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ABSTRACT  21 

Unlike severe infections, asymptomatic infections occur independently of healthcare 22 

access and reflect the natural immunity to SARS-CoV-2. What determines their 23 

prevalence, 𝜓, and its variation across nations is unknown. We conducted a systematic 24 

review of serosurveys performed on samples representative of national populations 25 

before vaccination and the emergence of variants. The studies that met our selection 26 

criteria together sampled 4,58,489 individuals and yielded estimates of 𝜓 in 33 nations. 27 

Using random-effects modeling, we found the pooled global 𝜓 to be 45.3% (95% CI: 28 

33.6%-57.5%). 𝜓 varied widely across nations (range: 6%-96%; 𝐼2=99.7%), highlighting 29 

the enormous underlying variation in the natural immunity to SARS-CoV-2. Performing 30 

meta-regression with national-level metrics, we found that the human development index 31 

(HDI) was negatively correlated with 𝜓 (p=10−13; 𝑅2=65.5%). More developed nations 32 

thus experienced less frequent asymptomatic infections on average. These findings have 33 

implications for unraveling the origins of asymptomatic infections and for future pandemic 34 

preparedness.    35 
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INTRODUCTION 36 

Asymptomatic infections have been an enigmatic feature of the COVID-19 pandemic1. 37 

They stand at the favorable end of the spectrum of outcomes following SARS-CoV-2 38 

infection, with the other end being severe respiratory distress and mortality2. Their role in 39 

driving the spread of the infection was recognized early in the pandemic3,4. Significant 40 

efforts have since been made to estimate their prevalence3,5-7. Yet, unlike severe 41 

infections and their associated healthcare burden which were found to vary substantially 42 

across nations8,9, how the prevalence of asymptomatic infections varies across nations 43 

remains unknown. Understanding this variation is important. It has implications for 44 

forecasting the course of the pandemic and evaluating intervention strategies10,11. It also 45 

offers insights into the variation in the natural immunity (as opposed to vaccine-induced 46 

immunity) to SARS-CoV-2, a globally new pathogen, across populations: The prevalence 47 

of asymptomatic infections, unlike other metrics of disease burden such as the infection 48 

fatality ratio8, is expected to be robust to differences in health infrastructure and non-49 

pharmaceutical interventions. It is therefore a more reliable indicator of the natural ability 50 

of populations to fight the infection, differences in which may arise, for instance, from 51 

genetic polymorphisms or differential immunological memory from exposure to related 52 

pathogens12,13. 53 

Understanding the variation in the prevalence of asymptomatic infections has been 54 

challenging for two key reasons. First, epidemiological studies on asymptomatic 55 

infections have often resorted to sampling from convenient sources, such as healthcare 56 

workers, which introduces biases in the estimates of prevalence14,15. For instance, of the 57 

568 positive cases in the New York city jail system, only 2.6% were asymptomatic16, 58 

whereas of the 61 individuals who tested positive in two large academic health systems 59 

in Wisconsin, 88.5% remained asymptomatic17. The overall health of individuals in jails is 60 

expected to differ vastly from those in academic health systems, potentially resulting in 61 

the extreme variation in the prevalence observed across the two samples. Neither of the 62 

samples, however, would be representative of the general populations of the two states 63 

or of the USA.  64 

Second, factors that could explain the observed variation have not been forthcoming. 65 

Meta-analyses have identified factors associated with asymptomatic infections, like the 66 

absence of comorbidities, but have not explained the large variation observed3,5-7. A 67 

recent study discovered a significantly higher frequency of the allele HLA-B*15:01 in 68 

asymptotically infected individuals than in those displaying symptoms, unravelling 69 

potential genetic underpinnings of asymptomatic infections13. The allele, however, was 70 

present in only ~11% of the asymptomatically infected individuals (and in ~5% of the 71 

symptomatic cases)13, leaving a vast majority of the asymptomatic cases unexplained.  72 

