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ABSTRACT2

We examined changes in large-scale functional connectivity and temporal dynamics and3
their underlying mechanisms in schizophrenia (ScZ) through measurements of resting-state4
functional magnetic resonance imaging (rs-fMRI) data and computational modelling. The rs-fMRI5
measurements from patients with chronic ScZ (n=38) and matched healthy controls (n=43), were6
obtained through the public schizConnect repository. Computational models were constructed7
based on diffusion-weighted MRI scans and fit to the experimental rs-fMRI data. We found8
decreased large-scale functional connectivity across sensory and association areas and for9
all functional subnetworks for the ScZ group. Additionally global synchrony was reduced in10
patients while metastability was unaltered. Perturbations of the computational model revealed11
that decreased global coupling and increased background noise levels both explained the12
experimentally found deficits better than local changes to the GABAergic or glutamatergic system.13
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The current study suggests that large-scale alterations in ScZ are more likely the result of global14
rather than local network changes.15

Keywords: schizophrenia, resting-state fMRI, computational model, large-scale networks, functional connectivity, temporal dynamics16

1 INTRODUCTION

ScZ is a severe mental disorder with a high burden of disease (Lopez and Murray (1998); Charlson et al.17
(2018)). However, the underlying mechanisms remain elusive. While no single brain area accounting for18
the heterogeneous symptom profiles has been identified, the notion that ScZ can be understood in terms19
of a general dysconnectivity has emerged (Friston et al. (1995); Friston (1999); Bullmore et al. (1997);20
Pettersson-Yeo et al. (2011)).21

Experimental evidence for the dysconnection hypothesis comes from neuroimaging studies. Analyses of22
resting-state fMRI connectivity have shown widespread changes of functional connectivity. However, there23
is still a debate whether correlations of neural activity between regions are decreased (Liang et al. (2006);24
Bluhm et al. (2007)) or increased in ScZ (Zhou et al. (2007)). There is also growing evidence for possible25
longitudinal changes of functional connectivity over the course of the disorder. Anticevic et al. (2015)26
demonstrated that prefrontal cortical connectivity is increased in early-course ScZ while the opposite27
pattern was observed in chronic ScZ patients. Going beyond pairwise correlations between brain regions,28
graph theoretic measurements have identified reductions in integration, hierarchy, clustering, efficiency and29
small-worldness (Bassett et al. (2008); Liu et al. (2008); Bullmore and Sporns (2009); Lynall et al. (2010)).30

Yet, the origin of functional dysconnectivity patterns in ScZ is still unclear. One hypothesis is that31
cellular and synaptic changes associated with ScZ disrupt local processing and thus impact on large-scale32
connectivity. Indeed changes at the microcircuit level have been identified in ScZ. Excitatory and inhibitory33
neurotransmission is disturbed, for example a reduced excitatory drive onto GABAergic inhibitory neurons34
(Chung et al. (2016, 2022)) and a decreased inhibitory output (Hashimoto et al. (2003); Morris et al. (2008);35
Moyer et al. (2012)). Changes to the glutamatergic system , such as increased recurrent excitation, have36
been suggested to lead to deficits in large-scale connectivity with a gradient along the cortical hierarchy37
(Yang et al. (2016)).38

Computational models of large-scale brain circuits can be used to investigate dynamical circuit39
mechanisms linking local ScZ-associated alterations to global changes in the functional organisation40
of the brain. Leveraging such computational models, studies have shown that decreases in global inter-41
regional connectivity strengths can lead to wide-spread functional disruptions (Cabral et al. (2013)),42
increased global signal variance (Yang et al. (2014)) and altered topological characteristics of functional43
brain networks (Cabral et al. (2012b,a)) resembling ScZ. However, except for Yang et al. (2014), these44
studies only investigated a global scaling of the inter-regional connectivity. Yang et al. (2014) manipulated45
local and global neuronal coupling and demonstrated that both could increase signal variance as seen in46
ScZ but did not explore their potentially differential effects on large-scale functional connectivity. Thus, so47
far the effect of ScZ-associated local changes to glutamatergic and GABAergic neurotransmission and the48
effect of increased background noise on large-scale functional connectivity has not been explored.49

To address this question, we quantified functional connectivity differences in a data set of healthy controls50
and chronic ScZ patients. We then implemented local microcircuit and global network parameter changes51
in a computational model of large-scale cortical dynamics and compare the resulting connectivity changes52
to the experimental data. Furthermore, we also explored the temporal dynamics of the resting-state brain53
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and characterised potential deficits in large-scale synchrony and metastability in ScZ patients and compared54
them to the different computational models, thus identifying mechanistic links underlying these changes.55

2 MATERIAL AND METHODS

2.1 Patient Sample56

The study sample was collected through the Center for Biomedical Research Excellence (COBRE) led by57
Dr. Vince Calhoun (more information here: http://fcon 1000.projects.nitrc.org/indi/retro/cobre.html) and58
obtained from the SchizConnect database (http://schizconnect.org). This sample has previously been used59
by our group to explore structural deficits in patients with ScZ (Dimulescu et al. (2021)). From the sample60
of 43 patients and 43 healthy control participants, we excluded 5 patients due to missing resting-state61
functional MRI (rs-fMRI) data or artefacts/excessive motion identified during the pre-processing. We62
thus analyzed a final sample of 43 healthy control subjects and 38 patients with schizophrenia, which we63
will refer to as the COBRE sample. All patients were receiving antipsychotic medication (see Table 1).64
Symptom severity in patients was assessed using the Positive and Negative Syndrome Scale (PANSS) (Kay65
et al. (1989)). Written informed consent was obtained from all participants, and the study was reviewed66
and approved by the Institutional Review Board of the University of New Mexico.67

2.2 Anatomical data68

Data collection for the COBRE sample was performed using a Siemens Magnetom Trio 3T MR scanner.69
Structural images (high resolution T1-weighted) were acquired using a five-echo MPRAGE sequence with70
the following parameters: repetition time (TR) = 2530 ms; echo time (TE) = 1.64, 3.5, 5.36, 7.22, 9.08 ms;71
inversion time (TI) = 1200 ms; flip angle (FA) = 7◦; field of view (FOV) = 256 mm × 256 mm; matrix =72
256 × 256; slice thickness = 1 mm; 192 sagittal slices. Diffusion tensor imaging (DTI) data were acquired73
using a single-shot EPI sequence with TR/TE = 9000/84 ms; FA = 90◦; FOV =256 mm × 256 mm; matrix74
= 128 × 128; slice thickness = 2 mm without gap; 72 axial slices; 30 non-collinear diffusion gradients (b75
= 800 s/mm2) and 5 non-diffusion-weighted images (b = 0 s/mm2) equally interspersed between the 3076
gradient directions. For more information see also Cetin et al. (2014).77

