Ultra-efficient Causal Learning for Dynamic CSA-AKI Detection Using Minimal Variables

Supplementary Information

The purpose of this supplementary information is to offer additional insights that substantiate the claims made in the paper titled "Ultra-efficient Causal Learning for Dynamic CSA-AKI Detection Using Minimal Variables". The authors anticipate that by providing this supplementary data and corresponding discussions, the strength and reproducibility of the findings presented in the main letter will be enhanced. In conjunction with the Extended Data, the following supplementary materials are introduced:

• Supplements A and B display the normative guidelines followed in the design, development, and validation phases of this research, as well as their corresponding placements in the main text.

- Supplement C offers a detailed view of the demographic information of all patients included in the model's training, validation, and testing stages.
- Supplements D-E display the variables included in REACT training and show the definitions of certain clinical variables.

• Supplements F-G shows the performance of REACT and comparisons with current mainstream algorithms and elaborate on the differences between models using all variables and those only inputting causal variables.

- Supplements H-K present the predictive performance of REACT across various sub-populations in both internal validation and external test datasets.
- Supplements L present the number of input variables and the model performance of REACT with different λ .
- Supplements M-P delineate the sensitivity and specificity of the prediction system when different thresholds are selected.
- Supplement Q compares outcomes between patients observed with AKI stage I occurrences and those who were not observed.
- Supplements R-T provide the underlying theorems and proofs relied upon by the algorithm, intricate algorithmic details, parameter information, and related work.

• Supplement U provide some other examples with counterfactual explanations.

Section/Topic	n		Checklist Item	Page
Title and abstract				
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	Page 1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	Page 1
Introduction	•			
Background and	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	Line 39~85
objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	Line 86~101
Methods				
	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	Line 86~122, 593~609
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow- up.	Line 103~122
	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centers.	Line 103~122
Participants	5b	D;V	Describe eligibility criteria for participants.	Line 593~609, Fig 2
	5c	D;V	Give details of treatments received, if relevant.	No relevant
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	Line 86~101, 186~191,799~816
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	Line 568~577
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	Line 828~849, 343~372, Fig 5

A. TRIPOD checklist (Prediction Model Development and Validation)

	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	Line 828~849, 343~372
Sample size	8	D;V	Explain how the study size was arrived at.	Line 563~592
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	Line 618~674
	10a	D	Describe how predictors were handled in the analyses.	Line 767~816
Statistical analysis	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	Line 157~191, 767~816
methods	10c	V	For validation, describe how the predictions were calculated.	Line 879~901
	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	Line 902~926
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	No relevant
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	No relevant
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	Line 767~864, 251~273, 395~421
Results				
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	Line 103~142, Fig 2
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	Line 103~142, Sup C
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	Line 103~142, Fig 2, Sup C
Model development	14a	D	Specify the number of participants and outcome events in each analysis.	Line 286~293, 410~421, Fig 5
	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	Line 343~394
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	Line 251~273
	15b	D	Explain how to the use the prediction model.	Line 251~273

Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	Line 192~393
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	No relevant
Discussion		<u>.</u>		
Limitations	18	D.V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor,	Line 541~546
Limitations	18	D;V	missing data).	Line 341~346
	19a	V	For validation, discuss the results with reference to performance in the development data, and any other	Line 435~448
Internation	19a	v	validation data.	Line 455~448
Interpretation	19b	D.V	Give an overall interpretation of the results, considering objectives, limitations, results from similar	Line 423~448
	190	D;V	studies, and other relevant evidence.	Line 425~446
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	Line 541~567
Other information				
Supplementary	21	D.V	Provide information about the availability of supplementary resources, such as study protocol, Web	Line 395~409,
information	21	D;V	calculator, and data sets.	928~933, Sup A,B
Funding	22	D;V	Give the source of funding and the role of the funders for the present study.	Line 1156~1161

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are

denoted D; V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

Item	Checklist Item	Page
Desigr	1	
1	Determine the goal of a machine-learning model and review it with diverse stakeholders, including protected groups.	62~101
2	Ensure that the model is related to the desired patient outcome and can be integrated into clinical workflows.	251~285, 395~421
3	Discuss ethical concerns of how the model could be used.	449~472
4	Decide what groups to classify as protected.	No relevant
5	Study whether the historical data are affected by health care disparities that could lead to label bias. If so, investigate alternative labels.	221~250
Data c	collection	
6	Collect and document training data to build a machine-learning model.	103~142 , 563 [~] 592
7	Ensure that patients in the protected group can be identified (weighing cohort bias against privacy concerns). Assess whether the protected group is represented adequately in terms of numbers and features.	221~250
Traini	ing	
8	Train a model taking into account the fairness goals.	86~101, 185~191
Evalu	ation	
9	Measure important metrics and allocation across groups.	192~220, 221~250
10	Compare deployment data with training data to ensure comparability.	286~313, 410~421
11	Assess the usefulness of predictions to clinicians initially without affecting patients.	251~273
Launc	h review	
12	Evaluate whether a model should be launched with all stakeholders, including representatives from the protected group.	No relevant
13	Monitored deployment	410~421
14	Systematically monitor data and important metrics throughout deployment. Gradually launch and continuously evaluate metrics with automated alerts. Consider a formal clinical trial design to assess patient outcomes. Periodically collect feedback from clinicians and patients.	410~421

B. "Ensuring Fairness in Machine Learning to Advance Health Equity" checklist [REF]

C. The characteristics of patients of our studies

	The Deriva	tion Dataset]	The External Testing Data	set
	The First Medical Centers of the Chinese PLA General Hospital (n=12,685)	The Third Medical Centers of Chinese PLA General Hospital (n=1,828)	The Sixth Medical Center of the Chinese PLA General Hospital (n=2,261)	The Seventh Medical Center of the Chinese PLA General hospital (n=1,570)	The Nanjing Drum Tower Hospital (n=16,982)
Patients' demographics, Me	dian, [IQR]				
Age, years Male, count (average) Hight, cm,	58.0 [47.0, 66.0] 8101 (63.9) 165 [159.0, 171.0]	45.0 [29.0, 58.0] 897 (49.1) 164 [160.5, 170.0]	59.0 [48.0, 66.0] 1426 (63.1) 168 [160.0, 172.0]	56.0 [40.0, 68.0] 955 (60.8) 165 [158.5, 170.5]	57.0[47.0,67.0] 9824 (57.8) 165[160.0,171.0]
Weight, kg,	67.0 [59.0, 75.5]	58.0 [50.0, 68.0]	66.0 [58.0, 75.0]	66.0 [59.0, 74.2]	65[57.3,75.0]
Commodities, count (averag	e)				
Hypertension	6798 (53.6)	888 (48.6)	1328 (58.7)	609 (38.8)	10763 (63.4)
Diabetes	3890 (30.7)	178 (9.7)	424 (18.8)	240 (15.3)	3826 (22.5)
Congestive heart failure	3970 (31.3)	594 (32.5)	465 (20.6)	288 (18.3)	8480 (49.9)
pulmonary disease	897 (7.1)	70 (3.8)	922 (40.8)	102 (6.5)	5437 (32.0)
Chronic kidney disease	398 (3.1)	36 (2.0)	54 (2.4)	17 (1.1)	999 (5.9)
Type of surgery, count (aver	rage)				
CABG alone	4877 (38.4)	324 (17.7)	1147 (50.7)	690 (43.9)	2031 (12.0)
Valve surgery alone	4263 (33.6)	712 (38.9)	618 (27.3)	351 (22.4)	5272 (31.0)
CABG and valve surgery	451 (3.6)	0 (0.0)	6 (0.3)	0 (0.0)	1046 (6.2)
Aortic surgery	776 (6.1)	14 (0.8)	135 (6.0)	94 (6.0)	3420 (20.1)
Congenital Heart Surgery	1057 (8.3)	646 (35.3)	213 (9.4)	320 (20.4)	1756 (10.3)
Others	1261 (9.9)	132 (7.2)	142 (6.3)	115 (7.3)	3457 (20.4)