Here, we conducted a systematic review of randomized serosurveys, following PRISMA 73 

guidelines18, to identify studies that reported on asymptomatic infections in samples 74 

representative of the general populations of nations. We restricted our review to the early 75 

phase of the pandemic when infections were predominantly due to the ancestral SARS-76 
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CoV-2 strain and vaccination programs were yet to be initiated. From the studies 77 

identified, which spanned nations across continents and socio-economic developmental 78 

status, we estimated the extent of variation in the prevalence of asymptomatic infections 79 

across nations. We then performed meta-regression to identify key predictors of the 80 

prevalence.      81 

 

RESULTS 82 

Systematic review and the global prevalence of asymptomatic infections  83 

We conducted a systematic literature search and identified 12,549 records from four 84 

databases that matched our search criteria (4311 from SeroTracker, 4448 from Scopus, 85 

2904 from MedRχiv, and 886 from PubMed, Fig. 1). Applying our inclusion criteria to these 86 

records (Fig. 1, Text S1, Methods), we identified 40 articles that offered estimates of the 87 

percentage of asymptomatic infections (𝜓) from serosurveys on samples representative 88 

of the general populations of nations. For identifying asymptomatic infections, 89 

serosurveys have an advantage over studies using nucleic acid tests because antibodies 90 

last many months after the infection is cleared, allowing a larger time window for detection 91 

of infected individuals. They are also, therefore, less likely to encounter a bias from 92 

presymptomatic individuals14. Among the 40 studies, we found 7 instances where more 93 

than one study was from the same nation (Table S1). Interestingly, in all but one of these 94 

instances, the different studies from the same nation reported consistent estimates of 𝜓 95 

(Table S1), giving us confidence in the estimates. For instance, the two studies from 96 

Austria19,20 reported 𝜓 of 18.0% and 19.7%. This similarity was despite the vastly different 97 

seroprevalence–45% and 8.2%, respectively–in the studies, reiterating the notion that 𝜓 98 

is an intrinsic property of the populations and is robust to variations in seroprevalence, 99 

the latter typically dependent on the state of the pandemic and on non-pharmacological 100 

interventions7. Given this consistency, we chose one study for each nation–the one with 101 

the largest sample size, for its better representativeness of the national population–for 102 

further analysis.   103 

Thus, we had estimates of 𝜓 from 33 studies, one for each of the 33 nations (Table 1; 104 

Text S2 provides a brief description of each study). The nations were spread across 105 
continents – Asia, the Americas, Europe, and Africa – and across socio-economic 106 

developmental status21. Of the studies, 21 (63.6%) were nation-wide serosurveys, 107 
whereas 6 (18.2%) were conducted at subnational levels and 6 (18.2%) were local 108 

serosurveys but using samples representative of the general populations of the respective 109 
nations (Table 1). Using a grading scale we developed by adapting the Joanna Briggs 110 
Institute (JBI) checklist22 (Methods; Text S3), we assessed the 33 studies and found 14 111 
(42.4%) to be of high quality, 14 (42.4%) of moderate quality, and 5 (15.2%) of low quality 112 
(Table 1, Table S2). The studies together examined a total of 4,58,489 individuals, of 113 

whom 30,086 individuals were seropositive. Of the latter, 15,615 individuals were 114 

asymptomatic. To obtain a global average, we estimated the pooled 𝜓 across the studies 115 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.14.23299954doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.14.23299954
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

by random effects modeling (Fig. 2, Table S3, Methods). The pooled 𝜓 was 45.3% (95% 116 

CI: 33.6%-57.5%). 117 
 

 

Figure 1: PRISMA flow diagram. The search results and the selection steps leading to 118 
the studies included in our meta-analysis. 119 

 

Variation of the prevalence of asymptomatic infections across nations  120 

Interestingly, the estimates of 𝜓 revealed an enormous variation across nations (Table 1, 121 

Fig. 2). The Netherlands had the lowest 𝜓, 6%, and India the highest, 96%. 7 nations had 122 