For model validation we additionally used a subset of 156 healthy participants from the human78
connectome project (HCP), which we will refer to as the HCP sample. The diffusion-weighted data79
were collected with multiband diffusion sequence (HCP version available at80
http://www.cmrr.umn.edu/multiband). Three different gradient tables are used, each with 90 diffusion81
weighting directions and six b = 0 acquisitions. More information can be found at82
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release.83

2.3 Resting-state functional MRI data84

COBRE data was acquired using single-shot full k-space echo-planar imaging (EPI) with ramp sampling85
correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64,86
32 slices, voxel size: 3x3x4 mm3). The resting-state scans were acquired in the axial plane with with an87
ascending slice order (multi slice method; interleaved). For more information see Aine et al. (2017). For the88
COBRE data set, we preprocessed the rsfMRI data using the FSL FEAT toolbox (Woolrich et al. (2001)).89
For each data set, we discarded the first five volumes. We corrected head motion using the FSL McFLIRT90
algorithm and subsequently high-pass filtered the data with a filter cutoff of 100 s. We linearly registered91
each functional image to the corresponding anatomical image of that subject using FLIRT. We then used92

Frontiers 3

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.23299714doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299714
http://creativecommons.org/licenses/by-nc/4.0/


Metzner et al. Global Resting-State Alterations in Schizophrenia

the mean volume of the data to create a brain mask using BET. Using the ICA FIX FSL toolbox (Griffanti93
et al. (2014); Salimi-Khorshidi et al. (2014)), we conducted MELODIC ICA and removed artefactual94
components (motion, non-neuronal physiological artefacts, scanner artefacts, and other nuisance sources).95
Finally, we transformed the high-resolution mask volumes from MNI to individual subject functional space96
and extracted the average BOLD time courses for each cortical region in the AAL2 parcellation scheme97
using the fslmeants command from Fslutils.98

Acquisition details for the functional MRI data from the HCP S1200 release can be found here:99
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release. For the100
HCP data set, we used the data preprocessed according to Glasser et al. (2013) and extracted the average101
BOLD time courses for each cortical region as described above.102

2.4 Measures of connectivity and temporal dynamics103

We used the average global brain connectivity (GBC) measure (Cole et al. (2010, 2011)) to assess the104
changes in connectivity strength. To assess alterations in temporal dynamics we used synchrony and105
metastability (Deco et al. (2017)). Because of the computational model being restricted to cortical areas,106
we also restricted our connectivity analysis to cortical areas. However, including subcortical regions did107
not substantially change the findings (see Supplementary Material).108

Specifically, we define the functional connectivity matrix (FC) as the matrix of Pearson correlations of109
the BOLD signal between two brain areas over the whole time range of acquisition. From the FC matrices110
we calculate the global brain connectivity (GBC) of a single brain region i as follows (see also Cole et al.111
(2010, 2011)):112

GBC(i) =
1

n
(
∑
j

FC(i, j)),

where n is the number of regions. The average global GBC can then be defined as the average GBC over all113
cortical regions i. To calculate the average GBC for a functional subnetwork or generally a set of regions,114
one simply averages over the regional GBC values for the respective regions.115

To assess the temporal dynamics of the functional networks, we used the Kuramoto order parameter as a116
measure of synchrony and its standard deviation as a measure of metastability, i.e. the variability of the117
states of phase configurations over time (see for example Deco et al. (2017)). Here the Kuramoto order118
parameter R(t) is defined as119

R(t) =
1

n
|

n∑
k=1

eiϕk(t)|,

where again n is the number of regions and ϕk(t) is the instantaneous phase of the BOLD signal in region120
k. It measures the global level of synchronization of the BOLD signals from all regions, where a low level121
close to 0 reflects an almost uniform distribution of the signal phases, and a high value close to 1 reflects122
near equality of the signal phases. To calculate R, we band-pass filtered the signal in the narrowband123
0.04-0.07 Hz (see Deco et al. (2017)) and then extracted the instantaneous phases of the signals at every124
time step using the Hilbert transform.125
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2.5 Computational network model126

We use a whole-brain network model, where the connectivity, connection strength and delay between127
network nodes (i.e. brain regions) is derived from brain imaging data. As a model of single-node activity128
dynamics we employ a mean-field description of a spiking neural network of an excitatory and an inhibitory129
neural population, where the individual neurons are described by the adaptive exponential integrate-and-fire130
model (AdEx model; Brette and Gerstner (2005)), developed in our group (Augustin et al. (2017); Cakan131
and Obermayer (2020)). The following section describes the model in detail.132

2.5.1 Single-Node model133

A mean-field neural mass model based on a spiking network of coupled excitatory and inhibitory134
populations, the so-called ALN model (Augustin et al. (2017)), was implemented. The mean-field135
description offers a drastic speed-up of simulations on the order of about 4 orders of magnitude compared136
to the spiking model while still retaining its dynamical states and its biophysical parameters. The model137
has been extensively validated against simulations with the detailed spiking network and overall shows138
very good agreement (Cakan and Obermayer (2020)).139

The mean-field reduction of the spiking neural network utilises the Fokker-Planck approach, i.e. the fact140
that in the limit of an infinite network size and under the assumption of a sparse, random connectivity,141
the distribution p(V ) of the membrane potentials and the mean firing rate ra of a population a, can be142
described by a Fokker-Planck equation (Brunel (2000)). However, to calculate the potential distribution a143
partial differential equation has to be solved, which is computationally costly. Therefore, the dynamics of144
a population is captured by a low-dimensional linear-nonlinear cascade model, and can be described by145
a set of ordinary differential equations (Fourcaud-Trocmé et al. (2003); Ostojic and Brunel (2011)). The146
mathematical derivation and the underlying assumptions have been detailed in (Augustin et al. (2017)), and147
we will only provide the final set of model equations in this manuscript.148