Surgery characteristics, *count (average)*

Number of surgeries					
involving cardiopulmonary	11167 (88.0)	1565 (85.6)	1038 (45.9)	197 (12.5)	12717 (71.1)
bypass					
Use of intra-aortic balloon	478 (3.8)	29 (1.6)	258 (11.4)	19 (1.2)	257 (1.5)
pump	470 (5.0)	27 (1.0)	250 (11.4)	1) (1.2)	257 (1.5)
Use of ECMO	22 (0.2)	2 (0.1)	19 (0.8)	0 (0.0)	166 (1)
Preoperative laboratories, Me	edian, [IQR]				
Serum platelet, 10*9/L	193.0 [156.0, 234.0]	199.0 [163.0, 241.0]	204.0 [166.0, 246.0]	207.0 [168.5, 256.5]	176.0[138.0,220.0]
Mean Corpusular Hemoglobin	338.0 [330.0, 346.0]	333.0 [324.0, 340.0]	338.0 [330.0, 34 5.0]	329.0 [322.0, 336.0]	335.0[327.0,342.0]
Concerntration, g/L	558.0 [550.0, 540.0]	555.0 [524.0, 540.0]	558.0 [550.0, 54 5.0]	529.0 [522.0, 550.0]	555.0[527.0,542.0]
Serum albumin, g/L	41.0 [38.5, 43.4]	41.9 [39.2, 44.7]	40.3 [37.6, 42.7]	40.6 [37.8, 43.7]	39.8[37.5,41.9]
Serum potassium, mmol/L	4.08 [3.85, 4.33]	3.99 [3.74, 4.25]	3.92 [3.60, 4.20]	3.96 [3.76, 4.19]	3.99[3.75,4.24]
blood urea nitrogen, mmol/L	5.64 [4.60, 7.02]	5.73 [4.58, 7.12]	5.60 [4.60, 6.90]	5.54 [4.40, 6.95]	6.37[5.1,8.21]
Serum creatinine, umol/L	75.2 [64.1, 88.2]	63.0 [53.0, 76.0]	84.6 [73.9, 97.0]	69.0 [58.0, 81.0]	67.0[56.0,81.0]

IQR, Interquartile range; CABG, coronary artery bypass grafting;

D. The definition of clinically relevant variables

Demographics, clinical and main surgery characteristics were retrospectively retrieved from patients' medical history and electronic medical charts at each center for the PRIDE and HIS registry for patients enrolled.

Hypertension was defined as an history of high blood pressure diagnosed or treated by a physician, being in treatment with anti-hypertensive drugs or admission blood pressure >140/90 mmHg.

Diabetes mellitus was defined as an history of diabetes mellitus diagnosed or treated by a physician, being in treatment with hypoglycaemic drugs or an admission Hb1Ac value >6.5% (48 mmol/mol).

Heart Failure was defined as there are symptoms and/or signs of congestion in systemic and/or pulmonary circulation, requiring treatment with diuretics.

Chronic kidney disease (CKD) was defined as history of chronic renal insufficiency with an estimated glomerular filtration rate (eGFR) < 60ml/min/1.73 m² for more than 3 months.

Respiratory disease was defined as includes chronic obstructive pulmonary disease, chronic bronchitis and sleep apnea hypopnea syndrome.

Left ventricular ejection fraction (LVEF) was assessed at discharge by 2D transthoracic echocardiography and computed according to bidimensional Simpson formula [(left ventricular end diastolic volume – left ventricular end systolic volume)/ left ventricular end diastolic volume)].

E. All variables included in the model training process.

Demographic	Chronic Kidney Disease	Ticagrelor	Hematocrit Measurement	Calcium	Urine White Blood Cells Examination (Microscopy)	Fibrinogen Measurement	Urine Yeast Cells
Age	Intra-aortic balloon pump (IABP)	Beta Blocker	Mean Corpuscular Volume (MCV)	Direct Bilirubin	Urine Epithelial Cells Examination (Microscopy)	International Normalized Ratio (INR)	Urine 70% Red Cell Forward Scatter Position
Gender	Previous MI (myocardial infarction)	Statin	Platelet Count	Partial pressure of Carbon Dioxide	Urine Specific Gravity Measurement	Total Bile Acids	Mean Platelet Volume Measurement (MPV)
Body Height	Previous CABG	Bicarbonate	Mean Corpuscular Hemoglobin (MCH)	Urine Small Round Epithelial Cells	Urine pH Measurement	Lactate Dehydrogenase (LDH)	Plasma D-Dimer Measurement
Body Weight	Previous PCI (percutaneous coronary intervention)	Glucose	Mean Corpuscular Hemoglobin Concentration (MCHC)	Inorganic Phosphorus	Urine White Blood Cell Examination	Alkaline Phosphatase (ALP)	Creatine Kinase Isoenzyme (CK- MB) ng/ml
Surgery information	Previous Stroke	Oxygen saturation	Troponin T	Creatine Kinase Isoenzyme (CK- MB) U/L	Urine Nitrite Test	Gamma-Glutamyl Transferase (GGT)	Thrombin Time Measurement
Surgery type	Left Ventricular Ejection Fraction (LVEF)	Partial pressure of carbon dioxide and oxygen	Sodium	Creatine Kinase (CK)	Urine Protein Qualitative Test	Triglycerides	Red Cell Distribution Width Measurement CV (RDW-CV)
Emergency surgery	Renal replacement therapy	pH level	Glucose	Magnesium	Urine Glucose Qualitative Test	Total Cholesterol	Direct Eosinophil Count
Surgery duration	Systolic arterial pressure	Neutrophil Percentage	Total Protein	Direct Bilirubin	Urine Ketone Test	High-Density Lipoprotein Cholesterol (HDL-C)	Blood Culture (Aerobic) + Identification + Drug Sensitivity

Cardiopulmonary	mean arterial	Lymphocyte	Aspartate	C-Reactive	Urine	Low-Density	Irregular Antibody
bypass	pressure	count	Aminotransferase (AST)	Protein Measurement (CRP)	Biliverdin Qualitative Test	Lipoprotein Cholesterol (LDL-C)	Screening
Intraoperative blood transfusion	diastolic arterial pressure	Monocyte count	Potassium	Fecal White Blood Cells	Urine Bilirubin Qualitative Test	Occult blood test (stool)	Urine Red Cell Forward Scatter Width
Comorbidity	Body temperature	Eosinophil count	Blood Urea Nitrogen (BUN)	Fecal Red Blood Cells	Urine Red Blood Cell Examination	Urine Red Blood Cells	Urine Conductivity
Diabetes Mellitus	heart rate	Basophil count	Serum Albumin	Fecal Parasite Ova	Urine Casts Examination (Microscopy)	Urine White Blood Cells	Hepatitis B e Antibody (Luminescence Method)
Hypertension	Respiratory frequency	White Blood Cell Count (WBC)	Alanine Transaminase	Hepatitis B Surface Antibody (Luminescence Method)	ABO Blood Group Identification	Urine Epithelial Cells	Hepatitis B Core Antibody (Luminescence Method)
Respiratory System	ACE inhibitors/ARBs	Red Blood Cell Count (RBC)	Chloride	Hepatitis B e Antigen	Prothrombin Time Measurement	Urine Crystals	RH Blood Typing (D Antigen)
Heart Failure	Clopidogrel	Hemoglobin Measurement	Serum Creatinine	Urine Red Blood Cells Examination (Microscopy)	Prothrombin Activity Measurement	Serum Uric Acid	

		Mil	d AKI			Mode	rate AKI			Seve	ere AKI	
	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
DEACT	0.886 /	0.886 /	0.887 /	0.857 /	0.930 /	0.931 /	0.932 /	0.904 /	0.964 /	0.965 /	0.964 /	0.937 /
REACT	0.899	0.897	0.892	0.884	0.939	0.939	0.936	0.917	0.972	0.971	0.969	0.949
MLD	0.693 /	0.688 /	0.679 /	0.666 /	0.726 /	0.721 /	0.711 /	0.704 /	0.755 /	0.748 /	0.739 /	0.738 /
MLP	0.831	0.829	0.823	0.830	0.871	0.867	0.862	0.855	0.915	0.916	0.913	0.901
LSTM	0.753 /	0.755 /	0.758 /	0.737 /	0.806 /	0.808 /	0.809 /	0.794 /	0.848 /	0.849 /	0.850 /	0.832 /
	0.780	0.782	0.787	0.802	0.810	0.814	0.820	0.825	0.871	0.874	0.880	0.875
Tuonoformor	0.840 /	0.839 /	0.835 /	0.799 /	0.892 /	0.892 /	0.889 /	0.855 /	0.927 /	0.927 /	0.926 /	0.899 /
Transformer	0.881	0.878	0.872	0.876	0.921	0.920	0.912	0.901	0.948	0.949	0.943	0.931
MI D(Caugal faat)	0.717 /	0.719 /	0.719 /	0.707 /	0.713 /	0.711 /	0.717 /	0.719 /	0.710 /	0.711 /	0.726 /	0.738 /
MLP(Causal feat)	0.813	0.813	0.809	0.819	0.836	0.836	0.831	0.830	0.864	0.861	0.859	0.865
LSTM(Causal feat)	0.713 /	0.717 /	0.721 /	0.699 /	0.784 /	0.788 /	0.789 /	0.767 /	0.830 /	0.832 /	0.833 /	0.811 /
LSTM(Causar leat)	0.783	0.784	0.786	0.803	0.797	0.798	0.800	0.813	0.841	0.843	0.844	0.847
Transformer	0.851 /	0.854 /	0.851 /	0.816 /	0.899 /	0.901 /	0.898 /	0.865 /	0.930 /	0.931 /	0.929 /	0.900 /
(Causal feat)	0.877	0.877	0.870	0.872	0.921	0.922	0.916	0.903	0.947	0.949	0.943	0.928

F. The AUROC of REACT and other methods at different time points.

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind). The term "(Causal feat)" indicates that the model was constructed using causal variables identified through our methodology.