𝜓 between 75% and 100%, 4 between 50% and 75%, 16 between 25% and 50%, and 6 123 

below 25%. We estimated confidence intervals on 𝜓 using the Wilson score interval 124 

(Methods). The intervals closely matched estimates where available (Table S4). Small 125 

sample sizes often led to large confidence intervals, as with Georgia (Fig. 2). 126 

Nonetheless, the data yielded an inconsistency index (𝐼2) of 99.7% (Methods), implying 127 

extremely high inter-nation heterogeneity, not attributable to sampling variations.  128 
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Table 1: Summary of the studies included in systematic review. 𝜓 is percentage of 129 

asymptomatic infections; Q is study quality, with high (H), medium (M), and low (L) 130 

categories; G is the geographic scope of the study, with national (N), sub-national (S), 131 

and local (L) categories. In cases where the study months but not exact dates were 132 

mentioned, the dates have been set to the 15th of the respective months.   133 

Nation Study period Cohort 
size 

Seropo-
sitive 

Asympt-
omatic  

𝝍 (95% CI) Q G 

Austria19 21-Apr-20 to 27-Apr-20 1259 566 102 18.0 (15.1- 21.4) M L 

Brazil23            21-Jun-20 to 24-Jun-20 31869 849 103 12.1 (10.1-14.5) H N 

Canada24 01-Dec-20 to 15-Jan-21 6955 444 94 21.2 (17.7-25.2) H N 

Chile25             25-Sept-20 to 25-Nov-20 2493 242 89 36.7 (31.0-43.0) H S 

China26 10-Apr-20 to 18-Apr-20 34857 427 326 76.3 (72.0-80.0) H N 

Colombia27 15-Jul-20 to 15-Nov-20 2564 1045 377 36.1 (33.2-39.1) H S 

Denmark28 15-Aug-20 to 11-Dec-20 13095 369 112 30.4 (25.9-35.3) H N 

Ethiopia29 24-Jun-20 to 08-Jul-20 16932 314 292 93.3 (90.0-95.6) M N 

France30          26-Jun-20 to 24-Jul-20 2006 43 7 16.3 (8.1-30.0) M L 

Georgia31 18-May-20 to 27-May-20 1068 9 5 55.6 (26.7-81.2) L L 

Germany32 20-May-20 to 09-Jun-20 2203 249 61 24.5 (19.6-30.2) M L 

Ghana33 27-Jul-20 to 14-Sep-20 1305 252 199 79.1 (73.7-83.7) L N 

Hungary34 01-May-20 to 16-May-20 10474 70 32 47.1 (35.9-58.6) M N 

India35 18-Aug-20 to 20-Sep-20 29082 3135 3029 96.6 (95.9-97.2) M N 

Iran36 17-Apr-20 to 02-Jun-20 3530 1164 416 35.7 (33.0-38.5) H N 

Ireland37 22-Jun-20 to 16-Jul-20 1733 33 9 27.3 (15.1-44.2) M S 

Italy38 25-May-20 to 15-Jul-20 64660 1617 441 27.3 (25.2-29.5) H N 

Jordan39 27-Dec-21 to 06-Jan-21 5044 1723 1071 62.2 (59.9-64.5) L N 

Lithuania40 10-Aug-20 to 10-Sep-20 3087 43 30 69.0 (54.1-80.8) H N 

Luxembourg41 15-Apr-20 to 05-May-20 1807 35 10 28.6 (16.3-45.0) H N 

Mexico42 15-Aug-20 to 15-Nov-20 9640 2400 1615 67.3 (65.4-69.1) H N 

Netherlands43 31-Mar-20 to 11-May-20 3147 74 5 6.8 (2.9-14.9) M N 

Oman44 12-Jul-20 to 08-Dec-20 17457 3841 3562 92.7 (91.8-93.4) M N 

Pakistan45 15-Apr-20 to 22-Aug-20 3005 364 333 91.5 (88.2-94.0) M L 

Peru46 24-Jun-20 to 10-Jul-20 2010 595 151 25.4 (0.22-0.29) M L 

Portugal47 21-May-20 to 08-Jul-20 2301 67 29 44.0 (32.8-55.9) H N 

Senegal48 25-Oct-20 to 26-Nov-20 1422 398 129 32.4 (28.0-37.1) M N 

Spain49            27-Apr-20 to 22-Jun-20 61092 2669 766 28.7 (26.1-31.4) M N 

Switzerland50 06-Apr-20 to 30-Jun-20 8344 590 77 13.1 (10.6-16.1) H S 

UK51                20-Jun-20 to 13-Jul-20 105651 5544 1785 32.2 (31.0-33.4) H N 

USA52 15-May-20 to 15-Jan-21 4510 161 45 28.0 (21.6-35.4) L N 

Yemen53 15-Nov-20 to 15-Dec-21 2001 549 157 28.6 (0.25-0.33) L S 