A single network node in the whole-brain model is represented by the population activity of two149
interconnected neural populations, an excitatory population E and an inhibitory population I . The dynamics150
of the membrane currents of a population a ∈ {E, I}, are governed by the following equations:151

τa
dµa
dt

= µsyna (t) + µexta (t) + µoua (t)− µa(t) (1)
152

µsyna = JaE s̄aE(t) + JaI s̄aI(t) (2)
153

σ2a(t) =
∑

b∈{E,I}

2J2
abσ

2
s,ab(t)τs,bτm

(1 + rab(t))τm + τs,b
+ σ2ext,a (3)

In the above equations µa describes the total mean membrane currents, µsyna the currents from synaptic154
activity, µexta the currents from any sources of external input, µoua the external noise input, τm the membrane155
time constant (calculated from the membrane capacitance C and the leak conductance gL), and τs,b the156
synaptic time constant. Furthermore, σ2a is the variance of the membrane currents, and Jab represent the157
maximum synaptic current when all synapses from population b to population a are active. The dynamics158
of the synapses are described by159

ds̄ab
dt

= τ−1
s,b ((1− s̄ab(t))rab(t)− s̄ab(t)) (4)
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dσ2sab
dt

= τ−2
s,b (1− s̄ab(t))

2ρab(t)) + (ρab(t) + 2τs,b(rab(t) + 1)σ2sab(t)) (5)

where s̄ab represents the mean of the fraction of all active synapses, which lies in the range [0, 1], with the160
extreme cases being no active synapses and no inactive synapses, respectively. Furthermore, σ2sa,b is the161
variance of sab.162

The timescale τa = ΦT (µa, σa) of the input-dependent adaptation, the average membrane potential163
V̄E = ΦE(µE , σE), and the instantaneous population spike rate ra = Φr(µa, σa) are computed every time164
step by means of precomputed transfer functions. The mean rab and the variance ρab of the effective input165
rate from population b to population a can be described by166

rab =
cab
Jab

τs,b
(
Kb · rb(t− dab) + δabE ·Kgl

N∑
j=0

Cij(rb −Dij)
)

(6)

and167

ρab =
c2ab
J2
ab

τ2s,b
(
Kb · rb(t− dab) + δabE ·Kgl

N∑
j=0

C2
ij(rb −Dij)

)
(7)

given a certain delay for the spike transmission dab. Here cab represent the amplitude of the post-synaptic168
current resulting from one individual spike (for sab = 0). Furthermore, Kgl scales the global coupling in169
the network, and Cij and Dij define the connection strengths and the connection delays between regions,170
estimated from the fibre count and fibre length matrices, respectively. Finally, δabE = 1 for a = b = E and171
0 otherwise restricting coupling between regions to be exclusively from excitatory to excitatory populations.172

The adaptive exponential integrate-and-fire model explicitly accounts for the evolution of a slow173
adaptation currents that represents both subthreshold and spike-triggered adaptation currents. The174
subthreshold adaptation current is described by the adaptation conductance α and the spike-triggered175
adaptation current is denoted by β. In the limit of infinite population sizes, an adiabatic approximation can176
be employed to describe the mean adaptation current in terms of the mean population firing rate. The mean177
adaptation current ĪA can be understood as an inhibitory membrane current whose dynamics are governed178
by179

dĪA
dt

= τ−1
A (α(V̄E(t)− EA)− ĪA)− βrE(t). (8)

The individual populations a of a single region of the whole-brain network receive an external input180
current with a given mean µexta (t) and a standard deviation σexta (t). This background input current can be181
thought to represent baseline input from extracortical areas in the brain. Additionally, the regions also182
receive a noise input current µoua (t) modelled as an Ornstein-Uhlenbeck process with a mean of 0 described183
by184

dµoua
dt

= −µoua
τou

+ σouξ(t). (9)

Here ξ(t) is a white noise process drawn from a normal distribution with a mean of 0 and a variance of 1.185
σou determines the fluctuation amplitude of the noise around its mean.186

To determine the mean external input to the E (µEext) and I (µIext) populations, the noise strength σou,187
the subthreshold adaptation conductance α and spike-triggered adaptation increment β parameters for the188

Frontiers 6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.23299714doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299714
http://creativecommons.org/licenses/by-nc/4.0/


Metzner et al. Global Resting-State Alterations in Schizophrenia

model in the control condition, we used an evolutionary optimization procedure as described in Cakan et al.189
(2022). We compared the simulated BOLD FC to the empirical rsfMRI data. We initialized the algorithm190
with a random population of Ninit = 160 individuals and repeated the evolutionary block with Npop = 80191
individuals for 100 generations. Initial parameter values were selected from a uniform distribution across192
the following intervals for the model parameters: µEext ∈ [0.0, 4.0] mV/ms, µIext ∈ [0.0, 4.0] mV/ms,193
σou ∈ [0.0, 0.3], a ∈ [0.0, 40.0] nS, and b ∈ [0.0, 40.0] pA. The global coupling strength was set as in194
Figure 2 of Cakan et al. (2022). All other model parameters were set as given in Table 1 in Cakan et al.195
(2022) and they are summarised in Table 2.196

2.5.2 BOLD model197

In order to compare the model output, i.e. the neural activity of the regions, to the BOLD signal of the198
rs-fMRI data, the firing rates of the excitatory population of each region had to be converted into model199
BOLD signal timecourses. Here, we used the well-established Balloon-Windkessel model (Friston et al.200
(2000); Deco et al. (2013)), for specific parameters see Friston et al. (2003).201

2.5.3 Network connectivity202

Structural images were preprocessed employing a semi-automatic pipeline implemented in the FSL203
toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford). For the anatomical T1-weighted images we used the204
brain extraction toolbox (BET) in FSL to remove non-brain tissue and to generate the brain masks. After205
manual quality checks, 80 cortical regions were defined according to the automatic anatomical labelling206
(AAL2) atlas (Rolls et al. (2015)). For the diffusion-weighted images, we performed a brain extraction as207
well and corrected the images for head motion and eddy current distortions afterwards. Probabilistic fibre208
tracking, using the Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques209
(BEDPOSTX) and the PROBTRACKX algorithms implemented in FSL (Behrens et al. (2007)), was then210
used with 5,000 random seeds per voxel to extract individual connectomes. Since the tractography does not211
yield directionality information and the connectome matrices are non-symmetric, we explicitly enforced212
symmetry by averaging the entries from region i to region j and from region j to region i for all pairs of213
regions. Furthermore, we normalised each connectome by dividing each matrix entry by the maximum214
matrix entry, thus ensuring compatibility between participants. The resulting connectome then determines215
the relative coupling strength between regions in the above described computational whole-brain model.216
The fibre tracking also yielded matrix fibre lengths for each participant, which, when multiplied with the217
signal speed, determines the delay of signal propagation between any two regions in the model.218

