification. 203 
In this alternative approach, which required significantly less computational resources, 204 
generative LLMs were frozen, used to encode CC texts, and the hidden states of the “Ex- 205 
tract” token were extracted as dense representation. A Linear SVC was then trained in the 206 
similar way as in the feature engineering approach. This was to demonstrate LLMs’ native 207 
ability to understand and represent medical texts for the downstream task. 208 

2.6 Optimisation 209 
2.6.1 Class weight  210 

We also observed severe data balance in the corpora. The data imbalance ratio of 211 
GOUT-CC-2019 is (70 + 9) / 118 = 0.6695, while the imbalance ratio of GOUT-CC-2020 is 212 
(25 + 7) / 232 = 0.1379. Our first method to handle data imbalance was class weights, which 213 
were set according to the relative sizes of each class as in Eq. (1), 214 

𝑤& = 𝑁 (𝐾 × 𝑁&)⁄ ,	 (1) 

where 𝑤& is the weight for the j-th class, 𝐾 is the total number of classes, 𝑁 is the 215 
total number of samples, and 𝑁& is the number of samples of the j-th class [33].   216 

 217 
2.6.2 Oversampling 218 

However, class weighting in Eq. (1) did not help improve the performances on 219 
GOUT-CC-2020 much, which is 5 times more imbalanced than GOUT-CC-2019. Although 220 
the discriminative LLMs performed strongly in our experiments, they were extremely 221 
sensitive to this severe data imbalance. Therefore, we performed random over sampling 222 
on GOUT-CC-2020. The positive samples in the training split, including GF-POS and GF- 223 
UNK combined, were randomly duplicated to match the size of GF-NEG.  224 

The second approach we used to oversample the minority class was Synthetic Mi- 225 
nority Over-sampling Technique (SMOTE) [34]. SMOTE generates synthetic examples of 226 
then minority class by interpolating the feature space of the existing minority samples. By 227 
doing so, SMOTE effectively oversamples the minority class, thereby balancing the class 228 
distribution [34]. This approach was only implemented in the method where we used the 229 
LLMs as feature extractors and classified with the SVC.  230 
2.6.4 Focal Loss  231 

In the context of our classification tasks, the choice of a suitable loss function plays a 232 
pivotal role in training and optimizing our models. We employed two distinct loss func- 233 
tions as per dataset and model requirement, namely cross-entropy loss and focal loss [34], 234 
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to effectively guide the training process and address specific challenges posed by our da- 235 
tasets. 236 

In instances where class imbalance persisted even after oversampling the training 237 
data, such as in the case of GOUT-CC-2020, we employed focal loss as an alternative to 238 
cross-entropy to combat class imbalance in classification tasks, as in Eq. (2).  239 

𝐹𝐿(𝑝') = −𝛼'(1 − 𝑝')( log(𝑝'),	 (2) 

where 𝑝' is the posterior probability of each target 𝑡 (here 𝑡 = 0	𝑜𝑟	1), 𝛼' ∈ [0,1] is 240 
the scaling parameter, 𝛾 is the focusing parameter and (1 − 𝑝')( is the modulating factor 241 
of the original cross-entropy loss [35].   242 

3. Results 243 
In this section, we meticulously analyze and compare the performances of all meth- 244 

ods. The performance of each model was evaluated using standard metrics, including pre- 245 
cision, recall, and Macro F1-score. We compared our results with the original algorithm 246 
proposed by Osborne et al. [3], ensuring a comprehensive assessment of the advance- 247 
ments achieved. 248 

3.1 Fine-tuned LLM  249 
This subcategory encompasses results obtained by directly employing LLMs for CC 250 

classification. Table 5 shows the results.  251 
The table shows that RoBERTa-Large-PM-M3-Voc outperforms the other four mod- 252 

els in the 2019 dataset in terms of precision, recall, and F1-score for both datasets. This 253 
suggests that this model is more effective at detecting GFs from clinical notes. Table 5 also 254 
shows that BioBERT and BioElectra have similar performance, while BioGPT and Bio- 255 
MedLM have the lowest performance among the five models. 256 

On the 2020 dataset, the best model was by far BioGPT, outperforming others LLM 257 
competitors by large margins. Good performances were obtained due to oversampling, 258 
which improved the results from 0.67 to 0.85 macro f1 score. These results suggest that 259 
BioGPT can handle the data imbalance and the domain-specific vocabulary better than the 260 
other models, and that oversampling can boost the performance of generative LLMs for 261 
this task. On the other hand, BioMedLM did not achieve good performances, possibly due 262 
to the limitations of the LoRA adaptor, compared to BioGPT which was fully finetuned to 263 
adapt better to the special domain of gout flare CC texts.  264 