Zambia54 04-Jul-20 to 27-Jul-20 1886 205 156 76.2 (69.9-81.5) M S 

 134 
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This wide variation in 𝜓 was intriguing. It suggested that substantial differences exist in 135 

the natural immunity of the populations in different nations to the infection. To elucidate 136 

plausible origins of this variation, we next performed meta-regression.  137 

 

Figure 2: Estimates of 𝝍 and its variation across nations. Black rectangles represent 

𝜓 for the 33 nations studied (see Table 1). Error bars are 95% confidence intervals. The 

sizes of the rectangles are proportional to the weights assigned to the studies for the 

random-effects modeling (Methods, Table S3). The vertical dashed line is the pooled 

estimate of 𝜓 (45.3%) with its 95% confidence interval (33.6%-57.5%) shown by the 

diamond below. 

 

Meta-regression and the human development index 138 

Key clinical and demographic correlates implicated in severe COVID-19 infections include 139 

age, comorbidities, and prior exposure to related pathogens55. While similar factors are 140 

implicated in asymptomatic infections12, population level predictors of 𝜓 are yet to be 141 
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identified. Here, we therefore assessed whether the above predictors of severe infections 142 

could also predict the variation in 𝜓. A population level metric of the prevalence of 143 

comorbidities is lacking. The largest cause of mortality in adults across the globe is 144 

cardiovascular disease (CVD)56. We therefore used the prevalence, or rate, of CVD per 145 

105 individuals (CVDR) as a proxy for the prevalence of comorbidities. While severe 146 

infections tend to increase with age, asymptomatic infections within a nation seemed to 147 

be much less sensitive to age, barring children and the elderly23,24,49,51 (Fig. S1). Besides, 148 

intriguingly, some studies have observed a higher prevalence of asymptomatic infections 149 

in the elderly24,51. We therefore considered the demographic median age (DMA) of each 150 

nation as a metric representative of the ages of the respective national populations. Prior 151 

exposure to related pathogens is difficult to quantify at the population level. We reasoned, 152 

following recent evidence, that the overall prevalence of infections may be a good 153 

indicator of the exposure to related pathogens, including circulating coronaviruses, and 154 

hence of the pre-existing immunity to SARS-CoV-212. The overall prevalence of infections 155 

is often dependent on the development status of a nation, as observed, for instance, with 156 

lower respiratory tract infections (LRIs) over the last several decades57. LRIs were more 157 

prevalent in less developed nations57. The human development index (HDI) is a widely 158 

used marker of the socio-economic developmental status of nations21. The higher the 159 

HDI, the more developed is a nation. We therefore considered HDI as a proxy for prior 160 

exposure to related pathogens. We collected national-level estimates of these predictors 161 

for the nations included in our analysis (Table S5). 162 

Before performing meta-regression, we assessed whether the predictors, CVDR, DMA, 163 

and HDI, were correlated. We found that the predictors were all highly correlated (Fig. 164 

