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ABSTRACT:  
 
 Inter-individual variation in blood pressure (BP) arises in part from sequence 
variants within numerous enhancers modulating expression of an unknown number of 
causal genes. We propose that these genes are active in tissues relevant to BP physiology 
and can be identified from tissue epigenomic data and genotypes of BP-phenotyped 
individuals. We used the ENCODE project's H3K27ac and ATAC-seq data from the 
heart, adrenal gland, kidney, and artery to comprehensively identify all cis regulatory 
elements (CREs) in these tissues to estimate the impact of all common human single 
nucleotide variants (SNVs) in CREs on gene expression, using machine learning 
methods. To identify specific genes, we integrated these results through a gene-wise 
association test against BP. We conducted analyses in two separate large-scale cohorts: 
77,822 individuals from the Genetic Epidemiology Research on Adult Health and Aging 
(GERA) of Kaiser Permanente North California and 315,270 individuals from the UK 
Biobank (UKB).  
 We identified 309, 259, 331 and 367 genes (FDR<0.05) for diastolic BP (DBP), 
and 191, 184, 204, and 204 genes for systolic BP (SBP), in the artery, kidney, heart, and 
adrenal gland, respectively, in GERA; 50-70% of these genes were replicated in the UKB 
and is significantly higher than the 12-15% expected by chance (P <10-4). These results 
enabled the prediction of tissue expression of these 988-2,875 putative BP-genes in 
individual participants of both cohorts to construct an expression polygenic score 
(exPGS). This score explained ~27% of the reported SNV heritability (h2, 21%), 
substantially higher than that expected from prior studies. Additionally, we utilized 
these methods to provide dual-modality supporting evidence, CRE and expression-
based, for the causality of genes previously detected by GWAS.  
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INTRODUCTION: 
 

Although the physiology of blood pressure (BP) is well understood, its genetic 
control is largely elusive. BP is a classical quantitative trait and the subject of long 
debate regarding its inheritance: is its inter-individual distribution continuous 
(Pickering) or discrete (Platt), that is, is its genetic architecture polygenic or 
monogenic?1 It is now well established that systolic (SBP) and diastolic (DBP) blood 
pressure have continuous distributions across humans, have recognizable age- and sex-
specific trends, with little distributional difference between world-wide populations.2 BP 
is a textbook example of a polygenic trait with 30%-50% heritability in adults but also 
subject to variation from many environmental and lifestyle factors.3 
 

The largest BP genomic investigation, using genome-wide association studies 
(GWAS) in more than 1 million participants, overwhelmingly demonstrated that the 
majority of its heritability is explained by ~900 genetic associations of single nucleotide 
variants (SNVs) of small effects distributed across the non-coding genome.4 Further, 
this study estimated that the SNV-wide heritability (h2) is ~0.21 for both SBP and DBP. 
Thus, the previously known genes with major monogenic effects leading to hypertension 
and hypotension syndromes,5 and affecting renal and adrenal physiology through salt-
water homeostasis, are mechanistically important but more of an exception than the 
rule in inter-individual population BP variation. The combined conclusion from these 
studies is that variation in BP traits largely arises from numerous common regulatory 
variants (see below) each of small effect in numerous genes acting through multiple 
tissues, but that rare pathogenic protein function-altering variants in specific renal and 
adrenal genes can have large impact on BP in rare individuals. Thus, extreme BP values, 
relevant to hypertension and hypotension, arise as outliers of either polygenic or 
monogenic variation. Which of these classes are more frequent in BP extremes, and its 
target organ damages when untreated, is, however, unresolved and an important 
question to answer in human physiology. 

 
In this study we tackle this question by identifying the specific genetic, genomic 

and tissue components that underlie polygenic contributions to BP variation. Blood 
pressure GWAS, similar to other complex traits, have implicated thousands of SNVs 
contributing to the polygenic BP spectrum but their molecular routes of action are 
unknown because the majority of these variants are noncoding and include both causal 
and passenger (in linkage disequilibrium (LD) with causal) variants.4 Other studies have 
estimated that >75% of significantly associated noncoding GWAS variants are located 
within cis-regulatory elements (CREs) or are in high LD with CREs,6 and, therefore, 
believed to carry their effects through regulation of gene expression. Transcription 
factors (TF) bind these CREs and modulate the transcription of BP causal genes in 
specific tissues, as CREs and their cognate TFs vary by cell type and tissues. Thus, a 
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tissue-agnostic approach to understanding polygenic BP is unsuitable because the 
regulatory genomic components are not universal across tissues.7,8 A genetic dissection 
of polygenic BP entails identifying the CREs, their cognate TFs and the CRE SNVs that 
change CRE activity on a tissue-by-tissue basis. These results lead to definitive gene 
identification, enabling screening these genes for rare variants with monogenic effects. 
 
