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Supplementary Information 
 
The purpose of this supplementary information is to offer additional insights that substantiate the claims made in the paper titled " Ultra-efficient Causal Learning for 
Dynamic CSA-AKI Detection Using Minimal Variables". The authors anticipate that by providing this supplementary data and corresponding discussions, the 
strength and reproducibility of the findings presented in the main letter will be enhanced. In conjunction with the Extended Data, the following supplementary 
materials are introduced: 
 

• Supplements A and B display the normative guidelines followed in the design, development, and validation phases of this research, as well as their 
corresponding placements in the main text.  

• Supplement C offers a detailed view of the demographic information of all patients included in the model's training, validation, and testing stages. 
• Supplements D-E display the variables included in REACT training and show the definitions of certain clinical variables. 
• Supplements F-G shows the performance of REACT and comparisons with current mainstream algorithms and elaborate on the differences between models 

using all variables and those only inputting causal variables.  
• Supplements H-K present the predictive performance of REACT across various sub-populations in both internal validation and external test datasets. 
• Supplements L present the number of input variables and the model performance of REACT with different λ. 
• Supplements M-P delineate the sensitivity and specificity of the prediction system when different thresholds are selected.  
• Supplement Q compares outcomes between patients observed with AKI stage I occurrences and those who were not observed.  
• Supplements R-T provide the underlying theorems and proofs relied upon by the algorithm, intricate algorithmic details, parameter information, and related 

work.  
• Supplement U provide some other examples with counterfactual explanations. 

  



 

 

A. TRIPOD checklist (Prediction Model Development and Validation) 
Section/Topic Item  Checklist Item Page 

Title and abstract 

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted. 

Page 1 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions. 

Page 1 

Introduction 

Background and 
objectives 

3a D;V 
Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or 
validating the multivariable prediction model, including references to existing models. 

Line 39~85 

3b D;V 
Specify the objectives, including whether the study describes the development or validation of the 
model or both. 

Line 86~101 

Methods 

Source of data 
4a D;V 

Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 
for the development and validation data sets, if applicable. 

Line 86~122, 
593~609 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-
up.  

Line 103~122 

Participants 

5a D;V 
Specify key elements of the study setting (e.g., primary care, secondary care, general population) 
including number and location of centers. 

Line 103~122 

5b D;V Describe eligibility criteria for participants.  
Line 593~609,  

Fig 2 

5c D;V Give details of treatments received, if relevant.  No relevant 

Outcome 
6a D;V Clearly define the outcome that is predicted by the prediction model, including how and when assessed.  

Line 86~101, 
186~191,799~816 

6b D;V Report any actions to blind assessment of the outcome to be predicted.  Line 568~577 

Predictors 7a D;V 
Clearly define all predictors used in developing or validating the multivariable prediction model, 
including how and when they were measured. 

Line 828~849, 
343~372, Fig 5 



 

 

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors.  
Line 828~849, 

343~372 

Sample size 8 D;V Explain how the study size was arrived at. Line 563~592 

Missing data 9 D;V 
Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.  

Line 618~674 

Statistical analysis 
methods 

10a D Describe how predictors were handled in the analyses.  Line 767~816 

10b D 
Specify type of model, all model-building procedures (including any predictor selection), and method 
for internal validation. 

Line 157~191, 
767~816 

10c V For validation, describe how the predictions were calculated.  Line 879~901  

10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models.  Line 902~926 

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. No relevant 

Risk groups 11 D;V Provide details on how risk groups were created, if done.  No relevant 

Development vs. 
validation 

12 V 
For validation, identify any differences from the development data in setting, eligibility criteria, 
outcome, and predictors.  

Line 767~864, 
251~273, 395~421 

Results 

Participants 

13a D;V 
Describe the flow of participants through the study, including the number of participants with and 
without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.  

Line 103~142,  
Fig 2 

13b D;V 
Describe the characteristics of the participants (basic demographics, clinical features, available 
predictors), including the number of participants with missing data for predictors and outcome.  

Line 103~142,  
Sup C 

13c V 
For validation, show a comparison with the development data of the distribution of important variables 
(demographics, predictors and outcome).  

Line 103~142,  
Fig 2, Sup C 

Model development  
14a D Specify the number of participants and outcome events in each analysis.  

Line 286~293, 
410~421, Fig 5 

14b D If done, report the unadjusted association between each candidate predictor and outcome. Line 343~394 

Model specification 
15a D 

Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and 
model intercept or baseline survival at a given time point). 

Line 251~273 

15b D Explain how to the use the prediction model. Line 251~273 



 

 

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are 

denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. 

 

Model performance 16 D;V Report performance measures (with CIs) for the prediction model. Line 192~393 

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). No relevant 

Discussion 

Limitations 18 D;V 
Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 
missing data).  

Line 541~546 

Interpretation 
19a V 

For validation, discuss the results with reference to performance in the development data, and any other 
validation data.  

Line 435~448 

19b D;V 
Give an overall interpretation of the results, considering objectives, limitations, results from similar 
studies, and other relevant evidence.  