S2). For regression, we therefore constructed models with the predictors chosen one at 165 

a time (Methods). To identify influential observations, including which in the regression 166 

would substantially adversely affect the model performance, we performed a detailed 167 

influential case diagnosis for each model (Methods, Fig. S3). This involved performing 168 

meta-regression with each model by leaving out one observation at a time and evaluating 169 

the model performance. For the model with CVDR as predictor, we found that 𝜓 for 170 

Lithuania was an influential observation. For the model with DMA, 𝜓 for Senegal and 171 

Yemen were influential observations. For the model with HDI, the influential observations 172 

were 𝜓 for Senegal, Yemen, and Oman. For each model, we therefore excluded the 173 

respective influential observations and performed meta-regression using logit-174 

transformed 𝜓. 175 

The model with HDI as the predictor emerged as the best model (Table S6). The best-fit 176 

showed that HDI was strongly negatively correlated with 𝜓 (𝑝 = 4 × 10−13; Fig. 3). 177 

Examining nations based on the United Nations guidelines for HDI-based categorization 178 

of developmental status58, we found that nations with low (<0.55) and medium (0.55–179 

0.699) HDI had a much higher 𝜓 compared to their high (0.7–0.799) and very high (0.8–180 

1) HDI counterparts (Fig. 3). Remarkably, HDI explained nearly 65.5% of the variation in 181 

𝜓 observed. Models with DMA or CVDR as predictors explained much less of the 182 

variation, ~42.4% and ~24.8%, respectively (Table S6; Fig. S4). 183 
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Figure 3: HDI is a robust predictor of 𝝍. Best-fit meta-regression line (solid line) 184 

showing the negative correlation between 𝜓 and HDI, overlayed on the estimates of 𝜓 185 

from 30 nations (symbols) (omitting the 3 influential observations). The dark ribbon is the 186 

95% confidence interval and the light ribbon the 95% prediction interval. The symbol sizes 187 

are proportional to the weights of the studies in the meta-regression (see Methods). The 188 

symbols are color-coded according to the HDI categories indicated. Error bars are the 189 

same as in Fig. 2. Regression coefficients and statistics are in Table S6. 190 

 

We ruled out the influence of potential confounding factors. First, although the studies 191 

used antibody tests with high specificities, they had varying sensitivities (Table S7). We 192 

found that 𝜓 was uncorrelated with the sensitivity of the tests (Fig. S5), ruling out any 193 

confounding effect from the assay variations. The studies also used distinct symptom sets 194 

in the questionnaires (Fig. S6). A study using fewer symptoms may over-estimate 195 

asymptomatic cases. We found that 𝜓 was uncorrelated with the number of symptoms 196 

used (Fig. S7). We noticed that most nations used fever and cough as part of their 197 

symptom set. It is rare that other symptoms are experienced without also experiencing 198 

fever or cough59. Consequently, the other symptoms may not significantly increase the 199 

chances of detecting symptomatic cases, explaining the lack of a correlation between 𝜓 200 

and the number of symptoms. Finally, we assessed whether distinct age distributions in 201 

the nations included could confound our inferences. In particular, the presence of children 202 

or the elderly could skew estimates of 𝜓. Although several studies included children, 203 

children accounted for only a small fraction of the seropositive cases (Table S8). Their 204 
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presence would thus not affect estimates of 𝜓 substantially. The greater prevalence of 205 

the elderly in more developed nations could confound the association of 𝜓 with HDI. We 206 

therefore performed meta-regression with the percentage of the population aged >65 207 

years in each nation as the predictor. The predictor explained only 37% of the variation 208 

in 𝜓 observed (Fig. S8, Table S9), rendering it a much poorer predictor than HDI (and 209 

median age). HDI was thus a robust predictor of 𝜓. 210 

 

