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Supplementary Notes 
 
Poisson-Inverse-Gaussian model for approximating allele count likelihood 
In MisFit, the probability of observed allele counts given a selection coefficient in 
samples is described by a Poisson-Inverse-Gaussian distribution optimizing recent 
population growth. The choice of Inverse-Gaussian for population allele frequency is 
heuristic, but it takes account of the long tail, 0 density at 0 and conjugacy to Poisson 
distribution. In comparison, Nei’s model uses a Gamma distribution to approximate the 
allele frequency, and the density at 0 would be infinity when optimized for a small 
population size, which leads to a distorted distribution of the resulting Negative 
Binomial distribution of allele counts. Recent work enables efficient multiplication of the 
transition matrix of the Discrete-Time Wright-Fisher model1 to better picture the 
likelihood, but the PIG model is much simpler with just a few parameters and can be 
applied to any choice of mutation rate and selection coefficient in a continuous range, 
which is more applicable to the scale of missense variants. We showed that our method 
is accurate in estimating relatively strong selection (𝑠 > 0.01) by simulations. 
 
MisFit estimates selection coefficient with amino acid resolution 
The main output of MisFit is estimated selection coefficient of an individual missense variant, 
MisFit_S. We show an example of the phosphatase tensin-type domain in the gene PTEN 
(Supplementary Fig. 9). PTEN is a well-known disease risk gene, depleted of missense variants 
(missense z-score 3.49, o/e = 0.33) and protein truncating variants (pLI 0.26, o/e=0.24). 
MisFit_S follows secondary-structure patterns, and correlates well with conservation. None of 
the gnomAD2 constraint metrics can describe the selection of these sub-gene features. The 
regional constraint2, which is calculated by o/e for each 1kb genomic region, provides limited 
information and low resolution.  
 
MisFit for de novo and inherited variants 
Theoretically, the ratio of de novo mutations among all observed variants given a 𝑠 
equals to 𝑠. This only holds for a new generation that has not gone through any 
selection, so that a proportion of mutation rate 𝜈 of variants are newly mutated and 
(1 − 𝑠)𝜈/𝑠 are inherited, reaching an equilibrium allele frequency of 𝜈/𝑠. In reality, 
selection is more complicated as a long process starting before birth through post-
reproductive age, and there are overlapping of generations. During MisFit training, we 
assume the samples are purely post-selection samples of relatively old age (e.g., 40 to 69 
years old in UKBB), which affects the allele counts distribution for very large 𝑠 (Fig. 
1a, the part for 𝑠 > 0.1).  



In our analysis, we show that de novo ratio approximates 𝑠 in the autism cases more 
than in the controls. In the unaffected siblings, inherited variants with large 𝑠 are not 
significantly depleted as de novo variants. The vast majority of inherited missense 
variants may not play a role in autism based on previous overall burden analysis3.  
 
MisFit performance compared with EVE 
We compared our model with several popular computational methods. EVE4 is also a 
state-of-art methods, which is an Bayesian variational autoencoder using multiple 
sequence alignments as inputs. As EVE only generates scores for 3,219 known disease 
genes with good MSA, we also limit the deep mutational scan data to a subset of 14 
genes with all prediction scores available for fair comparison (Supplementary Fig. 20). 
Generally, MisFit_D has a similar performance with EVE. Here we used the EVE-
predicted posterior probability of damaging component from their mixture model, which 
is already adjusted specifically for each gene.  
In de novo variants analysis, variants without EVE annotations are regarded as least 
damaging. This largely impairs sensitivity, but the top risk variants are less affected as 
they are likely to come from known disease associated genes with good coverage of EVE.  
 