2.5.4 Modelling ScZ-associated changes219

We implemented four different sets of parameter changes that are thought to represent the following four220
ScZ-associated alterations: 1) local GABAergic inhibition, 2) local glutamatergic excitation of inhibitory221
cells, 3) global interregional coupling, and 4) global noise levels.222

First, we systematically reduced GABAergic inhibition in the model. Postmortem gene expression studies223
have robustly demonstrated reduced levels of parvalbumine (PV) and somatostatin (SST) expression in PV224
(Hashimoto et al. (2003)) and SST (Morris et al. (2008)) interneurons together with a reduction of GAD65225
and GAD67 (Hashimoto et al. (2003)), in cortical regions in ScZ. We implemented these changes as a226
reduction of the inhibitory weights JEI and JII in the ALN model of the regional dynamics. We varied227
the strength of the inhibition onto the excitatory population JEI and onto the inhibitory population JII228
simultaneously in the range from 100% to 60% in steps of 5%.229
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Next, we systematically reduced the glutamatergic, excitatory drive onto inhibitory neurons in our model230
of regional activity. These changes reflected the reduced and more varied colocalization of glutamatergic231
pre- and postsynaptic markers on PV interneurons in dorsolateral prefrontal cortex (DLPFC) (Chung et al.232
(2016, 2022)). Specifically, we reduced the excitatory weight onto inhibitory neurons JIE in the ALN233
model in a range from 100% to 60% in steps of 5%.234

Global dysconnectivity might also be explained by a simple reduction of the global connectivity strength.235
Therefore, to test whether the differences we found experimentally could alternatively be explained by an236
overall network decoupling, we reduced the global coupling strength Kgl in the range from 100% to 60%237
in steps of 5%.238

Finally, the global alterations of functional connectivity might also be the result of an increase in239
background noise disrupting functional connectivity in the network (Winterer et al. (2000); Winterer and240
Weinberger (2004); Winterer et al. (2004)). Consequently, we increased the global background noise σou in241
a range from 100% to 140% in steps to 5%, to test whether a global increase in noise level can account for242
the connectivity differences found in the experimental data.243

2.5.5 Simulation details244

Simulations were implemented using the neurolib Python framework (Cakan et al. (2021)). The245
differential equations of the model were solved numerically using an Euler forward scheme with a time246
step of 0.1 ms. For all described simulations the duration was 70 s and we discarded the transient response247
in the first 5 s before calculating any of the above described measures. To assess the robustness of our248
results, we created 40 virtual subjects by changing the seed for the random number generator underlying249
the Ornstein-Uhlenbeck noise process. These 40 virtual subjects were then kept fixed for all implemented250
changes allowing for a direct comparison to the default, ’healthy’ condition.251

3 RESULTS

3.1 Demographic and clinical characteristics252

The control and the patient group did not differ significantly in terms of age and gender (see Table 1).253
Patients also did not show a change in symptomatology or type/dose of antipsychotic medication during254
the three months before the assessment (for more details see Aine et al. (2017)).255

3.2 Global differences in connectivity strength and temporal dynamics between ScZ256
patients and healthy controls257

Global GBC was significantly reduced in patients with ScZ (effect size g = −0.65; see Figure 1 a) and258
Table 3). Comparing both groups a substantial shift from high GBC towards medium to low GBC values259
occurs in ScZ patients (Figure 1 b) and Table 3). Synchrony, as measured by the Kuramoto order parameter260
was lower in the patient group (effect size g = −0.44; see Figures 1 c) and Table 3). However, variability261
in synchrony, measured by metastability, did not significantly differ between groups (Figure 1 d) and Table262
3).263

Reductions of functional connectivity strengths affected all seven subnetworks (effect sizes ranging264
from g = −0.57 to g = −0.83; see Table 3), with the dorsal-attention, the somato-motor and the visual265
subnetworks showing the strongest effects (Figure 1 f)).266
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We further tested whether the GBC differences we found were specific to association areas as indicated267
by a previous study (Yang et al. (2016)). We grouped the default mode subnetwork, the control subnetwork268
and the ventral attention subnetwork together as the association areas and the somatomotor subnetwork, the269
visual subnetwork and the dorsal attention subnetwork as the sensory areas. We found reduced GBC for270
ScZ patients in both groupings, with the sensory areas showing an even stronger effect than the association271
areas (effect sizes g = −0.78 for sensory areas versus g = −0.61 for association areas, see Figure 1 e) and272
Table 3).273

3.3 Mechanisms underlying connectivity and dynamics alterations274

3.3.1 Control model275

We derived a model of healthy large-scale cortical activity that matched the behaviour of the control276
group data from the COBRE study well in terms of functional connectivity (Figures 2 b) and d)). The277
correlation between simulated FC (simFC) and empirical FC (empFC) (r = 0.33± 0.09; Figure 2 e)) was278
higher than the correlation between empirical structural (empSC) and empFC (r = 0.19± 0.07; Figure2279
e)).280

To further assert that the default model captures the resting-state functional connectivity of healthy281
subjects well, we also validated the model behaviour against a set of 156 subjects from the HCP S1200282
release. Here, we also found a good fit for functional connectivity (Figure 2 c) and d)).283

Overall, the model functional connectivity correlated well with the empirical functional connectivity of284
individual HCP subjects (r = 0.43± 0.08; see Figure 2 e)). This correlation was again substantially higher285
than the correlation of structural connectivity and empirical functional connectivity (r = 0.20± 0.08; see286
Figure 2 e)).287

3.3.2 Modelling ScZ-associated alterations288

We systematically performed perturbations to four key aspects of the model that have been associated289
with schizophrenia: 1) local GABAergic inhibition, 2) local glutamatergic excitation of inhibitory cells, 3)290
global interregional coupling, and 4) global noise levels.291