DISCUSSION 211 

Remarkable differences have been observed in the burden of COVID-19 across 212 

nations8,9. The differences arise not only from differences in health infrastructure, non-213 

pharmaceutical interventions, and demographics across nations, but also from potential 214 

natural variations in immunity. While the former factors have been widely studied8,9, 215 

natural variations have remained elusive. Here, we recognized that the prevalence of 216 

asymptomatic infections, 𝜓, serves as a reliable measure of the natural immunity of a 217 

population to SARS-CoV-2 and carefully collated and assessed its variation across 218 

nations. Our findings revealed the enormous variation in the natural immunity to SARS-219 

CoV-2 across nations.      220 

An intriguing question that follows is what determines this variation. Studies have 221 

attempted to assess whether factors responsible for severe infections8,9,60 also explain 222 

asymptomatic infections61. Genetic factors too have been assessed13. However, no 223 

studies so far have considered metrics such as 𝜓 quantified across nations. The origins 224 

of the variation at the population level have therefore remained largely unknown61. Here, 225 

we found that HDI was the best of the predictors of 𝜓 we studied, explaining over 65% of 226 

its variation. We contrast this with the genetic polymorphisms identified, which leave over 227 

90% of the asymptomatic cases unexplained13.  228 

HDI is a marker of the overall development of a nation, determined as a composite of 229 

three measures, namely, life-expectancy at birth, years of schooling, and per capita 230 

income21. That 𝜓 was negatively correlated with HDI implied that more developed nations 231 

experienced fewer asymptomatic infections on average and hence, presumably, had 232 

weaker natural immunity. Because HDI is a composite metric, a precise, causal 233 

relationship between HDI and natural immunity is difficult to establish. In more developed 234 

nations, due to long-term lifestyle changes, including the practice of hygiene and the use 235 

of antibiotics, the prevalence of infections in general is lower57,62. We speculate that this 236 

may be responsible for the weaker immunity to SARS-CoV-2, possibly due to altered 237 

microbiota63 and/or weaker trained immunity64. In addition, the associated lower prior 238 

exposure to circulating coronaviruses may limit asymptomatic infections65.     239 

We do not rule out the role of other factors associated with severe infections, such as age 240 

and comorbidities, in establishing asymptomatic infections. Indeed, in our meta-241 

regression, median age (DMA) and the prevalence of cardiovascular disease (CVDR) 242 

explained ~42% and ~25% of the variation in 𝜓. However, because these predictors were 243 
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strongly correlated with HDI, their specific contributions, over those attributable to their 244 

correlation with HDI, remain to be delineated.   245 

Severe infections increase significantly with age8,9. Asymptomatic infections may thus be 246 

expected, conversely, to decrease with age. We found, surprisingly, from age-stratified 247 

data from four nations that 𝜓 within a nation was only weakly dependent on age (Fig. S1). 248 

Furthermore, in the UK and Canada, 𝜓 increased with age (Fig. S1). An explanation of 249 

these counter-intuitive trends is lacking1. Nonetheless, while age-stratified data for the 250 

other nations we studied was not available, the data above suggests a limited role for age 251 

compared to HDI in explaining the variation in 𝜓. 252 

We recognize that deviations in 𝜓 from the mean trends predicted by HDI exist. For 253 

instance, China and Brazil had identical HDIs but widely different estimates of 𝜓 (Fig. 3). 254 

Factors currently unknown that could explain the remaining ~35% of the variation in 𝜓 not 255 

explained by HDI may help reconcile these deviations.               256 

Our finding that HDI is the predominant factor predicting 𝜓 may inform ongoing studies 257 

aimed at elucidating the mechanistic origins of asymptomatic infections. We recall that a 258 

key outcome of COVID-19 vaccination has been to render potentially symptomatic 259 

infections asymptomatic, which most approved vaccines achieved with high 260 

efficacies66,67. Vaccination studies have offered correlates of protection, such as the 261 

antibody titre, that may help predict the likelihood of an infection remaining 262 

asymptomatic66,67. Interestingly, the genetic polymorphisms identified recently too point 263 

to pre-existing immunity, specifically T-cell immunity, possibly triggered by pre-pandemic 264 

exposure to circulating coronaviruses, as associated with asymptomatic infections13. 265 