 Our previous work8 demonstrated that regulatory variants specific to the artery 
have the largest (11.8%) contribution to BP heritability, followed by those from the heart 
(7.7%) and adrenal (5.3%); surprisingly, the kidney-specific CRE variants had the lowest 
contribution (2.5%), consistent with prior GWAS data.7,9,10  

 
In this study, we use machine learning methods11–13 we previously developed to 

construct comprehensive genome-wide chromatin accessibility maps on surgical and/or 
cadaverous tissues of independent individuals, and biobank scale genotypes of BP-
phenotyped individuals9,14  to detect and validate specific genes that regulate BP in 
specific tissues (Figure 1). 
 
 
RESULTS: 
 
Constructing BP tissue-restricted epigenomic maps 

For this study, we included four BP-relevant tissues, namely, the heart (left 
ventricle), adrenal gland, kidney (cortex), and (tibial) artery, that we have recently 
constructed. The maps for heart, adrenal gland, and artery were generated from publicly 
available DNase-seq and ATAC-seq data from the ENCODE project.15 For the kidney, 
our laboratory generated ATAC-seq data from 4 samples, owing to the paucity of 
publicly available adult human kidney open chromatin maps. Human samples of the 
same tissue vary in the peaks they capture as a result of technical and biological factors, 
as the tissues were procured from different donors.8 We, therefore, created one 
comprehensive map for each tissue, using the best-performing CREs as determined by 
our quality assessment using gkmQC.16 The final numbers of CREs that passed our 
quality control parameters, as described in the Methods section, and based on our 
previous work,8 are 141,510, 133,231, 132,970, 104,812 in the adrenal, kidney, heart, and 
tibial artery, respectively. These CREs in these tissues cover 12.2%, 11.4%, 13.6% and 
11.1% of the genome, respectively. Collectively, the CREs from all of the four tissues 
cover 24.3% of the genome. These maps are available in the Supplementary material. 
 
Identifying CRE regulatory variants  

Tissue-restricted epigenomic maps were further annotated by sequence-based 
regulatory variant prediction. We calculated a score for each common variant (minor 
allele frequency (MAF) ≥1%) from the 1000 Genomes Project17 residing within CREs 
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using the deltaSVM18 method (see Methods). A total of 1,253,435, 1,183,563, 1,414,660 
and 1,139,136 variants mapped within the CREs of the adrenal, kidney, heart and artery, 
respectively. These variants are the subsets of all 10,041,373 common variants in the 
genome (see Methods) which fall within CREs, and their deltaSVM scores represent 
their predicted regulatory activity. These numbers are consistent with previous works.7,8 
The result is a tissue-restricted map of common variants in CREs and their associated 
impact on chromatin accessibility in that tissue as measured by deltaSVM scores.  
  
Identifying tissue-restricted BP genes using SKAT-CRE association tests 

For studies of rare variants of a gene impacting a trait, the sequence kernel 
association test (SKAT)19 is an efficient method to combine the effects of multiple rare 
variants by weighting variants inversely proportional to their allele frequency. We 
adapted this test for assessing the contributions of all common variants in all CREs for a 
target gene, which we refer to as SKAT-CRE, to detect CRE associations with SBP and 
DBP.  Conventionally, in SKAT, common variants with MAF>1% are usually weighted 
close to zero. Instead, in SKAT-CRE, we weighted variants by their functional impact as 
predicted by their deltaSVM scores in a tissue-restricted way. These analyses were 
conducted for each tissue separately.  

 
We conducted a gene-wise SKAT-CRE analysis for each protein-coding gene 

(GENCODE v19).20 We only included genes expressed in a tissue of interest with a 
median expression of at least one transcript per million (TPM) across GTEx v821 

samples from that tissue, a conventional GTEx expression threshold. This gene selection 
scheme resulted in similar-sized sets of 12,478, 12,412, 12,353, and 11,058 genes in the 
kidney, artery, adrenal gland, and heart, respectively. CREs were defined within 50 kb 
(‘cis’) of the gene start or end, including the gene body using GENCODE v19 gene 
annotations.20 The boundary was determined based on the observation that more than 
85% of lead eQTLs are located within 50 kb of the gene.22 All common SNVs within 
these CREs, deltaSVM score weighted as indicated, were considered putative regulatory 
variants. Only variants that appear in the relevant tissue CRE map were included in each 
tissue-restricted analysis. The number of CREs per gene, defined as the gene body ±50 
kb, as well as regulatory variants within the CREs was also similar across the four 
tissues (Figure 2 A, C). In each tissue, 11%-24% of the CREs were unique to the tissue, 
34%-41% were common to 2-3 tissues while 39%-49% were ubiquitous (Figure 2B). 
Expectedly, the number of CREs per gene was significantly correlated (r = 0.54-0.61) 
with its gene length (Supplementary Figure S1).   