MisFit model on predicting ClinVar variants 

We also analyzed the concordance with ClinVar labelled variants. ClinVar 
variants were processed from the version of Dec 2022. Variants with ‘criteria provided’ 
(1 review star) were collected, and the ones with conflicting labels or annotated as 
‘variant of uncertain significance’ were removed. Pathogenic / likely-pathogenic variants 
are regarded as positive and benign / likely-benign variants are regarded as negative. To 
eliminate the gene-level bias, we selected genes with at least one positive label and one 
negative label, and down-sample the variants to make equal number of positive and 
negative label in each gene. Finally, this gives out 33,046 variants in 3,246 genes. While 
AlphaMissense has a best performance in this analysis, MisFit_D is also reasonably 
good (Supplementary Fig. 21).  

Although this analysis is informative in clinical applications, we still lack totally 
independent data for testing. Supervised methods are usually trained on these labels 
from ClinVar, or from similarly curated databases. Additionally, some methods (such as 
CADD and increasingly REVEL) are commonly used as one of the criteria for 
annotating pathogenicity in ClinVar.  



 
Point estimate for selection coefficient 
Under the simplest Poisson assumption, where 𝑚	~	𝑃𝑜𝑖𝑠(𝑛𝜈/𝑠), we can easily use 
𝑠!"# = 𝑛𝜈/𝑚 as a point estimate by maximum likelihood estimation. However, as 𝑠 is in 
the denominator of the Poisson mean parameter, 𝑠!"# is naturally a biased estimator of 
𝑠. We prove it here.  

𝐸(𝑠!"#) = 𝐸 4
𝑛𝜈
𝑚5 = 𝑛𝜈𝐸 6

1
𝑚7 ≥

𝑛𝜈
𝐸(𝑚) =

𝑛𝜈
𝑛𝜈/𝑠 = 𝑠 

Here, 𝐸 4 $
%
5 ≥ $

#(%)
 , because 𝑓(𝑥) = 1/𝑥 is a convex function, and thus 𝐸;𝑓(𝑥)< ≥

𝑓(𝐸(𝑥)) (Jensen’s inequality).  
When considering a more realistic population genetics model, the situation can be more 
complicated, but 𝑠!"# = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝑑𝑎𝑡𝑎|𝑠)) is still biased because the relationship as a 
denominator holds. Adding a prior distribution may alter the estimation. Although 
those Bayes approaches enable describing a whole posterior distribution of 𝑠, we usually 
still need to derive a point estimate for easier downstream analysis. As there are no 
standard criteria of doing this, several previous studies5-7 used posterior mean as point 
estimate, defined as 𝐸(𝑠|𝑑𝑎𝑡𝑎). In this study, because every 𝑠 in the model is 
transformed in logit scale with 𝑠( = log	( )

$*)
), we directly used posterior mean in the 

logit scale 𝐸(𝑠′|𝑑𝑎𝑡𝑎), and transformed it back to original scale, which gives 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐸(𝑠(|𝑑𝑎𝑡𝑎)). This value is different with 𝐸(𝑠|𝑑𝑎𝑡𝑎) when limited data is 
provided, but could be potentially less biased. (Supplementary Fig. 22) 
 
Improve estimation of selection by using genomes from different populations 
We showed that adding sequencing samples from the same population does not help 
with estimating small select coefficient, but adding samples from another population 
improves the estimation. Assuming the second population evolves totally independently 
from the first population, such improvement is comparable to doubling the integrated 
number of variants with same selection coefficient. If the two populations split very 
recently, the allele frequencies are highly correlated and provide limited additional 
information, and the result should be the same as adding samples from the same 
population. We simulated the allele frequencies in two hypothetic populations assuming 
different length of independent evolution (Supplementary Fig. 23). 2,000 generations 
(approximating split time of Europeans and Africans) is already long to give out less 
correlated data, except for very common variants with allele frequencies larger than 0.1.  
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Supplementary Fig 1 Missense variant effect from different aspects 
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Supplementary Fig 2 Adjusted European final effective population size in 
simulation 
Synonymous variants are simulated based on European effective population size history 
with different final population size in the latest generation. Probabilities of zero-count 
allele in simulation (black) and in UKBB plus gnomAD NFE samples (red) are shown. a 
synonymous variants are randomly selected with an average mutation rate of 1e-8. b 
Only C-to-T synonymous variants in CpG sites with mutation rate larger than 1e-7 are 
selected. 
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Supplementary Fig 3 Parameters of Poisson-Inverse-Gaussian model 
𝜇+, and 𝜆+, are mean and shape parameters for an Inverse Gaussian distribution for 
modeling population allele frequency. Dots are the best fits for each simulation 
condition, while dashed lines are from optimized functions of mutation rate and 
selection coefficient.  
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Supplementary Fig 4 Distribution of sample allele frequency under different 
population genetics model 
a PIG model used in MisFit b-d Negative Binomial distribution with effective 
population size of b 10,000 c 100,000 d 1,000,000. Sample size is 200K diploid genomes. 
  