		Mil	d AKI			Mode	rate AKI			Seve	re AKI	
	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
DEACT	0.652 /	0.653 /	0.654 /	0.593 /	0.667 /	0.668 /	0.669 /	0.603 /	0.668 /	0.670 /	0.670 /	0.606 /
REACT	0.663	0.654	0.637	0.599	0.688	0.682	0.670	0.607	0.739	0.737	0.724	0.665
MID	0.280 /	0.278 /	0.266 /	0.259 /	0.213 /	0.212 /	0.200 /	0.195 /	0.155 /	0.153 /	0.143 /	0.143 /
MLP	0.475	0.464	0.445	0.434	0.424	0.408	0.387	0.355	0.402	0.385	0.368	0.347
LCTM	0.387 /	0.388 /	0.385 /	0.367 /	0.347 /	0.348 /	0.343 /	0.328 /	0.308 /	0.311 /	0.309 /	0.292 /
LSTM	0.428	0.424	0.419	0.425	0.381	0.379	0.375	0.367	0.387	0.391	0.396	0.388
Tuonaforman	0.564 /	0.562 /	0.553 /	0.516 /	0.579 /	0.577 /	0.566 /	0.527 /	0.590 /	0.590 /	0.579 /	0.541 /
Transformer	0.592	0.583	0.564	0.545	0.584	0.574	0.553	0.501	0.607	0.604	0.590	0.540
MI D(Consol foot)	0.272 /	0.273 /	0.272 /	0.264 /	0.162 /	0.163 /	0.165 /	0.163 /	0.086 /	0.088 /	0.090 /	0.092 /
MLP(Causal feat)	0.417	0.413	0.393	0.389	0.324	0.315	0.292	0.277	0.250	0.242	0.226	0.230
LSTM(Courselfood)	0.289 /	0.290 /	0.288 /	0.271 /	0.226 /	0.227 /	0.223 /	0.210 /	0.158 /	0.158 /	0.156 /	0.150 /
LSTM(Causal feat)	0.388	0.383	0.375	0.379	0.298	0.292	0.285	0.278	0.271	0.269	0.271	0.278
Transformer	0.547 /	0.551 /	0.545 /	0.501 /	0.540 /	0.542 /	0.537 /	0.491 /	0.529 /	0.531 /	0.525 /	0.476 /
(Causal feat)	0.594	0.588	0.563	0.540	0.605	0.600	0.575	0.523	0.628	0.636	0.611	0.559

G. The AUPRC of REACT and other methods at different time points.

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind). The term "(Causal feat)" indicates that the model was constructed using causal variables identified through our methodology.

			Mi	d AKI			Mode	rate AKI	[Severe AKI		
		6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
	Male	0.904	0.901	0.9	0.89	0.944	0.95	0.942	0.923	0.982	0.979	0.977	0.96
Gender	Female	0.885	0.882	0.874	0.877	0.919	0.923	0.918	0.899	0.955	0.949	0.956	0.931
Contor	The First Center	0.899	0.896	0.891	0.883	0.944	0.935	0.935	0.917	0.972	0.969	0.968	0.943
Center	The Third Center	0.892	0.905	0.91	0.918	0.959	0.946	0.954	0.953	0.989	0.988	0.982	0.981
	18 - 35	0.907	0.89	0.9	0.899	0.943	0.943	0.947	0.941	0.987	0.982	0.98	0.975
	35 - 45	0.939	0.924	0.917	0.914	0.981	0.981	0.975	0.951	0.99	0.985	0.989	0.964
A	45 - 55	0.901	0.906	0.908	0.907	0.953	0.943	0.949	0.949	0.978	0.974	0.976	0.974
Age	55 - 65	0.888	0.89	0.874	0.871	0.922	0.915	0.901	0.886	0.962	0.962	0.961	0.927
	65 - 75	0.898	0.9	0.885	0.868	0.945	0.94	0.929	0.906	0.953	0.955	0.955	0.93
	75 - 100	0.938	0.903	0.894	0.881	0.968	0.954	0.937	0.924	0.994	0.992	0.987	0.986
	2010 - 2012	0.904	0.901	0.893	0.883	0.95	0.95	0.943	0.928	0.983	0.984	0.983	0.95
	2012 - 2014	0.912	0.914	0.912	0.885	0.957	0.948	0.958	0.94	0.986	0.986	0.985	0.966
Year	2014 - 2016	0.902	0.894	0.897	0.883	0.93	0.935	0.928	0.904	0.981	0.98	0.978	0.957
rear	2016 - 2018	0.872	0.885	0.874	0.878	0.899	0.912	0.911	0.895	0.957	0.93	0.94	0.919
	2018 - 2020	0.909	0.899	0.889	0.882	0.947	0.936	0.938	0.909	0.959	0.964	0.956	0.949
	2020 - 2022	0.894	0.897	0.903	0.889	0.905	0.933	0.92	0.893	0.969	0.965	0.96	0.947
	Artery Surgery	0.903	0.894	0.914	0.895	0.925	0.941	0.935	0.928	0.953	0.961	0.953	0.928
	Congenital Heart Surgery	0.901	0.899	0.904	0.876	0.959	0.956	0.97	0.934	0.955	0.953	0.964	0.921
Surgery	CABG	0.903	0.895	0.891	0.88	0.953	0.947	0.945	0.928	0.99	0.989	0.984	0.968
Туре	Pericardiectomy	0.913	0.912	0.896	0.892	0.904	0.887	0.855	0.842	0.989	0.993	0.992	0.953
	Valve Surgery	0.901	0.901	0.902	0.895	0.942	0.946	0.939	0.925	0.977	0.974	0.975	0.965
	CABG+Valve Surgery	0.864	0.897	0.861	0.865	0.912	0.907	0.899	0.902	0.975	0.916	0.961	0.909

H. The AUROC of REACT at different time points in different subgroups in internal validation.

	Valve Surgery+Congenital Heart Surgery	0.909	0.921	0.914	0.869	0.989	0.982	0.985	0.952	0.99	0.979	0.963	0.925
	Valve Surgery+Artery Surgery	0.767	0.866	0.844	0.824	0.431	0.436	0.602	0.692	0.472	0.631	0.651	0.749
	Others Surgery	0.872	0.878	0.85	0.856	0.936	0.914	0.894	0.883	0.966	0.918	0.934	0.905
Mode of	Normal	0.903	0.895	0.893	0.883	0.936	0.941	0.932	0.915	0.974	0.968	0.97	0.948
admission	Emergency	0.923	0.901	0.938	0.883	0.974	0.971	0.983	0.974	0.953	0.964	0.975	0.981

	J JJ 1	J		0 1									
			Mi	ld AKI			Mode	rate AK	[Seve	ere AKI	
		6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
Gender	Male	0.695	0.682	0.672	0.626	0.725	0.733	0.695	0.645	0.808	0.801	0.799	0.735
Genuer	Female	0.589	0.588	0.579	0.557	0.598	0.59	0.595	0.522	0.608	0.602	0.587	0.557
Center	The First Center	0.666	0.662	0.64	0.595	0.695	0.668	0.665	0.605	0.731	0.719	0.725	0.655
Center	The Third Center	0.602	0.626	0.618	0.624	0.639	0.654	0.706	0.69	0.797	0.781	0.735	0.707
	18 - 35	0.702	0.691	0.684	0.62	0.837	0.81	0.779	0.702	0.814	0.868	0.773	0.759
	35 - 45	0.764	0.753	0.728	0.682	0.837	0.834	0.81	0.759	0.825	0.812	0.838	0.791
A go	45 - 55	0.601	0.63	0.618	0.593	0.694	0.703	0.698	0.617	0.668	0.743	0.759	0.714
Age	55 - 65	0.67	0.657	0.661	0.606	0.712	0.692	0.709	0.653	0.752	0.755	0.74	0.707
	65 - 75	0.697	0.689	0.653	0.621	0.687	0.646	0.649	0.597	0.665	0.68	0.683	0.659
	75 - 100	0.767	0.756	0.752	0.66	0.836	0.815	0.775	0.688	0.755	0.804	0.801	0.685
	2010 - 2012	0.647	0.647	0.625	0.573	0.651	0.637	0.622	0.562	0.696	0.722	0.709	0.584
	2012 - 2014	0.723	0.703	0.699	0.627	0.799	0.756	0.777	0.694	0.846	0.843	0.829	0.812
Year	2014 - 2016	0.692	0.677	0.693	0.648	0.741	0.714	0.719	0.658	0.751	0.726	0.739	0.691
I cal	2016 - 2018	0.626	0.626	0.584	0.582	0.637	0.641	0.657	0.592	0.742	0.671	0.626	0.598
	2018 - 2020	0.686	0.689	0.651	0.609	0.721	0.689	0.672	0.589	0.694	0.725	0.681	0.696
	2020 - 2022	0.591	0.593	0.603	0.55	0.583	0.654	0.592	0.538	0.766	0.757	0.757	0.661
	Artery Surgery	0.671	0.676	0.708	0.631	0.656	0.711	0.685	0.626	0.676	0.718	0.674	0.623
	Congenital Heart Surgery	0.735	0.713	0.723	0.643	0.808	0.79	0.833	0.734	0.725	0.735	0.779	0.716
Surgery	CABG	0.689	0.673	0.656	0.6	0.751	0.716	0.701	0.647	0.82	0.831	0.805	0.727
Туре	Pericardiectomy	0.713	0.685	0.636	0.623	0.588	0.602	0.435	0.45	0.552	0.772	0.534	0.484
	Valve Surgery	0.629	0.624	0.617	0.596	0.653	0.642	0.631	0.583	0.683	0.687	0.631	0.611
	CABG+Valve Surgery	0.57	0.641	0.542	0.539	0.689	0.644	0.593	0.529	0.843	0.715	0.754	0.617