Table 5: Performances of Gout Flare Detection using Fine-Tuned LLMs 265 

 GOUT-CC-2019 GOUT-CC-2020 

Model Precision Recall F1-score Precision Recall F1-score 

RoBERTa-Large-PM-M3-Voc  0.80 0.79 0.80 0.62 0.72 0.63 

BioElectra 0.76 0.76 0.76 0.63 0.68 0.65 

BioBART 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85 

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52 

 266 

3.2 Frozen LLMs as Feature Extractors 267 
In this subcategory, we used LLMs to embed CC texts to dense feature vectors and 268 

use Linear SVC for classification. Table 6 shows the results. 269 
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The table shows that SVM with BioGPT Embeddings has the best performance 270 
among the four algorithms on both datasets. It achieves an F1-score of 0.67 on Gout-CC- 271 
2019 and 0.71 on Gout-CC-2020. This indicates that this algorithm can effectively extract 272 
the relevant features from CC texts and classify them accurately. 273 

The table also shows that SVM with BioMedLM Embeddings and SVM with 274 
PMC_Llama_7B Embeddings have similar performance, but lower than SVM with 275 
BigGPT Embeddings. They both have an F1-score of 0.66 on Gout-CC-2019 and 0.61 on 276 
Gout-CC-2020. This suggests that these algorithms are less robust and consistent in han- 277 
dling the variability and complexity of CC texts. 278 

Table 6: Performances of Gout Flare Detection using LLM Embeddings 279 

 Gout-CC-2019 Gout-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with BioGPT Embeddings 0.68 0.67 0.67 0.69 0.73 0.71 

SVM with BioMedLM Embeddings 0.69 0.66 0.66 0.59 0.70 0.61 

SVM with PMC_LLaMA_7B Embeddings 0.66 0.66 0.66 0.60 0.60 0.60 

 280 

3.3 Sparse Text Representation   281 
This subcategory involves performance of the traditional feature engineering ap- 282 

proach, which generated sparse text representations using tf-idf of n-gram features. Con- 283 
trast and compare these results against the outcomes achieved by the LLMs, providing 284 
valuable insights into the effectiveness of each approach for GF prediction. In this section 285 
we have also included the results from the original publication of Osborne et al. [3], which 286 
are shaded. All results will be discussed further in the discussion section. Table 7 shows 287 
the results. 288 

Table 7: Performances of Gout Flare Detection using Sparse Text Representations 289 

 GOUT-CC-2019 GOUT-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 

4. Discussion 290 

4.1 Comparative Analysis   291 
The following table compares the results acquired from this study, with the results 292 

obtained from the paper by Osborne et al. As shown in Table 8, RoBERTa was the best 293 
performing model on the GOUT-CC-2019-CORPUS dataset followed by BioElectra, show- 294 
casing the superiority of discriminative LLMs in classification tasks. The SVM with Bi- 295 
oGPT embedding and tf-idf also performed well in relation to the other models. In the 296 
GOUT-CC-2020-CORPUS dataset the best was BioGPT which outperformed all the dis- 297 
criminative LLMs. This model responded very well to the fine tuning and oversampling. 298 
This result was still outperformed by SVM with tf-idf features. All of our models 299 
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outperformed the models used in the study by Osborne et al. (in grey) in both datasets. 300 
Overall, RoBERTa-Large-PM-M3-Voc , BioGPT and tf-idf on n-grams were more robust 301 
models across datasets, particularly the latter. In addition, BioGPT was a more robust fea- 302 
ture extractor when model parameters were frozen. Finally, a promising future direction 303 
to employ the strengths of different classifier to achieve better recall while at the meantime 304 
keeping a better balance for precision.    305 