 
BP residuals calculated for each participant and genotypes for each putative CRE 

variant were obtained from directly genotyped or imputed variants. In the discovery 
dataset (GERA), we identified 191, 184, 204, and 204 genes to have a statistically 
significant association with SBP in the artery, kidney, heart, and adrenal gland (Figure 
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3A), after adjustment for multiple comparisons using the Benjamini-Hochberg method 
at a false discovery rate (FDR) of 0.05. Quantile-quantile plots of nominal P values are 
provided in Supplementary Figure S2. Similarly, we detected 309, 259, 331 and 367 
genes for DBP. Of these genes, 50-70% were replicated with the same statistical 
significance in the larger and independent UKB dataset of 315,270 unrelated 
participants (Figure 3B). The methods used to analyze the UKB data were identical to 
those used for GERA and yielded a larger number of significant genes (Figure 3). This 
is expected given the larger cohort size of UKB. To compare these numbers to those 
expected by chance, we performed permutation analysis by randomly sampling the 
same number of genes 100,000 times to estimate the expected replication rate: this was 
12-15%, significantly lower than the observed rate of 50%-70% (Figure 3). The 
difference between the expected and observed rates of replicated genes is highly 
significant across all tissues and phenotypes (P<10-4). In the GERA cohort, 21%-29% of 
the significant genes detected in each tissue were common to SBP and DBP. In the UKB, 
53%-55% of the detected genes in each tissue were common to SBP and DBP. 

 
For the 3,220 and 3,073 unique genes detected in the SKAT-CRE analysis for SBP 

and DBP in either cohort, we searched the literature for known associations with SBP or 
DBP. We used summary statistics from the largest BP GWAS to date by Evangelou et al.4 
which includes over 1 million participants. We searched these GWAS results for genes in 
proximity (50 kb) to a genome wide significant SNP (P < 5x10-8): 2,962 SBP and 3,211 
DBP genes were found in these summary statistics. Of these genes, 1,564 SBP and 1,645 
DBP genes overlapped the SKAT-CRE genes detected in our study. These numbers 
represent 48.6% and 53.5% of the totals we identified in our analysis. In addition, we 
searched the GWAS catalog (v1.0.2)23 for associations that were not reported by 
Evangelou et al.4 but previously reported as significant in other smaller GWAS. This 
search identified an additional 22 SBP and 13 DBP genes in the SKAT-CRE analysis as 
previously reported associations. The remaining 1,634 SBP and 1,415 DBP genes 
detected in our analysis were not previously reported to be associated with BP. 
 
Enhancer variation affects BP through gene expression variation 

The significant genes detected in the SKAT-CRE analysis above arise from 
association of CRE genotypes with SBP and DBP. Consequently, we wanted to directly 
test whether these enhancers affect BP through gene expression variation in the 
corresponding tissues. Ideally, this test requires the gene expression profile of each of 
the study participants in each tissue. Since measured tissue expression data is 
unavailable for living participants, we alternatively used the predicted expression using 
LASSO regression models trained on GTEx21 data per gene, as implemented by 
PrediXcan.24 
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In order to have a comparable set of CREs across different analyses, we sought to 
predict gene expression using only variants in the CREs used for SKAT-CRE analysis. 
We constructed our own LASSO-regression gene expression models from CRE-
restricted genotypes, using individual level genotypes from GTEx V8,21 which we refer to 
as CRE-restricted models: their properties are presented in Supplementary Figure 
S3. We followed previously established criteria for model significance (see Methods). 
The important distinction between our models and the general PrediXcan models, 
which we refer to as all-variant models, is that only variants in CREs active in the 
corresponding tissue are included in our models. Even though CRE-restricted models 
used only a subset of variants for model training, we found that their predictive power is 
similar, and at times even greater, in detecting statistically significant models for most 
genes. Moreover, there is low (15~20%) overlap of included variants between the two 
models (Supplementary Figure S4). This is partly because variants outside CREs in 
high LD with functional variants within CREs tend to be selected first in the original 
models. Most of the significant models were significant in both model types but the 
CRE-restricted type had a slightly higher number of significant models than the all-
variant type (Supplementary Figure S5). The number of variants available for 
LASSO regression (variants in window) was 5 to 7 fold larger in the all-variant models, 
and the final set of variants included in the model (variants in model) was slightly 
higher in the all-variant models as well, but with similar significance levels overall 
(Supplementary Figure S6 and S7). We compared the expression levels predicted 
by the different types of models using the GERA genotype data to discover that the 
Pearson correlation coefficient is ³0.75 for almost all genes (Supplementary Figure 
S8).  In sum, our CRE-restricted models achieved similar power and significance but 
from using a smaller set of putative regulatory variants in each tissue.  