I. The AUPRC of REACT at different time points in different subgroups in internal validation.

	Valve Surgery+Congenital Heart Surgery	0.8	0.813	0.785	0.677	0.897	0.847	0.903	0.844	0.86	0.816	0.815	0.744
	Valve Surgery+Artery Surgery	0.264	0.461	0.306	0.24	0.009	0.008	0.015	0.03	0.014	0.014	0.008	0.041
	Others Surgery	0.674	0.684	0.609	0.583	0.778	0.701	0.692	0.64	0.924	0.823	0.863	0.726
Mode of	Normal	0.67	0.651	0.637	0.589	0.674	0.686	0.661	0.604	0.749	0.716	0.725	0.665
admission	Emergency	0.831	0.77	0.827	0.712	0.827	0.837	0.888	0.824	0.656	0.75	0.763	0.86

	J JJ	1	J		0 1								
			Μ	ild AKI			Mod	erate AK	[Sev	vere AKI	
		6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
Condon	Male	0.892	0.894	0.892	0.864	0.939	0.94	0.941	0.914	0.971	0.971	0.971	0.948
Gender	Female	0.879	0.881	0.881	0.857	0.914	0.915	0.919	0.892	0.945	0.952	0.95	0.917
	The Sixth Center	0.839	0.838	0.825	0.808	0.906	0.9	0.899	0.875	0.951	0.944	0.945	0.906
Center	The Seventh Center	0.85	0.843	0.844	0.87	0.882	0.884	0.884	0.873	0.952	0.943	0.933	0.887
	The Nangjing Drum	0.891	0.891	0.893	0.861	0.933	0.934	0.936	0.906	0.966	0.966	0.966	0.94
	18 - 35	0.901	0.9	0.9	0.871	0.923	0.919	0.923	0.904	0.954	0.947	0.946	0.916
	35 - 45	0.917	0.916	0.919	0.894	0.942	0.945	0.947	0.928	0.97	0.973	0.971	0.952
A	45 - 55	0.899	0.899	0.903	0.868	0.934	0.94	0.941	0.91	0.972	0.976	0.972	0.942
Age	55 - 65	0.878	0.88	0.882	0.851	0.933	0.934	0.939	0.907	0.966	0.967	0.965	0.938
	65 - 75	0.874	0.872	0.875	0.84	0.922	0.926	0.928	0.896	0.96	0.962	0.957	0.937
	75 - 100	0.858	0.859	0.856	0.825	0.893	0.901	0.894	0.865	0.955	0.944	0.944	0.913
	2010 - 2012	0.876	0.876	0.877	0.844	0.926	0.918	0.918	0.89	0.957	0.96	0.953	0.922
	2012 - 2014	0.862	0.862	0.863	0.844	0.908	0.903	0.911	0.886	0.956	0.958	0.954	0.92
Year	2014 - 2016	0.873	0.872	0.862	0.831	0.923	0.918	0.924	0.89	0.963	0.965	0.957	0.92
rear	2016 - 2018	0.881	0.885	0.887	0.859	0.931	0.932	0.927	0.901	0.957	0.958	0.957	0.928
	2018 - 2020	0.901	0.903	0.907	0.88	0.942	0.939	0.94	0.922	0.969	0.969	0.97	0.954
	2020 - 2022	0.884	0.884	0.886	0.852	0.931	0.933	0.934	0.902	0.967	0.965	0.967	0.937
	Artery Surgery	0.92	0.918	0.916	0.895	0.948	0.943	0.948	0.928	0.965	0.964	0.964	0.943
	Congenital Heart Surgery	0.844	0.853	0.863	0.82	0.907	0.895	0.903	0.879	0.967	0.963	0.961	0.954
Surgery	CABG	0.843	0.847	0.846	0.818	0.926	0.932	0.937	0.9	0.959	0.965	0.961	0.935
Туре	Pericardiectomy	0.849	0.834	0.831	0.788	0.882	0.895	0.876	0.844	0.907	0.931	0.923	0.886
	Valve Surgery	0.877	0.873	0.87	0.849	0.915	0.911	0.913	0.877	0.942	0.946	0.937	0.902
	CABG+Artery Surgery	0.869	0.879	0.883	0.856	0.924	0.925	0.925	0.907	0.935	0.95	0.945	0.917

J. The AUROC of REACT at different time points in different subgroups in external test.

	CABG+Valve Surgery	0.882	0.881	0.881	0.855	0.917	0.917	0.922	0.897	0.967	0.963	0.965	0.936
	Valve Surgery+Congenital Heart Surgery	0.876	0.873	0.889	0.835	0.921	0.902	0.925	0.881	0.972	0.975	0.986	0.961
	Valve Surgery+Artery Surgery	0.892	0.889	0.895	0.86	0.947	0.942	0.941	0.919	0.982	0.979	0.982	0.966
	Others Surgery	0.895	0.89	0.899	0.877	0.936	0.944	0.94	0.91	0.973	0.976	0.979	0.966
Mode of	Normal	0.874	0.874	0.875	0.844	0.923	0.923	0.925	0.892	0.957	0.959	0.959	0.926
admission	Emergency	0.908	0.907	0.908	0.891	0.924	0.926	0.926	0.907	0.95	0.953	0.951	0.929

	J JJ				-								
			Μ	ild AKI			Mod	erate AK	[Sev	ere AKI	
		6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
Gender	Male	0.687	0.687	0.687	0.63	0.712	0.717	0.713	0.647	0.719	0.726	0.725	0.655
Gender	Female	0.599	0.597	0.601	0.546	0.589	0.588	0.58	0.521	0.539	0.555	0.556	0.502
	The Sixth Center	0.606	0.607	0.592	0.554	0.596	0.595	0.601	0.55	0.593	0.582	0.581	0.523
Center	The Seventh Center	0.579	0.546	0.543	0.528	0.627	0.612	0.613	0.556	0.765	0.76	0.719	0.637
	The Nangjing Drum	0.661	0.662	0.667	0.599	0.68	0.674	0.677	0.611	0.675	0.683	0.674	0.611
	18 – 35	0.705	0.702	0.701	0.633	0.739	0.714	0.714	0.666	0.755	0.739	0.746	0.663
	35 - 45	0.758	0.752	0.756	0.707	0.74	0.75	0.749	0.709	0.736	0.742	0.735	0.676
A (70)	45 – 55	0.693	0.688	0.699	0.619	0.724	0.734	0.732	0.649	0.734	0.726	0.721	0.663
Age	55 - 65	0.616	0.621	0.625	0.558	0.662	0.66	0.654	0.587	0.641	0.645	0.65	0.581
	65 – 75	0.618	0.622	0.634	0.568	0.625	0.628	0.644	0.572	0.634	0.647	0.628	0.585
	75 - 100	0.622	0.621	0.619	0.569	0.542	0.561	0.54	0.491	0.512	0.505	0.486	0.429
	2010 - 2012	0.681	0.682	0.674	0.624	0.68	0.649	0.66	0.618	0.656	0.652	0.65	0.595
	2012 - 2014	0.61	0.61	0.613	0.569	0.607	0.598	0.61	0.545	0.575	0.575	0.588	0.524
Year	2014 - 2016	0.628	0.621	0.603	0.545	0.637	0.636	0.641	0.57	0.634	0.653	0.613	0.573
rear	2016 - 2018	0.661	0.659	0.659	0.593	0.673	0.678	0.665	0.597	0.699	0.703	0.694	0.614
	2018 - 2020	0.712	0.715	0.726	0.668	0.726	0.723	0.725	0.677	0.709	0.721	0.724	0.68
	2020 - 2022	0.631	0.625	0.629	0.56	0.65	0.661	0.657	0.586	0.666	0.648	0.662	0.579
	Artery Surgery	0.81	0.809	0.806	0.76	0.804	0.796	0.801	0.756	0.767	0.75	0.753	0.701
	Congenital Heart Surgery	0.513	0.538	0.558	0.459	0.52	0.533	0.531	0.479	0.506	0.484	0.467	0.517
Surgery	CABG	0.535	0.539	0.545	0.479	0.561	0.576	0.59	0.51	0.58	0.568	0.566	0.481
Туре	Pericardiectomy	0.599	0.596	0.58	0.539	0.472	0.532	0.499	0.43	0.492	0.435	0.448	0.483
	Valve Surgery	0.578	0.568	0.566	0.522	0.591	0.581	0.59	0.51	0.601	0.612	0.574	0.507
	CABG+Artery Surgery	0.66	0.665	0.66	0.621	0.642	0.669	0.656	0.608	0.65	0.612	0.584	0.528