 
 
Supplementary Fig 5 Evaluation of MLE estimation of 𝒔 
Probabilities of a overestimation b underestimation in 400 replications for each 
simulation condition are shown. Here 𝑠 is a categorical variable of [0.00001, 0.0001, 
0.001, 0.01, 0.1, 1]. Each group contains a certain number of variants (x-axis) with same 
𝑠. Solid lines are samples from a single population, while dashed lines are samples from 
two populations (half of the indicated number for each population). 
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Supplementary Fig 6 Overview of MisFit model 
a MisFit model in view of a probabilistic graphical model. b Full structure of MisFit 
model and training stages. 
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Supplementary Fig 7 MisFit estimated gene-level missense selection 
correlates with gnomAD missense z score or o/e 
  



 
 
Supplementary Fig 8 MisFit estimated s for protein-truncating variants 
correlates with previous estimations. 
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Supplementary Fig 9 Predicted selection coefficient for each amino acid 
substitution in PTEN 
Secondary structures from UniProt are shown at the top. Entropy is calculated by 
amino acid distribution across Ensembl homologues, lower the value means more 
conservation. Missense variant density combines UKBB and gnomAD NFE. Regioal o/e 
is extracted from gnomAD-3 1kb window. 
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Supplementary Fig 10 MisFit estimated selection coefficient s predict allele 
frequency in a second population better than baseline models 
Variants of high mutation rate (>1e-7) with sample AF < 5e-6 in training set (UKBB 
+ gnomAD NFE) are selected for analysis. Variants are separated into 10 groups by 
estimated s in each model. The proportions of variants with a gnomAD AFR sample AF 
= 0 or b gnomAD AFR sample AF > 5e-5 are shown. c Distribution of estimated s of 
these variants. Model 0: baseline model learned only from NFE allele number, NFE 
allele count, and mutation rate; model 1: model 0 + gene-level selection; model 2: model 
1 + ESM-2 zero shot as 𝑑; MisFit: model 1 + ESM-2 embeddings as 𝑑. 
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Supplementary Fig 11 Distribution of inherited or de novo missense variants 
in autism dataset 
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Supplementary Fig 12 Count of de novo or inherited variants binned by of 
MisFit_S in different gene sets 
Dashed line indicates the inherited, solid line indicates the de novo. a known 162 autism 
genes from SPARK. b other genes. 
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Supplementary Fig 13 de novo or inherited protein-truncating variants 
binned by of MisFit_S 
a Count of de novo or inherited missense variants. Dashed line indicates the inherited, 
solid line indicates the de novo. b The proportion of de novo to all variants in autism 
dataset. Error bars show 95% confidence intervals.   
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Supplementary Fig 14 Precision-recall-proxy curve for de novo missense 
variants 
Thresholds of MisFit_S are annotated. 
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Supplementary Fig 15 Enrichment of de novo variants in baseline models 
Model 0: baseline model learned only from NFE allele number, NFE allele count, and 
mutation rate; model 1: model 0 + gene-level selection; model 2: model 1 + ESM-2 zero 
shot as 𝑑; MisFit: model 1 + ESM-2 embeddings inferred 𝑑. 
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Supplementary Fig 16 Precision-recall-proxy curve of de novo variants in 
baseline models 
Model 0: baseline model learned only from NFE allele number, NFE allele count, and 
mutation rate; model 1: model 0 + gene-level selection; model 2: model 1 + ESM-2 zero 
shot as 𝑑; MisFit: model 1 + ESM-2 embeddings inferred 𝑑. 
  