We found that changing the inhibitory weights (model perturbation 1) did not alter the global GBC292
and the GBCs for sensory and association areas significantly. Furthermore, the changes did not alter the293
synchrony and the metastability (see Supplementary Table S3). As for the local changes to the inhibitory294
system, changes to the glutamatergic excitatory drive to the inhibitory population (model perturbation 2)295
did not result in significant changes in GBC on all levels, synchrony and metastability (see Supplementary296
Table S4).297

A reduction of global coupling (model perturbation 3) resulted in a strong decrease in global brain298
connectivity as well as connectivity within the sensory and association systems (Table 4). Additionally,299
synchrony decreased strongly and metastability increased for larger reductions (Table 4).300

An increase in noise levels (model perturbation 4) yielded a strong decrease in global brain connectivity301
as well as connectivity within the sensory and association systems, even stronger than for the global302
coupling changes (Table 5). Additionally, synchrony decreased strongly and metastability increased for303
larger noise strengths (Table 5).304
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4 DISCUSSION

4.0.1 Global changes in connectivity and temporal dynamics305

Evidence for large-scale dysconnectivity in functional networks has been accumulated over the last years306
in ScZ (Liang et al. (2006); Bluhm et al. (2007); Bassett et al. (2008); Liu et al. (2008); Bullmore and307
Sporns (2009)). However, it is still unclear, how these changes relate to changes on the microscopic level.308
To address this gap, we analysed resting-state fMRI data from healthy participants and patients with chronic309
ScZ. We identified a global reduction in functional connectivity that affected both sensory and association310
areas equally and that was present for all functional subnetworks together with a moderate decrease of311
temporal synchrony. Using a biophysical network model, we found that a decrease in global coupling or312
an increase in global noise levels could explain the connectivity reduction and the increase in synchrony313
best, whereas local changes to the glutamatergic or GABAergic system did not produce changes matching314
our experimental findings. However, both changes also yielded an increase in metastability in our model,315
which we did not find in the experimental data.316

Our findings of reduced global brain connectivity are in line with previous research. For example, Lynall317
et al. (2010) and Bassett et al. (2012) both found significantly reduced global integration in patients with318
schizophrenia. However, we did not find stronger connectivity disturbances in association areas compared319
to sensory areas, as previously reported (Yang et al. (2016)).320

Our analysis of the temporal dynamics of the activity, i.e. synchrony and metastability, revealed a decrease321
in synchrony but no change in metastability. Our finding of unchanged metastability is in line with previous322
findings of Lee et al. (2018) on the same dataset but in contrast to very recent work from Hancock et al.323
(2023a), proposing metastability as a candidate biomarker for schizophrenia. However, we have to note324
that Hancock et al. (2023a) introduced a new measure of metastability with increased sensitivity to detect325
the differences between healthy controls and ScZ patients. This new measure of metastability did not rely326
on predefined brain parcellations but rather flexibly defined recurring spatio-temporal modes, so-called327
’communities’ where single brain regions may be grouped into more than one community. As this approach328
was not applicable to our computational network model we did not employ it in our analysis. Overall,329
several different metastability measures have been proposed and have been applied in different contexts in330
neuroscience (Hancock et al. (2023b)).331

4.0.2 Mechanistic explanations of global changes in ScZ332

Reduced global coupling and increased global noise levels are in line with earlier modelling studies. For333
example, several studies, using both simple phase oscillator models and dynamic mean-field models, have334
shown that a decrease of global coupling compared to the best model fit to human resting-state data led to a335
decrease in connectivity and a more random, less integrated graph structure (Cabral et al. (2012a, 2013,336
2012b)). Similar to the model presented here, the operating point is chosen close to a bifurcation point337
from a silent down state to a limit-cycle which produces oscillating activity. In this regime, both functional338
connectivity and temporal dynamics best match empirical data. Therefore, the reduced coupling or the339
increased global noise disturbs this specific state and thus reduces global connectivity, synchrony and more340
complex network properties.341

Previous work on the effects of changes to the glutamatergic and GABAergic system has demonstrated342
profound alterations on the cortical microcircuit level. For example, numerous computational studies have343
shown that ScZ-associated changes on the microcircuit level can lead to substantial reductions in gamma344
power in auditory steady-state response tasks (Metzner et al. (2016); Metzner and Steuber (2021); Metzner345
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et al. (2019); Vierling-Claassen et al. (2008)). Since local gamma oscillations have been hypothesized to at346
least partially determine the large-scale functional connectivity and temporal dynamics of resting-state347
activity (Cabral et al. (2014, 2022)), it seems surprising that changes to either of the systems did not348
produce changes in global brain connectivity in our model. One reason for the lack of impact of the changes349
might be that we applied them homogeneously. In the work presented here, we only varied glutamatergic or350
GABAergic strength globally, i.e. without any spatial heterogeneity. Therefore, it seems plausible that these351
changes disturbed the local, regional nodes all in a similar fashion and thereby did not substantially alter352
their interrelation, thus not changing global brain connectivity. Indeed, several studies have demonstrated353
that heterogeneous models of cortex, which explicitly incorporate regional differences in dynamics, match354
experimental resting-state functional connectivity more accurately (Demirtaş et al. (2019); Kong et al.355
(2021)). Importantly, these regional differences in dynamics covary with expression profiles for markers356
of glutamatergic and GABAergic neurotransmission and E-I balance (Burt et al. (2018); Demirtaş et al.357
(2019)). Therefore, a more detailed, heterogeneous model might be able to shed more light on the effect of358
E-I balance changes associated with ScZ on large-scale functional networks.359

4.0.3 Limitations360

The computational model that we have employed in this study, while generally showing a very good fit to361
the experimental data, is not fully biophysically realistic. Moreover, the model used an average connectome362
and was not able to provide subject-specific, individual results for each participant. Furthermore, the363
anatomic parcellation (AAL2 Rolls et al. (2015)) is relatively coarse-grained with a number of 80 cortical364
regions.365

The ALN model that was used to simulate regional activity has been demonstrated to approximate cortical366
resting-state activity (Cakan and Obermayer (2020); Cakan et al. (2022)). However, it is restricted to the367
cortex. Including subcortical regions such as the thalamus into whole-brain models is still in its infancy368
and rarely goes beyond coupling a single cortical and thalamic region (e.g. Jajcay et al. (2022), but see369
Griffiths et al. (2020)).370