K. The AUPRC of REACT at different time points in different subgroups in external test.

	CABG+Valve Surgery	0.613	0.614	0.625	0.583	0.547	0.572	0.578	0.539	0.656	0.672	0.656	0.617
	Valve Surgery+Congenital Heart Surgery	0.498	0.542	0.562	0.439	0.502	0.466	0.509	0.438	0.632	0.615	0.64	0.564
	Valve Surgery+Artery Surgery	0.556	0.565	0.584	0.517	0.602	0.61	0.604	0.553	0.589	0.596	0.622	0.572
	Others Surgery	0.598	0.625	0.648	0.599	0.624	0.664	0.672	0.581	0.758	0.752	0.766	0.72
Mode of	Normal	0.588	0.586	0.591	0.527	0.605	0.602	0.607	0.543	0.627	0.632	0.627	0.56
admission	Emergency	0.816	0.815	0.816	0.784	0.773	0.778	0.777	0.738	0.747	0.747	0.732	0.688

Λ	Variable		Mi	ld AKI			Mode	erate AKI			Seve	ere AKI	
Λ	num	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs
AUROC	1												
5 05	1	0.88	0.88	0.88	0.88	0.91	0.91	0.90	0.89	0.93	0.93	0.92	0.91
5e-05	1	/0.82	/0.82	/0.82	/0.78	/0.86	/0.86	/0.86	/0.82	/0.91	/0.91	/0.91	/0.88
5- 04	6	0.89	0.89	0.89	0.89	0.92	0.92	0.92	0.91	0.95	0.95	0.95	0.94
5e-04	6	/0.84	/0.84	/0.84	/0.80	/0.88	/0.89	/0.89	/0.85	/0.93	/0.93	/0.93	/0.90
5 . 02	31	0.90	0.90	0.89	0.88	0.94	0.94	0.94	0.92	0.97	0.97	0.97	0.95
5e-03	51	/0.89	/0.89	/0.89	/0.86	/0.93	/0.93	/0.93	/0.90	/0.96	/0.96	/0.96	/0.94
5- 02	59	0.84	0.84	0.83	0.83	0.88	0.88	0.88	0.86	0.91	0.91	0.91	0.89
5e-02	39	/0.80	/0.80	/0.81	/0.78	/0.84	/0.84	/0.84	/0.81	/0.87	/0.87	/0.87	/0.84
AUPRC													
5 05	1	0.82	0.82	0.82	0.78	0.86	0.86	0.86	0.82	0.91	0.91	0.91	0.88
5e-05	1	/0.61	/0.61	/0.59	/0.57	/0.57	/0.57	/0.55	/0.50	/0.61	/0.60	/0.58	/0.53
5.04	(0.84	0.84	0.84	0.80	0.88	0.89	0.89	0.85	0.93	0.93	0.93	0.90
5e-04	6	/0.62	/0.62	/0.60	/0.57	/0.60	/0.59	/0.58	/0.52	/0.64	/0.63	/0.61	/0.56
5. 02	21	0.89	0.89	0.89	0.86	0.93	0.93	0.93	0.90	0.96	0.96	0.96	0.94
5e-03	31	/0.66	/0.65	/0.64	/0.60	/0.69	/0.68	/0.67	/0.61	/0.74	/0.74	/0.72	/0.66
- 02	59	0.80	0.80	0.81	0.78	0.84	0.84	0.84	0.81	0.87	0.87	0.87	0.84
5e-02	59	/0.48	/0.47	/0.46	/0.43	/0.44	/0.43	/0.41	/0.37	/0.39	/0.38	/0.36	/0.33

L. The number of input variables and the model performance of REACT with different λ .

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind).

Thursday		Mild	AKI			Moder	ate AKI			Sever	e AKI	
Threshold	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48hrs
0.01	0.97	0.98	0.98	0.97	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.93
0.02	0.95	0.96	0.96	0.95	0.91	0.91	0.92	0.91	0.93	0.92	0.93	0.87
0.05	0.91	0.92	0.91	0.90	0.85	0.85	0.86	0.81	0.86	0.86	0.88	0.82
0.1	0.85	0.86	0.85	0.82	0.77	0.78	0.79	0.72	0.80	0.80	0.82	0.76
0.2	0.75	0.77	0.75	0.67	0.68	0.68	0.69	0.61	0.71	0.72	0.74	0.68
0.3	0.67	0.68	0.67	0.57	0.61	0.61	0.62	0.54	0.64	0.65	0.68	0.61
0.4	0.60	0.61	0.60	0.49	0.56	0.56	0.58	0.49	0.58	0.59	0.62	0.54
0.5	0.54	0.54	0.53	0.42	0.53	0.52	0.53	0.44	0.53	0.55	0.56	0.48
0.6	0.47	0.47	0.47	0.35	0.49	0.47	0.49	0.38	0.48	0.49	0.51	0.42
0.7	0.40	0.39	0.40	0.29	0.43	0.42	0.43	0.32	0.43	0.44	0.44	0.35
0.8	0.33	0.32	0.33	0.22	0.37	0.35	0.35	0.25	0.37	0.39	0.39	0.28
0.9	0.23	0.23	0.24	0.13	0.27	0.26	0.26	0.16	0.26	0.28	0.27	0.17

M. The sensitivity (True Positive Rate) corresponding to different CSA-AKI risk score thresholds.

Thusshold		Mild	AKI			Moder	ate AKI			Sever	e AKI	
Threshold	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48hrs
0.01	0.29	0.26	0.27	0.25	0.66	0.65	0.65	0.50	0.84	0.86	0.83	0.73
0.02	0.42	0.40	0.39	0.38	0.78	0.77	0.77	0.65	0.90	0.91	0.90	0.86
0.05	0.59	0.57	0.59	0.54	0.88	0.88	0.88	0.85	0.95	0.95	0.95	0.94
0.1	0.75	0.73	0.75	0.70	0.93	0.93	0.93	0.93	0.97	0.97	0.97	0.96
0.2	0.87	0.86	0.87	0.87	0.97	0.97	0.96	0.97	0.98	0.98	0.98	0.98
0.3	0.92	0.91	0.92	0.93	0.98	0.98	0.98	0.98	0.99	0.99	0.98	0.99
0.4	0.94	0.94	0.95	0.96	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99
0.5	0.96	0.96	0.97	0.98	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
0.6	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	1.00	0.99	0.99	1.00
0.7	0.99	0.99	0.99	0.99	0.99	0.99	0.99	1.00	1.00	1.00	1.00	1.00
0.8	0.99	0.99	0.99	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.9	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.73

N. The specificity (True Negative Rate) corresponding to different CSA-AKI risk score thresholds.

Thusshold		Mild	AKI			Modera	ate AKI			Sever	e AKI	
Threshold	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48hrs
0.01	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.89	0.85	0.83	0.85	0.91
0.02	0.82	0.83	0.83	0.83	0.79	0.79	0.79	0.86	0.77	0.75	0.78	0.84
0.05	0.77	0.78	0.77	0.79	0.68	0.69	0.69	0.75	0.64	0.63	0.66	0.72
0.1	0.69	0.70	0.69	0.73	0.57	0.58	0.58	0.62	0.55	0.54	0.57	0.62
0.2	0.57	0.58	0.56	0.59	0.42	0.43	0.44	0.46	0.46	0.46	0.48	0.50
0.3	0.48	0.49	0.48	0.47	0.35	0.35	0.36	0.37	0.40	0.41	0.43	0.44
0.4	0.41	0.41	0.40	0.38	0.31	0.30	0.32	0.32	0.35	0.36	0.37	0.38
0.5	0.34	0.34	0.33	0.31	0.28	0.27	0.28	0.27	0.30	0.31	0.32	0.32
0.6	0.27	0.27	0.26	0.23	0.25	0.24	0.25	0.23	0.25	0.26	0.28	0.27
0.7	0.20	0.19	0.20	0.17	0.21	0.20	0.21	0.19	0.21	0.23	0.23	0.20
0.8	0.14	0.14	0.14	0.12	0.17	0.16	0.16	0.13	0.17	0.18	0.18	0.14
0.9	0.10	0.10	0.10	0.06	0.11	0.11	0.11	0.07	0.13	0.13	0.13	0.09