Line 423~448 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.  Line 541~567 

Other information 

Supplementary 
information 

21 D;V 
Provide information about the availability of supplementary resources, such as study protocol, Web 
calculator, and data sets.  

Line 395~409, 
928~933, Sup A,B 

Funding 22 D;V Give the source of funding and the role of the funders for the present study.  Line 1156~1161 



 

 

B. “Ensuring Fairness in Machine Learning to Advance Health Equity” checklist [REF] 
Item Checklist Item Page 

Design  

1 Determine the goal of a machine-learning model and review it with diverse stakeholders, including protected groups. 62~101 

2 Ensure that the model is related to the desired patient outcome and can be integrated into clinical workflows. 251~285，395~421 

3 Discuss ethical concerns of how the model could be used. 449~472 

4 Decide what groups to classify as protected. No relevant 

5 Study whether the historical data are affected by health care disparities that could lead to label bias. If so, investigate alternative labels. 221~250 

Data collection  

6 Collect and document training data to build a machine-learning model. 103~142, 563~592 

7 
Ensure that patients in the protected group can be identified (weighing cohort bias against privacy concerns). Assess whether the protected 
group is represented adequately in terms of numbers and features. 

221~250 

Training  

8 Train a model taking into account the fairness goals. 86~101, 185~191 

Evaluation  

9 Measure important metrics and allocation across groups. 192~220, 221~250 

10 Compare deployment data with training data to ensure comparability. 286~313, 410~421 

11 Assess the usefulness of predictions to clinicians initially without affecting patients. 251~273 

Launch review  

12 Evaluate whether a model should be launched with all stakeholders, including representatives from the protected group. No relevant 

13 Monitored deployment 410~421 

14 
Systematically monitor data and important metrics throughout deployment. Gradually launch and continuously evaluate metrics with 
automated alerts. Consider a formal clinical trial design to assess patient outcomes. Periodically collect feedback from clinicians and patients. 

410~421 

 



 

 

C. The characteristics of patients of our studies 
 

 The Derivation Dataset The External Testing Dataset 

 

The First Medical 
Centers of the Chinese 
PLA General Hospital  

 (n=12,685) 

The Third Medical 
Centers of Chinese PLA 

General Hospital 
(n=1,828) 

The Sixth Medical 
Center of the Chinese 
PLA General Hospital  

(n=2,261) 

The Seventh Medical 
Center of the Chinese 
PLA General hospital 

 (n=1,570) 

The Nanjing Drum 
Tower Hospital  

 (n=16,982) 
 

Patients’ demographics, Median, [IQR]   

Age, years 58.0 [47.0, 66.0] 45.0 [29.0, 58.0] 59.0 [48.0, 66.0] 56.0 [40.0, 68.0] 57.0[47.0,67.0]  

Male, count (average) 8101 (63.9) 897 (49.1) 1426 (63.1) 955 (60.8) 9824 (57.8)  

Hight, cm, 165 [159.0, 171.0] 164 [160.5, 170.0]  168 [160.0, 172.0] 165 [158.5, 170.5] 165[160.0,171.0]  

Weight, kg, 67.0 [59.0, 75.5] 58.0 [50.0, 68.0] 66.0 [58.0, 75.0] 66.0 [59.0, 74.2] 65[57.3,75.0]  

Commodities, count (average)   

Hypertension 6798 (53.6) 888 (48.6) 1328 (58.7) 609 (38.8) 10763 (63.4)  

Diabetes 3890 (30.7) 178 (9.7) 424 (18.8) 240 (15.3) 3826 (22.5)  

Congestive heart failure 3970 (31.3) 594 (32.5) 465 (20.6) 288 (18.3) 8480 (49.9)  

pulmonary disease 897 (7.1) 70 (3.8) 922 (40.8) 102 (6.5) 5437 (32.0)  

Chronic kidney disease 398 (3.1) 36 (2.0) 54 (2.4) 17 (1.1) 999 (5.9)  

Type of surgery, count (average)   

CABG alone 4877 (38.4) 324 (17.7) 1147 (50.7) 690 (43.9) 2031 (12.0)  

Valve surgery alone 4263 (33.6) 712 (38.9) 618 (27.3) 351 (22.4) 5272 (31.0)  

CABG and valve surgery 451 (3.6) 0 (0.0) 6 (0.3) 0 (0.0) 1046 (6.2)  

Aortic surgery 776 (6.1) 14 (0.8) 135 (6.0) 94 (6.0) 3420 (20.1)  

Congenital Heart Surgery 1057 (8.3) 646 (35.3) 213 (9.4) 320 (20.4) 1756 (10.3)  

Others 1261 (9.9) 132 (7.2) 142 (6.3) 115 (7.3) 3457 (20.4)  

Surgery characteristics, count (average)   



 

 

IQR, Interquartile range; CABG, coronary artery bypass grafting; 

  

Number of surgeries 
involving cardiopulmonary 
bypass 

11167 (88.0) 1565 (85.6) 1038 (45.9) 197 (12.5) 12717 (71.1)  

Use of intra-aortic balloon 
pump 

478 (3.8) 29 (1.6) 258 (11.4) 19 (1.2) 257 (1.5)  