0.2

0.4

0.6

0.8

100 200 300 400 500
# estimated risk variants

es
tim

at
ed

 p
re

ci
si

on
autisma

0.4

0.6

0.8

1.0

1000 2000 3000
# estimated risk variants

es
tim

at
ed

 p
re

ci
si

on

NDDb

method
model 0
model 1
model 2
MisFit_S



 
Supplementary Fig 17 Various functional score distributions in different 
deep mutational scanning experiments 
a-b Examples of bimodal distribution with originally annotated labels. c-d Examples of 
unimodal distribution. 
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Supplementary Fig 18 Distribution of scores (normalized by rank) across 
genes 
The red and blue curves show the distribution of damaging and benign variants, 
respectively. Dark curves are the distribution of scores in the combined data, while light 
curves show each gene separately. The black lines are the optimal threshold achieving 
highest MCC in the combined dataset, while the grey lines are the optimal threshold for 
each gene. 
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Supplementary Fig 19 Consistency of sensitivity across genes 
Thresholds are set to achieve certain global sensitivity (x-axis) in the combined data. 
Sensitivities in different genes are then evaluated. Y-axis shows the standard deviation. 
a in all genes; b in EVE genes. 
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Supplementary Fig 20 Performance in predicting damaging variants in deep 
mutational scanning assays and cross-gene consistency 
A subset of genes from Fig. 7 with all prediction scores available are used for analysis. 
a Spearman correlation coefficient of predicted scores with functional scores from deep 
mutational assays. Mean is annotated in red. b AUROC of predicting confidently 
labeled damaging or benign variants in deep mutational assays. Mean is annotated in 
red. c MCC in each gene with a global threshold that achieves best MCC in the 
combined dataset. Mean is annotated in red. d Sensitivity in different genes when 
setting a threshold to achieving a global sensitivity of 0.5 (dashed) in the combined 
dataset. Standard deviation is annotated in blue. For b-d, different assays of same gene 
are combined so that variants with a damaging label in any of the assays will be 
regarded as damaging. 
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Supplementary Fig 21 AUROC in predicting ClinVar balanced pathogenic / 
benign variants 
a 33,046 variants in 3,246 genes. b 26,171 variants in 2,229 genes with all prediction 
scores available. 
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Supplementary Fig 22 Bias of point estimate of heterozygous selection 
coefficient 
The number on top shows the aggregated number of variants per group, and y-axis 
shows the distribution of 𝑠 estimated for each group in 100 replicates. The simulation 
condition is 𝑠 = 0.01, so the mean of point estimate (dot) closer to this value meaning 
the estimator is less biased. Here mutation rate is 1e-8 and sample size is 200K. 
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Supplementary Fig 23 Correlation of population allele frequency in two 
populations 
The two simulated populations split a. 10,000 generations ago b 2,000 generations ago c 
200 generations ago. Mutation rate is 1e-7 and heterozygous selection coefficient equals 
1e-4. 
  



Supplementary Tables 
Supplementary Table 1 
MisFit estimated gene-level selection for 830 genes with known disease mechanisms.  
 
Supplementary Table 2 
Genetic variants data used in analysis.  
 
Supplementary Table 3 
Deep mutational scanning experiments used in analysis and Spearman correlation 
coefficient with computational methods. 
 
Supplementary Table 4 
A subset of deep mutational scanning experiments that have bimodal distribution of 
functional scores used in analysis, and AUROC of computational methods.  
 
Supplementary Table 5 
MisFit estimated gene-level selection (including missense and protein-truncating 
variants) for all genes trained in model.  
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