SUPPLEMENTAL MATERIAL

TITLE

Fully automated histological classification of cell types and tissue regions of celiac disease is feasible and correlates with the Marsh score

AUTHORS

Michael Griffin¹, Aaron M. Gruver², Chintan Shah¹, Qasim Wani¹, Darren Fahy¹, Archit Khosla¹, Christian Kirkup¹, Daniel Borders¹, Jacqueline A. Brosnan-Cashman¹, Angie D. Fulford², Kelly M. Credille², Christina Jayson¹, Fedaa Najdawi^{1,*}, Klaus Gottlieb^{2,*}

* Fedaa Najdawi and Klaus Gottlieb contributed equally as co-senior authors.

AUTHORS' AFFILIATIONS

¹ PathAI, Boston, MA, USA

² Eli Lilly and Company, Indianapolis, IN, USA

CORRESPONDING AUTHOR

Fedaa Najdawi

PathAI, Inc.

1325 Boylston Street, Suite 10000

Boston, MA 02215

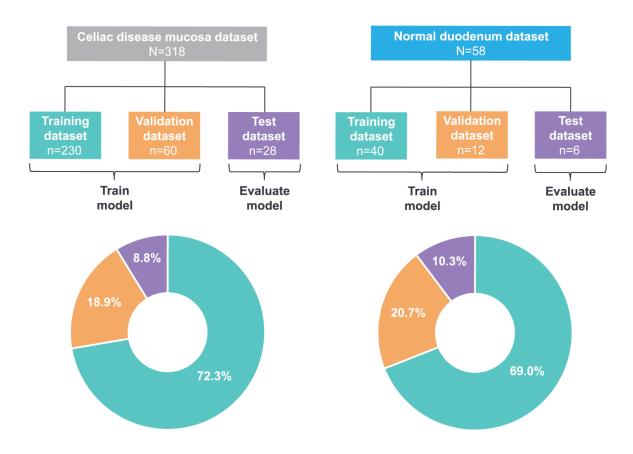
USA

Tel: +1-617-500-8457, Email: fedaa.najdawi@pathai.com

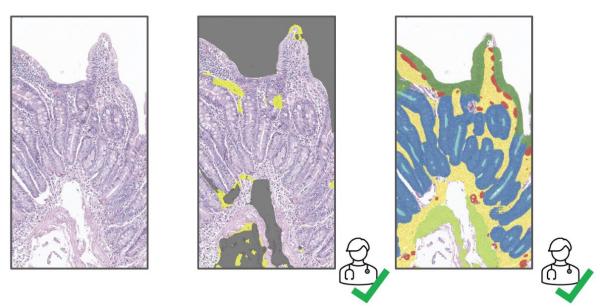
LIST OF TABLES AND FIGURES

Supplemental Table 1 Correlations of model-derived HIFs with modified Marsh score

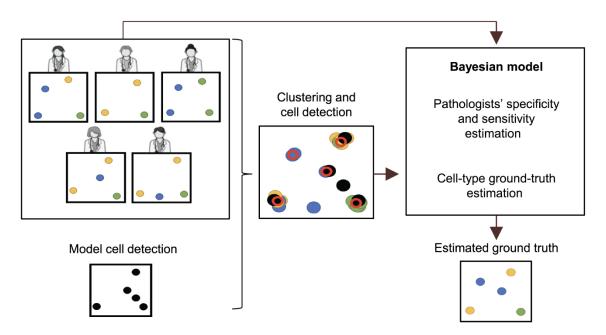
Supplemental Figure 1 Workflow diagram of model development


Supplemental Figure 2 Data quality control and qualitative review of tissue and cell models

Supplemental Figure 3 Performance of cell predictions (frames) by the cell model


Supplemental Table 1 Correlations of model-derived HIFs with modified Marsh score

Feature	Spearman correlation coefficient	P value
Area proportion of villous epithelium over lamina propria in tissue	-0.836106	<0.0001
Area proportion of villous epithelium over mucosa in tissue	-0.788289	<0.0001
Area proportion of villous epithelium over all epithelium in tissue	-0.707178	<0.0001
Area proportion of villous epithelium over crypt epithelium in tissue	-0.707178	<0.0001
Area proportion of crypt epithelium over all epithelium in tissue	0.707178	<0.0001
Area proportion of lamina propria over mucosa in tissue	0.805047	<0.0001
Count proportion of intraepithelial lymphocytes over enterocytes in villous epithelium	0.433375	<0.0001
Density of intraepithelial lymphocytes in villous epithelium	0.527404	<0.0001
Density of plasma cells in mucosa	0.587203	<0.0001
Count proportion of plasma cells over all cells in mucosa	0.586244	<0.0001
Count proportion of eosinophils over all cells in mucosa	0.594639	<0.0001
Density of eosinophils in mucosa	0.612484	<0.0001
Count proportion of lymphocytes over plasma cells in mucosa	-0.639687	<0.0001


HIF, human interpretable feature.

Supplemental Figure 1 Workflow diagram of model development.

Supplemental Figure 2 Data quality control and qualitative review of tissue and cell models.

Supplemental Figure 3 Performance of cell predictions (frames) by the cell model. Hierarchical clustering was performed on 1) annotations collected by pathologists (n=5) and 2) cell locations predicted by the cell model to locate true cells. A Bayesian model was then run using pathologist annotations as the input to estimate the ground truth cell type for each of the cell locations based on the estimated specificity and sensitivity of each annotator. Model predictions and pathologist predictions are then compared to that ground-truth.