The ALN model also presents a simplification of the regional circuitry as it approximates and neglects371
both the variability of cell types, especially the diversity of inhibitory interneurons, and the laminar structure372
of the cortex. Therefore, the inclusion of more detailed models of regional activity, both in terms of cell373
type diversity and of laminar structure and connectivity, seems likely to further our understanding of ScZ374
dysconnectivity and its underlying mechanisms.375

Lastly, the regional ALN model we used had the same parameters regardless of the cortical region376
it represented, i.e. we implemented a homogeneous model in that respect. As already discussed above,377
cortical regions are known to differ in various important aspects, whose incorporation are likely to provide378
additional insight into the pathophysiology of schizophrenia.379

4.0.4 Conclusion380

The current study provides further evidence of large-scale changes in connectivity and temporal dynamics381
in ScZ through the analysis of resting-state fMRI. Furthermore, through computational modelling, it382
provides novel evidence that these changes are likely the result of global reductions in coupling or increases383
noise levels and not of changes to local recurrent connectivity. These findings emphasize the effect of384
global alterations in ScZ and have possible implications for the development of treatments.385
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Figure 1. Global differences in functional connectivity and temporal dynamics between healthy
controls and ScZ patients. a) Comparison of average GBC per participant for the two groups. Individual
dots represent average GBC for one participant. The difference plot on the right shows the difference
between the groups in terms of effect size. b) Histogram of region-wise GBC values for the two groups.
The histogram displays the region-wise GBC data pooled for all participants in each group. c) Synchrony
comparison between the two groups. Each dot represents the mean Kuramoto order parameter (a measure
of synchrony) for one participant. The difference plot on the right shows the group difference in terms of
effect size. d) Metastability comparison between the two groups. Each dot represents the metastability
of one participant. The difference plot on the right shows the group difference in terms of effect size. e)
Comparison of global brain connectivity for association areas (Asso. comprising: DMN, Cont, Sal/VAttn)
and sensory areas (Sen. comprising: Sommot, Vis, DAttn). f) Comparison of global brain connectivity
for the seven functional networks from Yeo et al. (2011): Somato-motor subnetwork (SomMot), Control
subnetwork (Cont), Default mode subnetwork (Def), Salience/Ventral attention subnetwork (Sal/VAttn),
Dorsal attention subnetwork (DAttn), Limbic subnetwork (Lim), Visual subnetwork (Vis).
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Figure 2. Computational model a) Modelling approach combining a model for the regional dynamics
with anatomical input that defines the structural network. b) Average FC matrix for the COBRE sample c)
Average FC matrix for the HCP sample d) Model FC matrix e) comparison of the correlation of empSC to
empFC (blue) and the correlation of simFC and empFC (yellow) for the COBRE (left) and the for the HCP
(right) data sets.

6 TABLES
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HC ScZ Statistics, p value
Group size 43 38 -
Age (y) 36.70(11.04) 38.97(13.67) t=0.82, p=0.41

Gender 11F/32M 10F/27M χ2=0.02, p=0.88
PANSS positive - 14.92(5.04) -
PANSS negative - 14.81(5.31) -
PANSS general - 29.49(8.37) -
PANSS total - 59.22(78) -
CPZ-equivalent dosage - 396.26(330.91) -
Illness duration (y) - 17.19(12.61) -

Table 1. Demographics and clinical characteristics. Data are shown as mean(standard deviation). Age
differences between groups were compared using an independent samples t-test and differences in gender
distribution using a chi-square test. Antipsychotic medication is reported as chlorpromazine (CPZ)-
equivalent dosage.
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Parameter Value Description

µextE 1.63 mV/ms Mean external input to E
µextI 0.05 mV/ms Mean external input to I
σou 0.19 Noise strength
τou 5.0 ms Noise time constant
Ke 800 Number of excitatory inputs per neuron
Ki 200 Number of inhibitory inputs per neuron
CEE ,CIE 0.3 mV/ms Maximum AMPA PSC amplitude
CEI ,CII 0.5 mV/ms Maximum GABA PSC amplitude
JEE 2.4 mV/ms Maximum synaptic current from E to E
JIE 2.6 mV/ms Maximum synaptic current from E to I
JEI -3.3 mV/ms Maximum synaptic current from I to E
JII -1.6 mV/ms Maximum synaptic current from I to I
τs,E 2 ms Excitatory synaptic time constant
τs,I 5 ms Inhibitory synaptic time constant
dE 4 ms Synaptic delay to excitatory neurons
dI 2 ms Synaptic delay to inhibitory neurons
C 200 pF Membrane capacitance
gL 10 nS Leak conductance
τm C/gL Membrane time constant
EL -65 mV Leak reversal potential of the AdEx model
∆T 1.5 mV Threshold slope factor of the AdEx model
VT -50 mV Threshold voltage of the AdEx model
Vs -40 mV Spike voltage threshold of the AdEx model
Tnet 1.5 ms Refractory time of the AdEx model
σext 1.5 mV/

√
ms Standard deviation of external input

EA -80 mV Adaptation reversal potential
α 28.26 nS Subthreshold adaptation conductance
β 24.04 pA Spike-triggered adaptation increment
τA 200 ms Adaptation time constant
Kgl 250.0 Global coupling strength
vgl 20.0 m/s Global signal speed

Table 2. Network parameters. Overview of the different parameter values for the whole-brain model
employed here.

Mean Hedges’ 95% CI p value
difference g

Global cortical GBC -0.11 -0.65 [-1.11 -0.18] p=0.0056
Global cortical synchrony -0.12 -0.44 [-0.89 0.04] p=0.0488
Global cortical metastability -0.005 -0.39 [-0.81 0.07] p=0.0850
GBC Sensory areas -0.12 -0.78 [-1.26 -0.29] p=0.0004
GBC Association areas -0.09 -0.61 [-1.07 -0.14] p=0.0076
GBC Somato-motor (SomMot) -0.12 -0.74 [-1.20 -0.26] p=0.0008
GBC Control (Cont) -0.09 -0.57 [-1.03 -0.10] p=0.0110
GBC Default mode (Def) -0.09 -0.57 [-1.03 -0.11] p=0.0110
GBC Salience/Ventral attention (Sal/VAttn) -0.11 -0.69 [-1.14 -0.21] p=0.0024
GBC Dorsal attention (DAttn) -0.12 -0.83 [-1.31 -0.33] p=0.0001
GBC Limbic (Lim) -0.08 -0.59 [-1.02 -0.13] p=0.0102
GBC Visual (Vis) -0.11 -0.77 [-1.26 -0.29] p=0.0010