 
Next, we used the gene expression predicted by the CRE-restricted models to 

estimate the correlation of each gene with SBP and DBP, as implemented in PrediXcan. 
We performed the analysis in both the GERA and the UKB cohorts. For each gene, we 
compared the P values (for SBP, DBP) in the SKAT-CRE analysis to the P values in the 
PrediXcan analysis (SBP, DBP). In each of the four tissues, these were significantly 
correlated (Figure 4) further supporting our findings. 
 
Tissue-restricted gene expression predicts BP traits  

Given the statistical significance of the association between predicted tissue-
restricted gene expression and BP (PrediXcan), and the CRE genotypes with BP (SKAT-
CRE), we sought to show that BP phenotypic variation can be explained by the predicted 
expression of tissue-restricted genes we identified. In order to quantify the aggregate 
effect of tissue CRE dependent gene expression on BP, we constructed an expression-
based polygenic score (exPGS), separately for each tissue, containing only the genes 
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detected in that tissue. Additionally, we also estimated for each study participant a 
combined all-tissue exPGS. 

 
We first constructed a summation-based exPGS for each set of genes, as follows: 

 exPGS	 = ∑ (	𝐸!"#" 	𝑥	𝛽!"#" 		#	!"#"%	 ), 
as a sum of the normalized predicted expression (Egene) of each gene weighted by its 
effect size (βgene) from the PrediXcan association test described above. The combined 
all-tissue exPGS was defined as the arithmetic mean of all 4 tissue exPGS scores per 
participant. To demonstrate the performance and specificity of exPGS, we tested the 
correlation between exPGS values as binned percentiles to BP, as well as to an unrelated 
control phenotype BMI. As shown in Figure 5, exPGS percentiles were significantly 
correlated with SBP (r=0.948, P<2.2x10-16), but not with BMI (r=-0.16, P=0.2). The 
results were similar for DBP (r=0.949, P<2.2x10-16) and were consistent across both the 
GERA and UKB cohorts. In order to limit the possibility of overfitting, we further tested 
the exPGS derived from genes detected in one cohort on the genotypes and phenotypes 
of the other cohort. We next calculated the Pearson correlation coefficient between all 
possible exPGS scores and the phenotype (Table 1). These analyses show that the 
exPGS based on GERA genes had Pearson correlation coefficients of 0.06~0.09 for the 
four tissues and 0.1 for all tissues combined when tested on participants from the same 
cohort. In contrast, the same exPGS achieved slightly lower correlation coefficients 
when tested on a different cohort (0.04 ~ 0.07 for four tissues individually and 0.08 for 
all tissues combined for UKB participants, P < 2.2x10-16). A reverse analysis using the 
genes detected in the UKB genes on GERA BP traits achieved a similar, but consistently 
better, correlation probably due to the larger gene sets in the exPGS models. We sought 
to further improve the exPGS models by introducing LASSO regression as implemented 
by GLMnet,25 which allows feature (gene) selection by cross-validation. This reduced the 
number of genes included in each model by removing correlated genes, but its optimal 
combination of genes resulted in an increased performance. We refer to these models as 
LASSO-exPGS. The combined all-tissue LASSO-exPGS models were created as before, 
with the same gene appearing up to four times if present in multiple tissues. A feature is 
defined as a gene in a specific tissue (gene: tissue), thus enabling a gene to be selected 
from more than one tissue in the all-tissue model, but, of course, from different CREs. 
This is because a gene may have different effects in different tissues. We found that the 
LASSO-exPGS achieved a consistently higher correlation with the phenotype. The 
correlation was higher by up to 10% in single tissue models, but 50%-60% higher in the 
combined tissue model, despite having a smaller number of genes in each model.  
 

Importantly, we achieved the best Pearson correlation coefficients for the LASSO-
exPGS models using UKB genes for all tissues as 0.24 (P < 2.2x10-16) in both cohorts 
(Table 1). This result is significant as it explains a large proportion of the SNV-wide 
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heritability (h2). Since the reported4 heritability for SBP is 0.213, our model explains 
~27% (0.242/0.213) of the SNV-wide heritability. 
 