O. The False discovery rate corresponding to different CSA-AKI risk score thresholds.

			Mild	AKI			Modera	ate AKI			Sever	e AKI	
		6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48 hrs	6 hrs	12 hrs	24 hrs	48hrs
	Threshold	0.11	0.12	0.11	0.14	0.05	0.06	0.06	0.07	0.04	0.04	0.05	0.07
External	TPR	0.83	0.83	0.83	0.75	0.84	0.84	0.85	0.76	0.88	0.88	0.88	0.79
tests	FDR	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
	TNR	0.77	0.77	0.78	0.80	0.89	0.89	0.89	0.90	0.94	0.94	0.95	0.95
	Threshold	0.09	0.10	0.10	0.12	0.04	0.04	0.04	0.07	0.02	0.02	0.03	0.05
Internal	TPR	0.84	0.83	0.82	0.80	0.82	0.82	0.81	0.71	0.88	0.88	0.86	0.78
Validatior	n FDR	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
	TNR	0.78	0.79	0.80	0.80	0.91	0.92	0.92	0.93	0.95	0.95	0.96	0.96

P. The recommend thresholds and its corresponding evaluation indexes.

TPR, True Positive Rate, sensitivity; FDR, False Discovery Rate; TNR, True Negative Rate, specificity.

	Observed	Unobserved	Unoccurred	P-value
	(n = 4,939)	(n = 842)	(n = 23, 234)	
Sex (%)				0.003
Female	1883 (38.1)	304 (36.1)	9385 (40.4)	
Male	3056 (61.9)	538 (63.9)	13840 (59.6)	
Age	63.00 [53.00, 70.00]	56.00 [46.00, 66.00]	57.00 [47.00, 66.00]	< 0.001
(median [IQR])	05.00 [55.00, 70.00]	50.00 [40.00, 00.00]	57.00 [47.00, 00.00]	<0.001
Center				< 0.001
The First Center	2177 (44.1)	220 (26.1)	8978 (38.6)	
The Third Center	162 (3.3)	74 (8.8)	709 (3.1)	
The Sixth Center	368 (7.5)	44 (5.2)	1524 (6.6)	
The Seventh Center	71 (1.4)	16 (1.9)	239 (1.0)	
The Nangjing Drum	2161 (43.8)	488 (58.0)	11784 (50.7)	
Commodities				
Hypertension	3639 (73.7)	632 (75.1)	12874 (55.4)	< 0.001
Diabetes	1536 (31.1)	191 (22.7)	4688 (20.2)	< 0.001
Congestive heart failure	2144 (43.4)	359 (42.6)	9731 (41.9)	0.137
Pulmonary disease	1215 (24.6)	219 (26.0)	4928 (21.2)	< 0.001
Chronic kidney disease	484 (9.8)	216 (25.7)	522 (2.2)	< 0.001
Outcome				
Death (%)	236 (4.8)	96 (11.4)	97 (0.4)	< 0.001
Length of Stay (median [IQR])	22.86 [17.14, 32.02]	24.00 [16.00, 35.00]	19.04 [14.95, 26.00]	< 0.001

Q. Comparison of patient characteristics on cohorts whether AKI stage I is observed by doctors.

R. Convergence conditions for Granger causality

We show in Theorem 1 that under certain assumptions, the discovered causal vector will converge to the true Granger causal relationships.

Assumption 1. $\exists \lambda_0, \forall i = 1, ..., N$, $\mathcal{L}_{\text{pred}}(Y, X \odot S_{i=0}) - \mathcal{L}_{\text{pred}}(Y, X \odot S_{i=1}) > \lambda_0$ if and only if time-series *i* Granger cause *Y*, where $S_{i=l}$ is set S with element $s_i = l$.

Theorem 1. Given a time-series dataset $\langle X, Y \rangle$ and prediction model $f_{\phi}(\cdot)$. Under Assumptions 1, $\exists \lambda$, CPG element $m_i = \sigma(\theta_i)$ converges to 0 if time-series *i* does not Granger cause *Y*, and m_i converges to 1 if time-series *i* Granger cause *Y*.

The implications behind Assumption 1 can be intuitively explained. It means there exists a threshold λ_0 to binarize $\mathcal{L}_{pred}(Y, X \odot S_{i=0}) - \mathcal{L}_{pred}(Y, X \odot S_{i=1})$, serving as an indicator as to whether time-series *i* contributes to prediction of *Y*. The proof of Theorem 1 is provided in the supplementary material.

Proof of Theorem 1: In Causal Discovery Stage the loss function

$$\mathcal{L}_{\text{graph}}(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{\theta}) = \mathcal{L}_{\text{pred}}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}) + \lambda \| \sigma(\boldsymbol{\theta}) \|_{1}$$

where $s_i \sim Ber(\sigma(\theta_i))$. We use the REINFORCE [1] trick for theoretical analysis and θ_i 's gradient is calculated as

$$\frac{\partial}{\partial \theta_{i}} \mathbb{E}_{s_{i}} [\mathcal{L}_{graph}] = \mathbb{E}_{s_{i}} [\mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S})] + \lambda \sigma'(\theta_{\tau, ij})$$

$$= \mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=1}) \sigma(\theta_{i}) \frac{\partial}{\partial \theta_{i}} \sigma(\theta_{i}) + \mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=0}) (1 - \sigma(\theta_{i})) \frac{\partial}{\partial \theta_{i}} (1 - \sigma(\theta_{i})) + \lambda \sigma'(\theta_{\tau, ij})$$

$$= \sigma'(\theta_{i}) (\mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=1}) - \mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=0}) + \lambda)$$

where $S_{i=l}$ is set S with element $s_i = l$, and $f_{\phi}(X \odot S) \equiv f_{\phi}(x_{t-\tau:t-1,1} \cdot s_1, \dots, x_{t-\tau:t-1,n} \cdot s_n)$, where τ is the maximal time lag. According to Definition 1, time-series *i* does not Granger cause *Y* if $x_{t-\tau:t-1,i}$ is invariant of the prediction of *Y*. Then we have $\forall c \in \{1, \dots, M\}, f_{\phi,c}(\dots, x_{t-\tau,i}, \dots) = f_{\phi_i}(\dots, 0, \dots)$,

i.e., $\mathcal{L}_{\text{pred}}(Y, X \odot S_{i=1}) = \mathcal{L}_{\text{pred}}(Y, X \odot S_{i=0})$. Then we can derive that

$$\frac{\partial}{\partial \theta_{i}} \mathbb{E}_{s_{i}} [\mathcal{L}_{graph}] = \lambda \sigma'(\theta_{i})$$

This is a sigmoidal gradient, whose convergence is analyzed in [2]. Likewise, we have $\exists c \in \{1, ..., M\}$, $f_{\phi,c}(..., x_{t-\tau,i}, ...) \neq f_{\phi_j}(..., 0, ...)$ if time-series *i* does not Granger cause *Y*. With Assumption 1, $\exists \lambda_0, \forall i = 1, ..., N$, $\mathcal{L}_{pred}(Y, X \odot S_{i=0}) - \mathcal{L}_{pred}(Y, X \odot S_{i=1}) > \lambda_0$. when we select the hyper-parameter $\lambda < \lambda_0$, we have

$$\frac{\partial}{\partial \theta_{i}} \mathbb{E}_{s_{i}} [\mathcal{L}_{graph}] = \sigma'(\theta_{i}) (\mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=1}) - \mathcal{L}_{pred}(\boldsymbol{Y}, \boldsymbol{X} \odot \boldsymbol{S}_{i=0}) + \lambda) < \sigma'(\theta_{i})(\lambda - \lambda_{0}) < 0$$

This gradient is expected to be negative, and θ_i will go towards $+\infty$ and $m_i \rightarrow 1$. In our implementation, we use Gumbel-Softmax estimator for improved performance and lower variance [3].

S. Related works for causal discovery

Our approach supports CSA-AKI prediction generalizable to different environments by identifying causal relationships, which is related to the area of causal discovery. Causal Discovery (or Causal Structural Learning), including static settings and dynamic time-series, has been a hot topic in machine learning and made big progress in the past decades. We roughly categorized these methods into multiple classes.

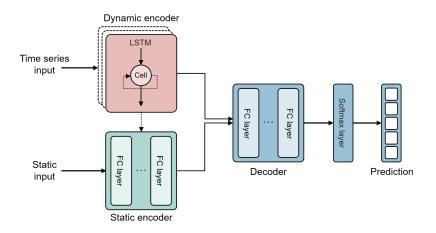
(i) **Constraint-based approaches:** such as PC [4], FCI[5], build causal graphs by performing conditional independence tests. This line of works are later extended to time-series settings, e.g. tsFCI [6], and PCMCI [7]–[9].

(ii) **Score-based learning algorithms:** include recovering causal graphs by applying penalized Neural Ordinary Differential Equations or acyclicity constraint [10], [11].