Future studies may assess how differences in HDI may lead to differences in such 266 

correlates of protection across nations, leading to a better understanding of the natural 267 

immunity underlying asymptomatic infections and the variation in 𝜓.    268 

Our study also has implications for understanding the spread of the pandemic and for 269 

intervention strategies. Asymptomatic infections have been estimated to have been 270 

responsible for nearly a quarter of all transmission events4. Transmission by 271 

asymptomatic individuals is hard to contain because the individuals are not readily 272 

identified. Modeling studies have therefore used estimates of 𝜓 to forecast the course of 273 

the pandemic and evaluate intervensions10,11. Our findings may enable such models to 274 

make more accurate predictions. The larger 𝜓 in less developed nations, for instance, 275 

would imply that in these nations, especially in the more populous ones like India, a much 276 

larger share of the transmission events may have been due to asymptomatic individuals, 277 

exacerbating the difficulty in containing the pandemic. This may have led, compounded 278 

by the lack of adequate healthcare access, to the increased mortality in these nations8. 279 

Quantifying these differences, especially in the context of emerging variants, would be 280 

important for future pandemic preparedness.  281 
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ONLINE METHODS 282 

Systematic Review  283 

Search Strategy 284 

We systematically reviewed studies on seroprevalence, focusing on the proportion of 285 

asymptomatic SARS-CoV-2 infections (𝜓). This review adhered to the Preferred 286 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines18. We 287 

followed a primary search strategy to extract serosurvey studies from the open access 288 

SeroTracker68 database platform. Our secondary search involved comprehensive 289 

screening of COVID-19 and SARS-CoV-2 compendiums from PubMed, SCOPUS and 290 

MedRxiv without language restriction. We employed the terms 'COVID-19,' 'SARS-Cov-291 

2,' 'seroprevalence,' 'serological test,’ and 'asymptomatic' as search keywords when 292 

querying the databases. We attempted to mitigate possible publication bias by assessing 293 

both published articles and unpublished literature such as grey literature, preprints, 294 

institutional reports. We omitted news and media reports. All but four source articles from 295 

where we extracted the data for our meta-regression were published in peer-reviewed 296 

journals (Table 1). Of the studies not peer-reviewed, three were preprints (the articles on 297 

Georgia31, Ghana33, and Luxembourg41), and one was a report from governmental 298 

sources (Italy38). We included studies conducted between March 11, 2020, when WHO 299 

declared the COVID-19 pandemic, and December 8, 2020, when the first vaccine was 300 

administered outside clinical trials69. We additionally included the studies from USA52, 301 

Canada24, and Jordan39 because, although they exceeded the above timeframes, either 302 

no vaccination had begun in these nations till the end of the study period or the vaccinated 303 

individuals were omitted from the reported serosurvey data (see Text S2). 304 

This review was not registered. Two researchers (AT and SC) reviewed the title, 305 

abstracts, and full texts of the articles independently. Disagreements were resolved by 306 

three other reviewers (AJ, BC, and NMD). The researchers conducted initial searches 307 

from November 22, 2022, to December 13, 2022, and continued to perform monthly 308 

searches thereafter until September 20, 2023. Data collection did not involve any 309 

automated processes. 310 

Selection Criteria 311 

Asymptomatic individuals are those who become infected but never develop or perceive 312 

any symptoms during the entire course of infection14. We chose retrospective cross-313 

sectional serosurveys that determined the proportion of asymptomatic infection through 314 

interviews and questionnaires, collecting data on symptoms reported either at the time of 315 

blood sample collection or during a prior period. The study window chosen (see above), 316 

which lasted under a year of the onset of the epidemic in the respective settings, 317 

minimized the chances of seroreversion14.  318 

While screening available studies, we identified those that provided accurate estimates 319 

of asymptomatic cases and were conducted on participants representing the national 320 
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populace, by methods such as household or community sampling. We ensured a sample 321 

size n > 500. When investigations of such scale were not available for a nation, we 322 

included studies that reported the seroprevalence in provinces26,45, counties37, regions42, 323 

governates39, major cities and towns20,29,32,36,40, districts54, or municipalities27,30,35, with 324 

populations that were representative of the general population of the nation.  325 