Gene Function and Validation 
 Genome-wide significant (P<5´10-8) associations from a prior GWAS 
(Evangelou4, GWAS catalog23) map to 3,283 SBP and 3,493 DBP genes. Of these, 
roughly half were also significant in our SKAT-CRE analysis in at least one of the four 
tissues tested, demonstrating both genetic variant-BP association as well as evidence 
that variants only within CREs of the putative gene showed BP association in target 
tissues. We further narrowed the list of putative genes by testing association between 
the predicted gene expression of putative genes with BP in the same tissue where the 
CRE associations were detected. This allowed us to explain genome-wide BP 
associations in terms of their CREs and downstream gene expression BP associations in 
the same tissue. A total of 598 SBP and 594 DBP genes passed these tests at a 
FDR<0.05. These genes have the greatest evidence of causality from three distinct 
statistical tests. As an example, consider the adjacent genes MTHFR and NPPB. Figure 
6A shows the Locus Zoom plot of SBP GWAS data (Evangelou et. al4) for these two 
genes. As can be observed, the genome wide significant hits are close to both genes and 
it is impossible to determine which gene is causal, if any, and in which tissue. From 
predicted tissue gene expression, Figure 6B shows that NPPB has CRE supporting 
evidence in the heart, together with downstream predicted expression evidence in the 
heart, but not in any of the other three tissues. This is further supported by the known 
function of the gene, which encodes a protein involved in blood volume regulation, 
predominantly by the heart26. MTHFR, however, has supporting CRE evidence in 
multiple tissues, but its highest statistical significance is in the artery (Figure 6C). 
Clearly, our gene expression analysis is only significant in the artery and not in the three 
other tissues. This is consistent with previous work on the role of MTHFR in blood 
pressure regulation27 and with our previous work demonstrating significant CRE 
associations of MTHFR with BP in arteries7 and in arteries and heart8. These results 
provide the evidence to support causality of both MTHFR and NPPB, but with distinct 
biological functions in distinct tissues. Of the 598 SBP and 594 DBP genes that passed 
all steps of the validation analysis (Figure 6D), most of the genes could only be 
validated in one of the four tissues (Supplementary Figure S9). Only <25 genes were 
validated in all four tissues, for each of the traits (SBP and DBP). Due to the power 
differences between tissues in predicting gene expression (Supplementary Figure 
S5), it was expected that the overall validation analysis would detect a larger number of 
genes in tissues with high power (e.g., artery). 
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DISCUSSION 
 

In this study, we discovered 3,220 SBP and 3,073 DBP-related genes in the 
adrenal gland, heart left-ventricle, kidney, and tibial artery, half of which were 
suggested from prior GWAS mapping and half of which, 1,634 SBP and 1,415 DBP genes, 
are novel candidates with respect to BP regulation. By constructing expression polygenic 
risk scores using only 988-2,875 of these genes, we explain ~27% of the reported SNV-
wide heritability (h2). This is substantially greater than that expected based on our 
previous work8, which estimated the partitioned heritability for ~15,000 genes in these 
tissues to explain 40-50% of heritability. Here we explain more than half of our 
previously reported tissue partitioned heritability, by including only a fraction of the 
~15,000 genes, demonstrating that these genes are enriched for BP heritability. Just as 
the veracity of GWAS associations arises from statistical replication in an independent 
study, so do the genes identified here. These results arise from the novelty of our 
methods in which we restrict attention to the functionally relevant noncoding universe 
of CREs on a tissue-by-tissue basis, and demonstrate in individual subjects that variants 
within these CREs are associated with their measured BP, as well as associated with 
their tissue-predicted gene expression of that gene, and, that the cumulative effects of all 
their gene expression changes are correlated with their BP. Therefore, this is a first 
demonstration, for BP specifically but for any polygenic trait generally, of the veracity of 
the now-standard hypothesis that noncoding variants associated with a complex trait 
are regulatory and affect the trait through gene expression changes in many genes 
across the genome in different tissues. Our results are specific and, therefore, subject to 
experimental tests. 
 

The magnitude of the universe of functional elements, variants affecting CRE 
function, numbers of CREs per tissue and the target genes, is still not fully known. So 
far, in this study, each protein-coding gene has a median of 10-20 CREs in each tissue, 
and each gene included a median of 70-100 CRE variants for ~12,000 genes that are 
expressed in each tissue. In other words, ~3-7 regulatory variants per gene per tissue 
affect BP. The inter-individual BP variation explained by these combined observations is 
highly significant (r= 0.24, P < 2.2x10-16) but there are additional molecular details to be 
identified. There is considerable evidence that many of these BP genes are pleiotropic, 
across the four tissues studied (Figure 2). However, it is unknown whether this 
expression pleiotropy arises from shared or tissue-restricted CREs, as our recent 
research shows.8 Thus, even for the same gene, its genetic effect on BP may arise from 
different variants and CREs in distinct tissues, adding a level of complexity not 
envisioned before, but testable. Additionally, where is the remaining unexplained SNV 
heritability? These will likely come from SNVs of lower frequency which recently have 
been demonstrated to make substantial contributions to complex trait heritability.28 
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Importantly, there are other tissues that are also likely involved in BP regulation, such 
as the brain.29 
  

The tissue contributions to a polygenic trait, particularly a physiologically 
significant trait like BP, is an important direction for genome analysis. As epigenomic 
maps of multiple tissues emerge,30 the methods we have developed, previously 
published and here, will allow us to scan each tissue for their contribution to BP 
variation (Table 1).8 Nevertheless, so far, in both cohorts, we found that for BP the 
arterial effect is greater than that of other tissues and the renal contribution the least. 
This finding is consistent with our recent8 and previous work.9,10 However, it is 
important to note that paucity of high-quality chromatin assay and gene expression data 
on a specific tissue may underestimate its contribution. Thus, yet better and 
comprehensive epigenomic maps are necessary. 
 