Table 3. Local and global group differences. Overview of the global and local differences in functional
connectivity and temporal dynamics between the healthy control and the ScZ patient group.
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95% 90% 85% 80%
Avg. global GBC -0.035 [-0.45] -0.089 [-1.12] -0.153 [-1.88] -0.205 [-2.49]
Avg. GBC sen. -0.039 [-0.47] -0.097 [-1.16] -0.169 [-1.99] -0.231 [-2.68]
Avg. GBC ass. -0.032 [-0.40] -0.0.089 [-1.10] -0.159 [-1.91] -0.215 [-2.49]
Synchrony -0.008 [-0.10] -0.040 [-0.53] -0.093 [-1.29] -0.155 [-2.20]
Metastability -0.001 [-0.05] 0.001 [0.03] 0.001 [0.04] 0.007 [0.26]

75% 70% 65% 60%
Avg. global GBC -0.238 [-3.16] -0.258 [-3.63] -0.265 [-3.89] -0.264 [-4.02]
Avg. GBC sen. -0.275 [-3.45] -0.302 [-3.98] -0.311 [-4.32] -0.311 [-4.45]
Avg. GBC ass. -0.250 [-3.15] -0.273 [-3.66] -0.282 [-3.94] -0.282 [-4.13]
Synchrony -0.215 [-3.01] -0.266 [-4.00] -0.298 [-4.76] -0.313 [-5.23]
Metastability 0.018 [0.70] 0.026 [1.22] 0.032 [1.32] 0.035 [1.47]

Table 4. ScZ-associated changes of global coupling. Comparison of average global GBC, average GBC
in sensory areas, average GBC in association areas, average synchrony and average metastability for
reduced global coupling (from 95% to 60% in steps of 5%). Shown are the mean differences, i.e. the
mean of the default condition minus the respective reduced global coupling condition and in brackets the
effect size (Hedge’s g). The mean in each condition is calculated over the 40 virtual subjects. Significant
differences, i.e. a permutation p value of < 0.001, are highlighted in bold. Permutation tests were performed
using 5,000 permutations of labels.

105% 110% 115% 120%
Avg. global GBC -0.078 [-0.98] -0.129 [-1.60] -0.199 [-2.56] -0.260 [-3.56]
Avg. GBC sen. -0.082 [-0.98] -0.139 [-1.64] -0.215 [-2.59] -0.285 [-3.64]
Avg. GBC ass. -0.078 [-0.95] -0.133 [-1.58] -0.204 [-2.51] -0.268 [-3.57]
Synchrony -0.050 [-0.67] -0.080 [-1.05] -0.121 [-1.83] -0.168 [-2.42]
Metastability 0.008 [0.26] 0.006 [0.21] 0.010 [0.37] 0.014 [0.52]

125% 130% 135% 140%
Avg. global GBC -0.313 [-4.58] -0.362 [-5.71] -0.383 [-6.07] -0.394 [-6.08]
Avg. GBC sen. -0.345 [-4.86] -0.399 [-6.01] -0.424 [-6.39] -0.433 [-6.30]
Avg. GBC ass. -0.323 [-4.56] -0.373 [-5.62] -0.396 [-6.15] -0.408 [-6.22]
Synchrony -0.202 [-2.97] -0.230 [-3.62] -0.244 [-3.95] -0.261 [-4.17]
Metastability 0.018 [0.70] 0.019 [0.75] 0.026 [1.03] 0.027 [1.02]

Table 5. ScZ-associated changes of noise parameters. Comparison of average global GBC, average
GBC in sensory areas, average GBC in association areas, average synchrony, and average metastability
with increased noise (from 105% to 140% in steps of 5%). Shown are the mean differences, i.e. the mean of
the default condition minus the respective increased noise condition and in brackets the effect size (Hedge’s
g). The mean in each condition is calculated over the 40 virtual subjects. Significant differences, i.e. a
permutation p value of < 0.001, are highlighted in bold. Permutation tests were performed using 5,000
permutations of labels.
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7 SUPPLEMENTARY TABLES AND FIGURES

7.1 Figures551

Figure 1. Global differences in functional connectivity and temporal dynamics. a) Comparison of
average GBC per participant for the two groups. Individual dots represent average GBC for one participant.
The difference plot on the right shows the difference between the groups in terms of effect size. b) Histogram
of region-wise GBC values for the two groups. The histogram displays the region-wise GBC data pooled
for all participants in each group. c) Synchrony comparison between the two groups. Each dot represents
the mean Kuramoto order parameter (a measure of synchrony) for one participant. The difference plot on
the right shows the group difference in terms of effect size. d) Metastability comparison between the two
groups. Each dot represents the metastability of one participant. The difference plot on the right shows the
group difference in terms of effect size.
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7.2 Tables552

Region Hedges’ g p value
Precentral L -0.69 0.0024
Precentral R -0.68 0.0024

Frontal Sup 2 L -0.70 0.0018
Frontal Sup 2 R -0.49 0.0318
Frontal Mid 2 L -0.56 0.0126
Frontal Mid 2 R -0.43 0.0608

Frontal Inf Oper L -0.72 0.0014
Frontal Inf Oper R -0.67 0.0042
Frontal Inf Tri L -0.68 0.0030
Frontal Inf Tri R -0.59 0.0092

Frontal Inf Orb 2 L -0.53 0.0212
Frontal Inf Orb 2 R -0.41 0.0644

Rolandic Oper L -0.61 0.0078
Rolandic Oper R -0.67 0.0032

Supp Motor Area L -0.75 0.0006
Supp Motor Area R -0.84 0.0006

Olfactory L -0.26 0.2536
Olfactory R -0.16 0.4704

Frontal Sup Medial L -0.51 0.0242
Frontal Sup Medial R -0.52 0.0206

Frontal Med Orb L -0.40 0.0736
Frontal Med Orb R -0.42 0.0600

Rectus L -0.52 0.0264
Rectus R -0.32 0.1518

OFCmed L -0.47 0.0404
OFCmed R -0.31 0.1728
OFCant L -0.30 0.1932
OFCant R -0.28 0.2026
OFCpost L -0.43 0.0578
OFCpost R -0.51 0.0186
OFClat L -0.60 0.0094
OFClat R -0.13 0.5442
Insula L -0.74 0.0018
Insula R -0.65 0.0050