Subsequently, the complete texts of the screened studies underwent evaluation (Fig. 1, 326 

Text S1). Serosurveys conducted on vaccinated individuals or after the emergence of 327 

variants were excluded. Studies that lacked reporting of the total number of individuals 328 

tested, details on seroprevalence, or the number/percentage of asymptomatic individuals 329 

among the seropositive participants were also excluded. Studies that lacked details of 330 

serology tests were excluded. Further, we excluded review articles and findings sourced 331 

from news and media outlets. Finally, studies that did not ensure random sampling of 332 

their participants were excluded. Collated in this manner, we ensured inclusion of the 333 

most reliable evidence coming from large-scale cross-sectional seroprevalence studies 334 

with representative samples that included data from antibody-based testing and identified 335 

population-level asymptomatic proportions in a nation.  336 

Data Extraction and Quality Assessment 337 

From each study, data of nation, sample frame (group of interest), study duration 338 

including sampling start and end date, geographical scope of the study (national, regional, 339 

local, sub-local), age of participants, number of tested individuals, number of confirmed 340 

COVID-19 infections, number of asymptomatic infections, comorbid conditions, 341 

participation rate, type of serological assay, test kit name and details, sensitivity and 342 

specificity of the serological assay, number of symptoms recorded in the questionnaire, 343 

source type, first author, and date of publication were extracted. Two reviewers (AT and 344 

SC) performed the quality assessment independently. Disagreements were resolved by 345 

three other reviewers (AJ, BC, and NMD). Because the outcome of our interest was the 346 

proportion of asymptomatic infections and not seroprevalence, we adapted the Joanna 347 

Briggs Institute (JBI) checklist22 to develop our own quality assessment tool and grading 348 

scale (Text S3). Our quality assessment tool assessed the domains of symptom 349 

assessment, reliability of the serological assays and questionnaires, and the sampling 350 

method to ensure representativeness at the national level (Table S2). The studies were 351 

classified as low, moderate, or high quality following the grading scales developed a priori 352 

(Text S3).  Neither the data extraction nor the quality assessment involved any automated 353 

process. 354 

Data on Predictors 355 

We collated national-level data on demographic median age, population age distribution, 356 

prevalence of cardiovascular disease, and human development index (Table S5). All the 357 

data were for 2019.  358 
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Statistical analysis and meta-regression 359 

We used 𝜓 as the outcome measure. We calculated confidence intervals on 𝜓 using the 360 

Wilson score interval70. For computing the pooled estimate of 𝜓, we logit transformed the 361 

reported estimates, Ψ = 𝑙𝑜𝑔 (
𝜓

100−𝜓
) , and assigned individual weights to each study using 362 

the inverse variance method71. We used the Paule and Mandel method72 implemented in 363 

the Metafor73 package in R for parameter estimation. To quantify the heterogeneity, we 364 

evaluated the 𝐼2 metric74. We calculated the Spearman’s correlation coefficient to 365 

evaluate the correlations between the predictors, CVDR, DMA, and HDI. We performed 366 

meta-regression using the predictors one at a time. To identify outliers and influential 367 

observations, we estimated studentized residuals and performed meta-regression by 368 

leaving out one observation at a time. An observation was classified as influential if the 369 

absolute values of the studentized residuals for the observation were larger than 3 and/or 370 

leaving it out resulted in an increase in R2 greater than 5 percentage points. We compared 371 

the resulting models using R2. We performed additional tests to ascertain the robustness 372 

to potential confounding factors (see Results).  373 
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