(iii) Additive Noise Model (ANM): infer causal graph based on additive noise assumption [12], under the assumptions of linear data generating process, no unobserved confounders, and disturbance variables have non-Gaussian distributions of non-zero variances. ANM is extended by [13] to nonlinear models with almost any nonlinearities and additive noise.

(iv) **Granger-causality-based approaches:** Granger causality was initially introduced by [14] who proposed to analyze the temporal causal relationships by testing the help of a time-series on predicting another time-series. Recently, Deep Neural Networks (NNs) have been widely applied to nonlinear Granger causality discovery [2], [15]–[19].

(v) Convergent Cross Mapping (CCM): proposed by [20] that reconstructs nonlinear state space for nonseparable weakly connected dynamic systems. This approach is later extended to situations of synchrony, confounding, or sporadic time-series [21]–[23].


T. Implementation details

We conduct experiments on a PC with Intel Core CPUs and NVIDIA GeForce RTX 3090 GPUs. We implement our algorithm and neural-network-based comparison algorithms with PyTorch¹, XGBoost with python package xgboost².

a) Network Architecture

Our causal learning model in REACT consists of two stages, outcomes prediction and causal discovery. The former stage utilize a neural network based on LSTM and MLP. To be able to handle both static and dynamic input, the network can be further divided into three parts: static encoder with MLP, dynamic encoder with LSTM, and decoder with another MLP.

As for comparison models, "LSTM / Transformer" in Fig. 3 means the same architecture with LSTM / Transformer dynamic encoder. "MLP" means all-MLP network, i.e., flatten all dynamic and static input before feeding into a single MLP encoder. "MLP", "LSTM", and "XGBoost" are without causal discovery, i.e., all variables are used in the prediction. In the experiments shown in Extended Figure 5, we show that training a regular neural network (e.g. MLP, LSTM, Transformer) with only selected variables, i.e., performing feature selection before deep learning instead of our causal learning strategy. For this setting, we only use the selected variables as input and set other variables to 0, which permit using the same network architecture with the same hidden layer width.

Supplementary Figure 1. Network architecture.

¹ https://pytorch.org/

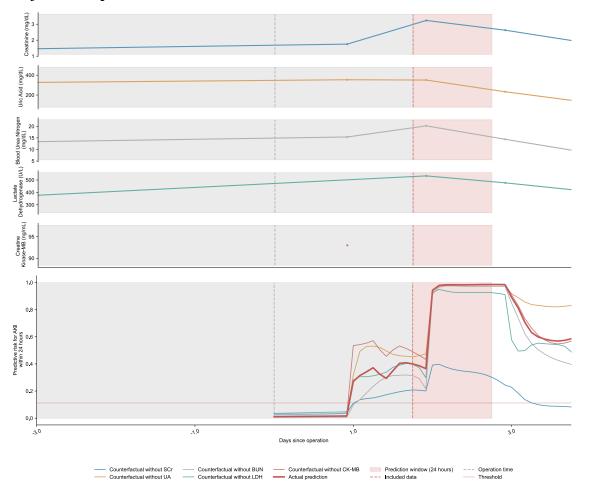
² https://pypi.org/project/xgboost/

b) Training Strategy

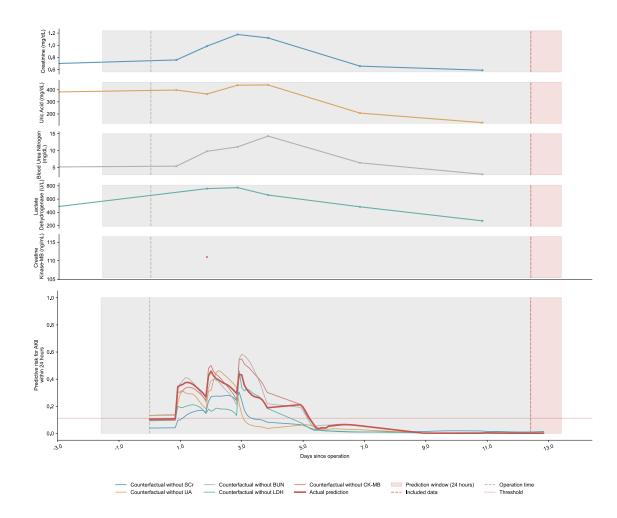
Outcomes prediction stage. The learning rate is set to be relatively high initially and gradually decrease to 10% of the initial value (using torch.optim.lr scheduler.StepLR, $\gamma = 0.1^{1/\text{tot}_\text{epoch}}$).

Causal discovery stage. Initially, each element in the causal probability graph $\sigma(\theta)$ is set to be 0.5, i.e. θ being all 0. The learning rate for this stage is set differently from the outcomes prediction stage. The learning rate also gradually decrease to 10% of the initial value. See the detailed settings of the parameters in the following section. To avoid the $\|\sigma(\theta)\|_1$ from being too large, it is first divided by the total numbers of the elements in θ and then multiplied by λ . As a result

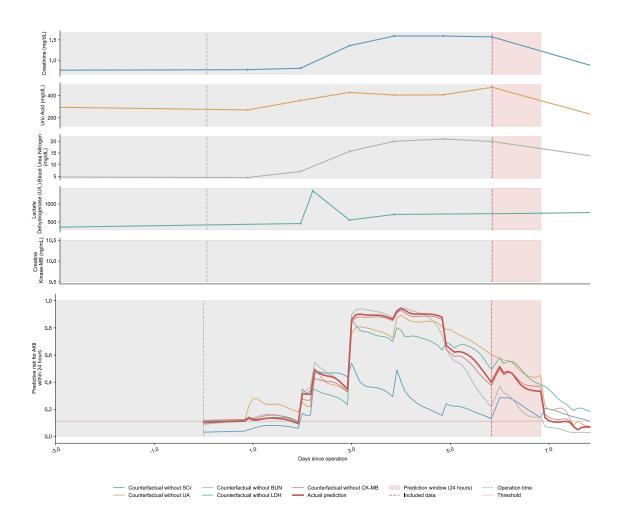
XGBoost. Our dataset contains more than a million samples, which is too large to load into memory. We implement XGBoost with data iterator, each containing 50000 samples.

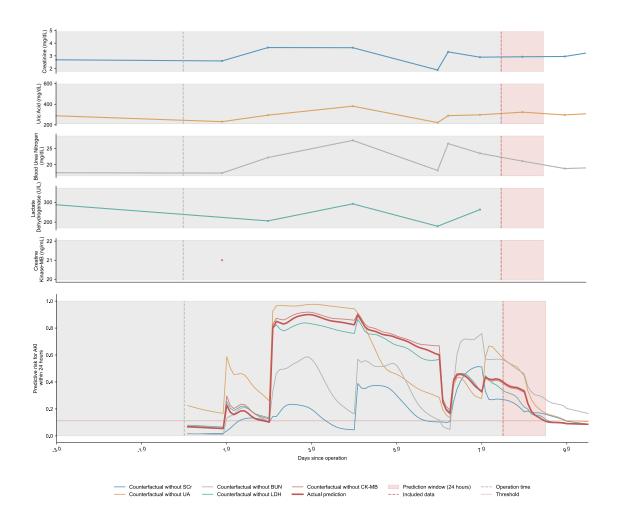

c) Parameter Search

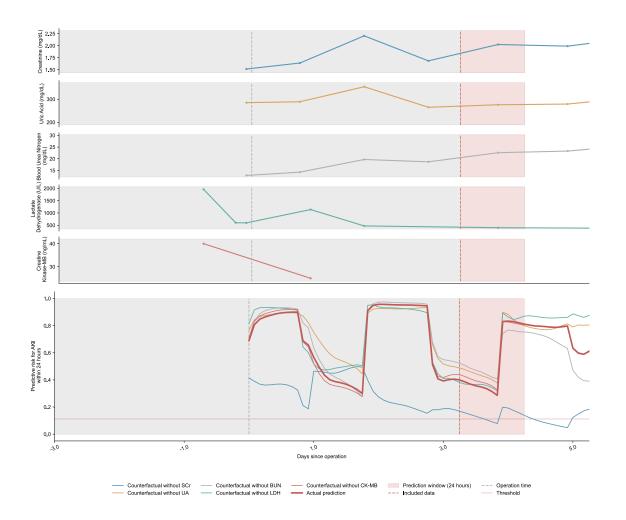
Hyperparameters play important roles in deep learning model developments. We perform standard parameter grid search for each of the deep learning models and our causal learning model. The best set of hyperparameters is selected by choosing the best performance on the validation dataset. Since each training takes hours or even days, we can only covers a few values in the grid search, which is demonstrated as follow.