Finally, this work provides information on specific tissues based on bulk 
epigenomic assays and does not discriminate between cell types and tissue structures. 
The tissues we examined comprise functionally diverse cell types; assessing their 
contribution is crucial to understanding the genetic component to BP physiology. Our 
next challenge is to use single cell data to provide this greater resolution of BP genomic 
biology by identifying cell type-specific CREs, their target genes’ expression and their 
quantitative contributions to BP variation.30 
 
 Our underlying working model is that for each tissue, only some variants in CREs 
active in that tissue alter target gene expression in conjunction with other CREs of that 
gene, and, that an ensemble of such genes in that tissue affect BP by altering some yet 
unknown tissue phenotype. Therefore, despite the above advances, some major 
questions remain unanswered. First, although we can identify CREs active within 
tissues, including those with high-impact variants, how do we assign each such CRE to 
its target gene? Even with that answered for specific CRE variants, such as with Hi-C or 
other genomic proximity ligation data,20,31 how can we demonstrate that the ensemble of 
identified CREs for specific genes explain its gene expression variation in that tissue? 
Finally, is the expression variation of such tissue-wise genes a significant explanation of 
BP phenotypic variation? These studies can be further improved because a statistical 
model of the epigenome of a tissue can be used to identify additional CREs missed in an 
experimental assay, predict the effect of all sequence changes within CREs as well as 
estimate the contribution of specific common or rare CRE variants to BP regulation. 
Because these genotype-phenotype data are readily available for biobank participants, 
tissue-based CRE prediction can augment and add an additional dimension to living-
subject biobanks to provide hypotheses that can be tested in experimental paradigms.  
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 A potential limitation of our work is that although these findings were significant 
in our statistical analysis, we noticed that the SKAT-CRE test statistics were inflated, as 
seen in the quantile-quantile plots (Supplementary Figure S2). We believe that the 
null distribution used by the SKAT test is overly naïve. Nonetheless, we were able to 
replicate 50%-70% of the findings in an independent dataset (Figure 3), which far 
exceeded the chance replication rate of 12%-15%, as demonstrated by permutation 
analysis. In addition, we provided further supporting evidence through expression-
based analysis.   
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METHODS: 
 
Study cohorts:  

We used two population cohorts in this study. The first was a ‘discovery’ cohort, 
the Genetic Epidemiology Research on Adult Health and Aging (GERA), which our 
previous work9 demonstrated had significant statistical power from its longitudinal BP 
records for identifying genomic variation underlying BP traits. This was owing to long-
term averaging of noisy BP traits varying by extrinsic factors, such as stress, time of day, 
measurement instruments (manual vs. machine) and location of measurement. We 
studied 77,822 unrelated participants of self-described European ancestry, with directly 
measured or imputed genotypes, as previously described.9 Systolic (SBP) and diastolic 
(DBP) BP were studied. Second, we used the UK Biobank (UKB),14 a large population-
based prospective study, as the ‘replication’ cohort; although it has few (~2) BP 
measurements per individual, a much larger number of 315,270 unrelated participants 
of self-described British ancestry were examined. UKB genotype data were preprocessed 
and imputed by the UKB consortium as described in their online genome-wide SNP 
array-based genotyping documentation.32 Genotype imputation was performed using 
haplotypes from 2 different reference panels. The Haplotype Reference Consortium 
(HRC) was used first, since the HRC misses many sites observed in the 1000 Genomes 
Project;17 a further round of imputation used the UK10K33 and 1000 Genomes17 
combined reference panels. 