Cingulate Ant L -0.49 0.0296
Cingulate Ant R -0.51 0.0248
Cingulate Mid L -0.87 0.0002
Cingulate Mid R -0.82 0.0002
Cingulate Post L -0.57 0.0132
Cingulate Post R -0.35 0.1174

Calcarine L -0.82 0.0002
Calcarine R -0.76 0.0016
Cuneus L -0.77 0.0010
Cuneus R -0.61 0.0064
Lingual L -0.89 <0.0001
Lingual R -0.85 0.0002

Table 6. Regional effect sizes Effect sizes and p values for the comparison of the control and the patient
group in average GBC for each of the 90 regions of the AAL2 parcellation.
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Region Hedges’ g p value
Occipital Sup L -0.71 0.0012
Occipital Sup R -0.72 0.0024
Occipital Mid L -0.85 0.0002
Occipital Mid R -0.92 <0.0001
Occipital Inf L -0.84 0.0004
Occipital Inf R -0.56 0.014

Fusiform L -0.89 0.0002
Fusiform R -0.98 <0.0001

Postcentral L -0.70 0.0024
Postcentral R -0.70 0.002
Parietal Sup L -0.85 <0.0001
Parietal Sup R -0.94 <0.0001
Parietal Inf L -0.85 <0.0001
Parietal Inf R -0.51 0.025

SupraMarginal L -0.56 0.0132
SupraMarginal R -0.61 0.0072

Angular L -0.53 0.0184
Angular R -0.51 0.0234

Precuneus L -0.88 0.003
Precuneus R -0.69 0.001

Paracentral Lobule L -0.72 0.0126
Paracentral Lobule R -0.58 0.0106

Heschl L 0.59 0.0028
Heschl R -0.70 <0.0001

Temporal Sup L -0.96 <0.0001
Temporal Sup R -0.83 0.0076

Temporal Pole Sup L -0.6 0.001
Temporal Pole Sup R -0.77 0.001

Temporal Mid L -0.81 0.0008
Temporal Mid R -0.87 <0.0001

Temporal Pole Mid L -0.68 0.0026
Temporal Pole Mid R -0.77 0.0008

Temporal Inf L -0.37 0.0972
Temporal Inf R -0.6 0.009

Table 7. Regional effect sizes - ctd. Effect sizes and p values for the comparison of the control and the
patient group in average GBC for each of the 90 regions of the AAL2 parcellation.
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95% 90% 85% 80%
Avg. global GBC 0.001 [0.02] 0.003 [0.04] 0.003 [0.04] 0.003 [0.04]
Avg. GBC sen. 0.002 [0.02] 0.003 [0.04] 0.003 [0.03] 0.002 [0.02]
Avg. GBC ass. 0.001 [0.02] 0.004 [0.04] 0.005 [0.06] 0.006 [0.06]
Synchrony 0.003 [0.04] 0.006 [0.08] 0.008 [0.10] 0.006 [0.08]
Metastability -0.001 [-0.04] -0.002 [-0.05] -0.002 [-0.05] -0.001 [-0.02]

75% 70% 65% 60%
Avg. global GBC 0.004 [0.05] 0.007 [0.08] 0.005 [0.06] 0.013 [0.16]
Avg. GBC sen. 0.003 [0.03] 0.005 [0.06] 0.003 [0.03] 0.012 [0.13]
Avg. GBC ass. 0.007 [0.08] 0.010 [0.11] 0.008 [0.09] 0.016 [0.19]
Synchrony 0.009 [0.12] 0.001 [0.01] -0.003 [-0.04] -0.005 [-0.06]
Metastability -0.005 [-0.14] -0.001 [-0.02] 0.004 [0.13] 0.007 [0.22]

Table 8. ScZ-associated changes of GABA parameters Comparison of average global GBC, average
GBC in sensory areas, average GBC in association areas, average synchrony and average metastability for
different conditions with reduced GABAergic output from 95% to 60% in steps of 5%. Shown are the mean
differences (i.e. the mean of the default condition minus the respective reduced GABA condition. The
mean in each condition is calculated over the 40 virtual subjects.) and in brackets the effect size (Hedge’s
g). Significant differences, i.e. a permutation p value of < 0.001 is highlighted in bold. Permutation tests
were performed using 5,000 permutations of labels.

95% 90% 85% 80%
Avg. global GBC 0.008 [0.09] 0.006 [0.07] 0.003 [0.04] 0.010 [0.11]
Avg. GBC sen. 0.005 [0.07] 0.004 [0.05] 0.001 [0.07] 0.005 [0.06]
Avg. GBC ass. 0.010 [0.12] 0.007 [0.08] 0.005 [0.06] 0.010 [0.12]
Synchrony 0.011 [0.14] -0.004 [-0.06] -0.005 [-0.07] -0.005 [-0.06]
Metastability -0.006 [-0.17] 0.005 [0.14] 0.006 [0.18] 0.004 [0.13]

75% 70% 65% 60%
Avg. global GBC -0.003 [-0.03] -0.002 [-0.02] 0.012 [0.15] 0.006 [0.08]
Avg. GBC sen. -0.008 [-0.09] -0.010 [-0.11] 0.005 [0.06] -0.005 [-0.06]
Avg. GBC ass. -0.003 [-0.03] -0.005 [-0.05] 0.007 [0.08] -0.001 [-0.01]
Synchrony -0.013 [-0.16] -0.013 [-0.15] -0.017 [-0.20] -0.024 [-0.31]
Metastability 0.003 [0.09] 0.004 [0.12] 0.001 [0.03] 0.010 [0.29]

Table 9. ScZ-associated changes of glutamatergic parameters Comparison of average global GBC,
average GBC in sensory areas, average GBC in association areas, average synchrony and average
metastability for different conditions with reduced glutamatergic output from 95% to 60% in steps of
5%. Shown are the mean differences (i.e. the mean of the default condition minus the respective reduced
glutamate condition. The mean in each condition is calculated over the 40 virtual subjects.) and in brackets
the effect size (Hedge’s g). Significant differences, i.e. a permutation p value of < 0.001 is highlighted in
bold. Permutation tests were performed using 5,000 permutations of labels.
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