Table 8: Comparing the Performances of All Gout Flare Detection Methods. 306 

 GOUT-CC-2019 GOUT-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

RoBERTa-Large-PM-M3-Voc  0.80 0.79 0.80* 0.62 0.72 0.63 

BioElectra 0.76 0.76 0.76 0.63 0.68 0.65 

BioBART 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85 

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52 

SVM with BioGPT Embeddings 0.68 0.67 0.67 0.69 0.73 0.71 

SVM with BioMedLM Embeddings 0.69 0.66 0.66 0.59 0.70 0.61 

SVM with PMC_LLaMA_7B Embeddings 0.66 0.66 0.66 0.60 0.60 0.60 

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 

 307 

4.2 Potential and limitations    308 
The best performance on these datasets was achieved by Roberta-large-PM-M3-Voc, 309 

which outperformed other LLMs and traditional machine learning algorithms. This sug- 310 
gests that RoBERTa-Large-PM-M3-Voc can effectively capture the semantic features of CC 311 
texts and distinguish between GF and non-flares. However, the results also show that 312 
there is still a large gap between the performance of LLMs and the desired accuracy for 313 
GF detection.  314 

Furthermore, the results also indicate that some models have a bias towards the neg- 315 
ative class, which may affect their ability to predict the positive label. Therefore, more 316 
research is needed to address these challenges and improve the performance of LLMs for 317 
GF detection. One of the main challenges is the nature of the dataset. All the chief com- 318 
plaints contain the keyword “gout” and most of them did not contain any clear indicator 319 
of gout flare. This makes it difficult for the models to learn the subtle differences between 320 
gout flares and non-flares. Upon analysing the predict column of our test set (which con- 321 
tains the prediction of the human annotators based solely on the CC) we found that this 322 
is a challenging problem even for professional rheumatologists which achieved less than 323 
50% accuracy in our test set.  324 

Although the performance on GOUT-CC-2020-CORPUS was not as good as GOUT-CC- 325 
2019-CORPUS, it’s still an improvement compared to the baseline. We acknowledge that 326 
the dataset is challenging due to its data imbalance and small size, which contributed to 327 
the performance decline. Our approaches to tackling the data imbalance did improve the 328 
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performance but future work is still required to tackling this issue. One potential direction 329 
is the use of semi-supervised learning do deal with the low number of annotated CC’s and 330 
another is to encourage the medical community to share or annotate more data to create 331 
high-quality datasets. 332 

4.3 Future Directions   333 
Some improvements can be done to enhance the results obtained in this research:  334 
Full Fine-Tuning and Distributed Computing: While parameter-efficient fine-tun- 335 

ing, specifically LoRA, was applied in this study due to hardware constraints and the 336 
models' size, pursuing full fine-tuning would enhance the results of the models. Imple- 337 
menting distributed computing is necessary to apply full fine tuning, due to the very large 338 
size of the models this process requires distributing the model load across different GPUs 339 
to perform the calculations. This strategy would enable more comprehensive fine-tuning, 340 
potentially leading to an increase in model performance. 341 

Enhanced Dataset Quality and Size: with such a limited number of samples the 342 
model cannot be properly trained, validated and tested. To address this more samples 343 
must be acquired or whole new datasets to test the models effectively. 344 

Ensemble Learning for Enhanced Embeddings: A promising route is the utilization 345 
of deep learning models to create an ensemble that enhances embeddings before their 346 
application in text classification. This strategy could potentially enhance the information 347 
captured by the embeddings, thereby leading to improved classification outcomes. 348 

Task-specific continuous pre-training: Another possible direction is to use unsuper- 349 
vised learning to continuously pre-train the LLMs on the task-specific data, i.e., the chief 350 
complaint texts. This could help the models to adapt to the domain and the vocabulary, 351 
and to tackle the particular write styles of keeping CC notes in the task. 352 

5. Conclusions 353 
Overall, this study highlighted the potential of generative LLMs for classification 354 

tasks, achieving results comparable to the discriminative models. Additionally, the mod- 355 
els also have shown potential as feature extractors for classification tasks even without 356 
fine tuning, due to their ability to understand contextual information and produce con- 357 
textual rich embeddings. Despite the results between the two types of models being com- 358 
parable, the computational requirements to perform the same task is much greater using 359 
the generative LLMs employed in this study. Similar or superior results can be obtained 360 
using much smaller discriminative models. Still, this research highlights the importance 361 
of using the domain specific variants of the models when the text contains specialized and 362 
out of word vocabulary. Our results are important because they demonstrate the feasibil- 363 
ity and effectiveness of using generative LLMs for gout flare detection from chief com- 364 
plaints, which is a novel and challenging task that can benefit both clinical practice and 365 
research. Furthermore, our approaches can potentially improve the quality of care for 366 
gout patients, a large portion of them could now receive proper and in-time follow-up 367 
after an ED visit. 368 

 369 
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