 
BP phenotypes and covariate adjustments:  

A detailed description of the GERA phenotype processing is available in our 
previous publication.9 BP measurements in both cohorts were adjusted for age, age2, 
BMI and sex, with regression residuals used as the phenotype. Control phenotypes of 
height and BMI were only adjusted for sex and age. We added 15 mmHg and 10 mmHg 
to SBP and DBP values, respectively, to individuals treated with antihypertensives, as is 
standard in BP epidemiology and as used in our previous study.9  
 
Constructing comprehensive epigenomic maps from genome-wide 
chromatin accessibility data:  

We have previously published machine-learning methods for constructing 
comprehensive enhancer (CRE) maps, which we used with minor modifications.11–13 
Briefly, MACS234 was used for peak calling while ATAC-seq samples were adjusted at 
the cut-sites by +4bp for the forward and -5bp for the reverse strand to account for the 
9bp insertion by the Tn5 enzyme.35 We used chromatin accessibility data from publicly 
available ENCODE20 DNase-seq as well as in-house generated kidney ATAC-seq data, 
the latter occasioned by the limited availability of high-quality human kidney open 
chromatin data in public databases. In-house snap-frozen kidney tissue samples were 
procured from the Gift of Life Michigan and The National Disease Research Interchange 
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(NDRI). Detailed information on the ATAC-seq protocol used has been previously 
published.8 These kidney ATAC-seq data are available in the NCBI Gene Expression 
Omnibus (GEO)36 under accession number GSE200047.  
 
Sequence-based models for regulatory variant prediction: 

For identifying sequence variants with regulatory effects, we built gkm-SVM 
(machine learning) models as described in our previous work.12,13  Briefly, after quality 
control analyses, for each high-quality sample, we defined tissue-specific open 
chromatin regions as a positive training set and then removed elements with >1% of N-
bases, >70% of repeats, and common (active in at least 30% of samples across all 
ENCODE data sets) open regions, as previously described.11 We only used regions that 
also overlapped H3K27ac peaks from the same tissue and used 600bp fixed-length 
regions as a training set by extending ±300bp from each peak summit. As a negative 
training set, we randomly selected an equal number of genomic regions matching 
length, GC content, and sequence repeat fraction as in the positive set. We used LS-
GKM13 for training with l=11, k=7, d=3 and t=4 (weighted-gkm kernels). For each 
sample, we generated ten different models with different random samplings of negative 
training sets, and further combined these models to generate one model per tissue. 
These models were used to estimate the impact of each SNV within each CRE by 
calculating deltaSVM18 scores (see Methods) for all common (minor allele frequency 
(MAF) > 1% in the 1000 Genomes17 v3 data) SNVs in the CRE map, for each tissue. We 
used ±10 bp regions centered on these variants for scoring. The training sets used and 
the final models generated are available in our previous work.11  
 
SKAT-CRE test: 

SKAT association tests were performed using the SKAT package for R v1.3.2.1 
and genotypes were loaded using Seqminar v8.0. The phenotypes used were adjusted 
SBP and DBP. Only individuals with self-reported European ancestry were included in 
both GERA and the UKB cohorts. Related individuals, with kinship coefficients greater 
than 0.088 signifying third degree or closer relatives, as estimated using the KING 
software as implemented in PLINK 2.o,37 were excluded using a greedy algorithm in 
PLINK to minimize the number of excluded samples. Genotype imputation and 
processing was as previously described.9 

For analysis, genes were defined as the gene body as in GENCODE V1920 with an 
additional 50kb on either side of the gene start and end, including all introns. We 
assigned the absolute value of the deltaSVM value for each variant as weights in SKAT 
analysis. Adjustments for multiple comparisons used the Benjamini-Hochberg method 
in R with a false discovery rate (FDR) of 5%. 
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PrediXcan analysis: 
We constructed our own PrediXcan models for CRE-restricted and all-variant 

models, following the recommended PredictDB pipeline.38 We used GTEx v8,21 and 
lifted over the genotype data to GRCh37 using Picard v2.18.11. PrediXcan models are 
considered statistically significant if their mean Pearson correlation coefficient exceeds 
0.1 across cross-validation, with estimated p≤0.05, as determined by the PredictDB 
pipeline.38  The PredictDB pipeline repository was downloaded from GitHub on August 
30, 2021. We used PrediXcan,24 as included in the MetaXcan v0.7.4, to predict target 
gene expression using statistically significant models. We then used PrediXcan to 
estimate the association of its predicted expression with SBP and DBP. Multiple 
comparisons adjustment was performed using the Benjamini-Hochberg method in R, 
FDR < 5%. 
 
Statistical and computational analysis: 

All statistical and computational analyses were performed in R v3.5.1. Additional 
R packages used were SKAT v1.3.2.1, Seqminer v8.0, GLMnet v2.0 and data-table 
v1.12.8. The graphical plots were generated using ggplot2 v3.3.2 and ggpubr v0.2.4. 
LocusZoom plot was created using LocusZoom39. Upset plots were created in python 
(3.7.1) using the upsetplot library v0.8.0. Illustrations were created on BioRender40 
under academic license.  Python 3.7.1 was used for PredictDB and MetaXcan 
(PrediXcan). General operations on genotype files were performed using bcftools v1.11, 
qctool v2.0.5, PLINK v1.9 and v2.0, htslib 1.9, and Picard v2.18.11. Permutation analysis 
was performed by random sampling without replacement, repeated 100,00 times.  
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SUPPLEMENTARY MATERIAL 
 
Supplementary Figures (.docx file). 
SKAT-CRE results Table, UKB and GERA (.csv file). 
PrediXcan results Table, UKB and GERA (.csv file). 
Regulatory maps per tissue, hg19 (4 .bed files). 
 