Parameters	Ours	MLP	LSTM	
Batch size	512, 1024, 2048	512, 1024, 2048	512, 1024, 2048	<u>/</u>
Total epoch number	10, 20, 40	10, 20, 40	10, 20, 40	<u>/</u>
Activation	LeakyReLU	LeakyReLU	LeakyReLU	<u>/</u>
Encoder layer	3, 6	3, 6	3, 6	<u>/</u>
Decoder layer	3, 6	3, 6	3, 6	<u>/</u>
Hidden width	32, 128	32, 128	32, 128	<u>/</u>

Weight decay	$0, \ 10^{-4}, \ 3 \times 10^{-4}, \ 10^{-3}$	$0, \ 10^{-4}, \ 3 \times 10^{-4}, \ 10^{-3}$	$0, \ 10^{-4}, \ 3 \times 10^{-4}, \ 10^{-3}$	<u>/</u>
Dropout	0, 0.1, 0.25	0, 0.1, 0.25	0, 0.1, 0.25	<u>/</u>
τ	0.1, 0.01	0.1, 0.01	0.1, 0.01	<u>/</u>
λ	$5 \times 10^{-5}, 5 \times 10^{-4}, 5 \times 10^{-3},$ 5×10^{-2}	$5 \times 10^{-5}, 5 \times 10^{-4}, 5 \times 10^{-3},$ 5×10^{-2}	$5 \times 10^{-5}, 5 \times 10^{-4}, 5 \times 10^{-3},$ 5×10^{-2}	<u>/</u>


U. More Examples with Counterfactual Explanations


Supplementary Figure U-1. A female patient in their 50s with hypertension, diabetes mellitus, and chronic heart failure was admitted to the hospital for coronary (aortic) coronary artery bypass grafting, mitral-valve replacement, and tricuspid valvuloplasty. The length of stay of the patients was 37 days. Creatinine, uric acid, and urea nitrogen indices were stable before surgery, with a slight increase in creatine kinase enzymes. Finally, the patient developed CSA-AKI.


Supplementary Figure U-2. A lengthy 38-day admission of a male in their 50s with a history of hypertension and diabetes. The patient underwent atrial septal defect repair combined with tricuspid valvuloplasty. Although creatinine, uric acid and urea nitrogen were slightly increased after surgery, no CSA-AKI occurred.

Supplementary Figure U-3. A female in their 60s who had undergone coronary-artery bypass grafting alone had respiratory comorbidities. All laboratory examination indicators were stable prior to surgery, and there was no underlying renal disease. On the 6th day after surgery, creatinine, urea nitrogen, uric acid and lactate dehydrogenase began to change unsteadily and eventually CSA-AKI occurred.

Supplementary Figure U-4. A male in their 60s with multiple comorbidities (including chronic heart failure, hypertension, diabetes mellitus, chronic kidney disease, chronic obstructive pulmonary disease) underwent coronary-artery bypass grafting. Creatinine, urea nitrogen, uric acid, and lactate dehydrogenase increased and decreased with time after surgery, but the creatine kinase enzyme was measured only once after surgery. The patient eventually developed CSA-AKI.

Supplementary Figure U-5. A male in their 70s with diabetes mellitus, who was urgently admitted for coronary artery bypass grafting. Due to the emergency surgery, the pre-surgery laboratory examination was measured only once. After the surgery, the creatinine, urea nitrogen, uric acid, lactate dehydrogenase, and creatine kinase enzymes significantly changed over time, and the patient eventually developed CSA-AKI.

Reference

[1] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist reinforcement learning," Mach. Learn., vol. 8, no. 3, pp. 229–256, 1992.

[2] Y. Cheng *et al.*, "CUTS: Neural Causal Discovery from Irregular Time-Series Data," presented at the The Eleventh International Conference on Learning Representations, Feb. 2023. Accessed: Feb. 09, 2023. [Online]. Available: https://openreview.net/forum?id=UG8bQcD3Emv

[3] E. Jang, S. Gu, and B. Poole, "Categorical reparameterization with gumbel-softmax," Nov. 2016, doi: 10.48550/arXiv.1611.01144.

[4] P. Spirtes and C. Glymour, "An algorithm for fast recovery of sparse causal graphs," Soc. Sci. Comput. Rev., vol. 9, no. 1, pp. 62–72, 1991.

[5] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation, prediction, and search. MIT press, 2000.

[6] D. Entner and P. O. Hoyer, "On causal discovery from time series data using FCI," *Probabilistic Graph. Models*, pp. 121–128, 2010.

[7] J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, "Detecting and quantifying causal associations in large nonlinear time series datasets,"

Sci. Adv., vol. 5, no. 11, p. eaau4996, 2019, doi: 10.1126/sciadv.aau4996.

[8] J. Runge, "Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets," in *Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)*, PMLR, Aug. 2020, pp. 1388–1397. Accessed: Mar. 10, 2023. [Online]. Available:

https://proceedings.mlr.press/v124/runge20a.html

[9] A. Gerhardus and J. Runge, "High-recall causal discovery for autocorrelated time series with latent confounders," in *Advances in Neural Information Processing Systems*, Curran Associates, Inc., 2020, pp. 12615–12625. Accessed: May 12, 2022. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

[10] A. Bellot, K. Branson, and M. van der Schaar, "Neural graphical modelling in continuous-time: consistency guarantees and algorithms," presented at the International Conference on Learning Representations, Feb. 2022. Accessed: Nov. 06, 2022. [Online]. Available: https://openreview.net/forum?id=SsHBkfeRF9L

[11] R. Pamfil et al., "DYNOTEARS: structure learning from time-series data," in Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics, PMLR, Jun. 2020, pp. 1595–1605. Accessed: Jul. 07, 2022. [Online]. Available: https://proceedings.mlr.press/v108/pamfil20a.html

[12] S. Shimizu, P. O. Hoyer, A. Hyvä, rinen, and A. Kerminen, "A Linear Non-Gaussian Acyclic Model for Causal Discovery," *J. Mach. Learn. Res.*, vol. 7, no. 72, pp. 2003–2030, 2006.

[13] P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf, "Nonlinear causal discovery with additive noise models," in *Advances in Neural Information Processing Systems*, Curran Associates, Inc., 2008. Accessed: Nov. 17, 2022. [Online]. Available:

https://proceedings.neurips.cc/paper/2008/hash/f7664060cc52bc6f3d620bcedc94a4b6-Abstract.html

[14] C. W. J. Granger, "Investigating causal relations by econometric models and cross-spectral methods," *Econometrica*, vol. 37, no. 3, pp. 424–438, 1969, doi: 10.2307/1912791.

[15] A. P. Wu, R. Singh, and B. Berger, "Granger causal inference on dags identifies genomic loci regulating transcription," presented at the International Conference on Learning Representations, Mar. 2022. Accessed: Aug. 28, 2022. [Online]. Available: https://openreview.net/forum?id=nZOUYEN6Wvy
[16] A. Tank, I. Covert, N. Foti, A. Shojaie, and E. B. Fox, "Neural granger causality," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 44, no. 8, pp. 4267–4279, 2022, doi: 10.1109/TPAMI.2021.3065601.

[17] S. Khanna and V. Y. F. Tan, "Economy statistical recurrent units for inferring nonlinear granger causality," presented at the International Conference on Learning Representations, Mar. 2020. Accessed: Aug. 26, 2022. [Online]. Available:

https://openreview.net/forum?id=SyxV9ANFDH&fbclid=IwAR0MswN18z7vDRy0DRyVDo1fkpKMEJ_Rx3HtVsbvivy26djWHn0spTJUC-0

[18] S. Löwe, D. Madras, R. Zemel, and M. Welling, "Amortized causal discovery: learning to infer causal graphs from time-series data," in *Proceedings of the First Conference on Causal Learning and Reasoning*, PMLR, Jun. 2022, pp. 509–525. Accessed: Jul. 22, 2022. [Online]. Available:

https://proceedings.mlr.press/v177/lowe22a.html

[19] Y. Cheng et al., "CUTS+: High-dimensional Causal Discovery from Irregular Time-series." arXiv, Aug. 16, 2023. doi: 10.48550/arXiv.2305.05890.

[20] G. Sugihara et al., "Detecting Causality in Complex Ecosystems," Science, vol. 338, no. 6106, pp. 496–500, Oct. 2012, doi: 10.1126/science.1227079.

[21] H. Ye, E. R. Deyle, L. J. Gilarranz, and G. Sugihara, "Distinguishing time-delayed causal interactions using convergent cross mapping," *Sci. Rep.*, vol. 5, no. 1, Art. no. 1, Oct. 2015, doi: 10.1038/srep14750.

[22] Z. Benkő et al., "Complete Inference of Causal Relations between Dynamical Systems." arXiv, Feb. 25, 2020. doi: 10.48550/arXiv.1808.10806.

[23] E. D. Brouwer, A. Arany, J. Simm, and Y. Moreau, "Latent Convergent Cross Mapping," presented at the International Conference on Learning Representations, Mar. 2021. Accessed: Nov. 05, 2022. [Online]. Available: https://openreview.net/forum?id=4TSiOTkKe5P