Files are available on OSF 
https://osf.io/54tsf/?view_only=e499ebb845054b999b432216050c3369 
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Figure 1: Three-step study design for complex trait regulatory genomic analyses using 
cis regulatory element (CRE) map construction from individual tissues (top panel, 
kidney given as an example), modified SKAT association testing using the identified 
CREs (SKAT-CRE analysis) on Biobank scale (GERA, UKB) datasets (middle panel), and 
validating the identified genes through their gene expression variation effects on a 
complex trait (e.g., BP). This design is applied to each of the tissues separately. 
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Figure 2: Statistical properties of CREs and their regulatory sequence variants. A. 
Distribution of the numbers of CREs per gene in each of the four tissues studied. B. 
Numbers of CREs unique to one tissue (red), common to 2-3 tissues (blue) or ubiquitous 
across all 4 tissues (teal). C. Distribution of the numbers of regulatory variants (within 
CREs) for each gene analyzed in the GERA (red) and the UKB (blue) cohorts.  
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Figure 3: SKAT-CRE association study. A. Numbers of statistically significant genes 
(Type I error of 0.05, Benjamini-Hochberg false discovery rate (FDR) adjusted) detected 
in each tissue in the discovery (left) and replication (right) cohorts. B. The numbers and 
proportions of statistically significant genes replicated in the SKAT-CRE analysis 
(observed) versus their null expectation (by permutation analysis). DBP/SBP are 
diastolic/systolic blood pressure.  
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Figure 4: Correlations between the -log10 significance values of SKAT-CRE and 
PrediXcan association test statistics in UKB (left) and GERA (right) cohorts. DBP/SBP 
are diastolic/systolic blood pressure. 
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Figure 5: Performance of the expression polygenic score (exPGS) in the GERA and 
UKB cohorts for SBP (blue, test trait) and BMI (red, control trait). A. We show the 
combined all-tissue exPGS based on SBP genes detected in the GERA SKAT-CRE 
analysis but applied to UKB participants’ predicted expression for SBP and BMI, 
adjusted for age and sex. B. We show the complementary analysis of combined all-tissue 
exPGS based on SBP genes detected in the UKB SKAT-CRE analysis but applied to 
GERA participants’ predicted expression for SBP and BMI, adjusted for age and sex. 
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Figure 6: A. Locus Zoom plot of SBP GWAS summary statistics from the Evangelou et 
al. study4. B. and C. Associations of SBP and DBP with CREs (SKAT-CRE) and gene 
expression (PrediXcan) in specific tissues in both the UKB and GERA cohorts. Missing 
data in a tissue are from genes with TPM<1 for that tissue. D. Number of genes with 
statistically significant associations validated in each step of the analysis. Starting with 
genes associated with SBP and DBP in GWAS analysis, the subset of these that have 
significant SKAT-CRE associations with BP in specific tissues, and the subset of these 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.23299084doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.07.23299084


 28 

genes with significant gene expression association with BP in the same tissue as the 
SKAT-CRE association. 
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GERA participants UKB participants 
GERA genes      UKB genes GERA genes      UKB genes 

exPGS LASSO-
exPGS 

exPGS LASSO-
exPGS 

exPGS LASSO-
exPGS 

exPGS LASSO-
exPGS 

Adrenal 0.09 0.10 
(n=127) 

0.14 0.16 
(n=432) 

0.06 0.07 
(n=142) 

0.13 0.15 
(n=1,017) 

Heart 0.09 0.10 
(n=130) 

0.15 0.17 
(n=526) 

0.06 0.07 
(n=109) 

0.13 0.16 
(n=1,091) 

Kidney 0.06 0.07 
(n=74) 

0.14 0.11 
(n=208) 

0.04 0.04 
(n=70) 

0.09 0.11 
(n=623) 

Artery 0.09 0.11 
(n=159) 

0.16 0.19 
(n=613) 

0.07 0.08 
(n=146) 

0.15 0.18 
(n=1,272) 

All tissues 
combined 

0.10 0.15 
(n=335) 

0.19 0.24 
(n=988) 

0.08 0.10  
(n= 383) 

0.16 0.24 
(n=2,875) 

 
Table 1: Pearson correlation coefficients (R) between the expression polygenic score 
(exPGS) and LASSO-exPGS for SBP. For LASSO-exPGS models, the number of genes in 
the final model is in parenthesis. All results are statistically significant at P < 2.2x10-16. 
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