Use of ECMO 22 (0.2) 2 (0.1) 19 (0.8) 0 (0.0) 166 (1)  

Preoperative laboratories, Median, [IQR]   

Serum platelet, 10*9/L 193.0 [156.0, 234.0] 199.0 [163.0, 241.0] 204.0 [166.0, 246.0] 207.0 [168.5, 256.5] 176.0[138.0,220.0]  

Mean Corpusular Hemoglobin 
Concerntration, g/L 

338.0 [330.0, 346.0] 333.0 [324.0, 340.0] 338.0 [330.0, 34 5.0] 329.0 [322.0, 336.0] 335.0[327.0,342.0]  

Serum albumin, g/L 41.0 [38.5, 43.4] 41.9 [39.2, 44.7] 40.3 [37.6, 42.7] 40.6 [37.8, 43.7] 39.8[37.5,41.9]  

Serum potassium, mmol/L 4.08 [3.85, 4.33] 3.99 [3.74, 4.25] 3.92 [3.60, 4.20] 3.96 [3.76, 4.19] 3.99[3.75,4.24]  

blood urea nitrogen, mmol/L 5.64 [4.60, 7.02] 5.73 [4.58, 7.12] 5.60 [4.60, 6.90] 5.54 [4.40, 6.95] 6.37[5.1,8.21]  

Serum creatinine, umol/L 75.2 [64.1, 88.2] 63.0 [53.0, 76.0] 84.6 [73.9, 97.0] 69.0 [58.0, 81.0] 67.0[56.0,81.0]  



 

 

D. The definition of clinically relevant variables 
Demographics, clinical and main surgery characteristics were retrospectively retrieved from patients’ medical history and electronic medical charts at each 
center for the PRIDE and HIS registry for patients enrolled. 

Hypertension was defined as an history of high blood pressure diagnosed or treated by a physician, being in treatment with anti-hypertensive drugs or 
admission blood pressure >140/90 mmHg.  

Diabetes mellitus was defined as an history of diabetes mellitus diagnosed or treated by a physician, being in treatment with hypoglycaemic drugs or an 
admission Hb1Ac value >6.5% (48 mmol/mol).  

Heart Failure was defined as there are symptoms and/or signs of congestion in systemic and/or pulmonary circulation, requiring treatment with diuretics. 
Chronic kidney disease (CKD) was defined as history of chronic renal insufficiency with an estimated glomerular filtration rate (eGFR) < 60ml/min/1.73 

m2 for more than 3 months. 
Respiratory disease was defined as includes chronic obstructive pulmonary disease, chronic bronchitis and sleep apnea hypopnea syndrome. 
Left ventricular ejection fraction (LVEF) was assessed at discharge by 2D transthoracic echocardiography and computed according to bidimensional 

Simpson formula [(left ventricular end diastolic volume – left ventricular end systolic volume)/ left ventricular end diastolic volume)]. 
  



 

 

E. All variables included in the model training process. 
Demographic Chronic Kidney 

Disease 
Ticagrelor Hematocrit 

Measurement 
Calcium Urine White 

Blood Cells 
Examination 
(Microscopy) 

Fibrinogen 
Measurement 

Urine Yeast Cells 

Age Intra-aortic balloon 
pump (IABP) 

Beta Blocker Mean Corpuscular 
Volume (MCV) 

Direct Bilirubin Urine Epithelial 
Cells 
Examination 
(Microscopy) 

International 
Normalized Ratio 
(INR) 

Urine 70% Red 
Cell Forward 
Scatter Position 

Gender Previous MI 
(myocardial 
infarction) 

Statin Platelet Count Partial pressure of 
Carbon Dioxide 

Urine Specific 
Gravity 
Measurement 

Total Bile Acids Mean Platelet 
Volume 
Measurement 
(MPV) 

Body Height Previous CABG Bicarbonate Mean Corpuscular 
Hemoglobin (MCH) 

Urine Small 
Round Epithelial 
Cells 

Urine pH 
Measurement 

Lactate 
Dehydrogenase 
(LDH) 

Plasma D-Dimer 
Measurement 

Body Weight Previous PCI 
(percutaneous 
coronary 
intervention) 

Glucose Mean Corpuscular 
Hemoglobin 
Concentration 
(MCHC) 

Inorganic 
Phosphorus 

Urine White 
Blood Cell 
Examination 

Alkaline 
Phosphatase 
(ALP) 

Creatine Kinase 
Isoenzyme (CK-
MB) ng/ml 

Surgery information Previous Stroke  Oxygen 
saturation 

Troponin T Creatine Kinase 
Isoenzyme (CK-
MB) U/L 

Urine Nitrite 
Test 

Gamma-Glutamyl 
Transferase 
(GGT) 

Thrombin Time 
Measurement 

Surgery type Left Ventricular 
Ejection Fraction 
(LVEF) 

Partial pressure 
of carbon 
dioxide and 
oxygen 

Sodium Creatine Kinase 
(CK) 

Urine Protein 
Qualitative Test 

Triglycerides Red Cell 
Distribution Width 
Measurement CV 
(RDW-CV) 

Emergency surgery Renal replacement 
therapy 

pH level Glucose Magnesium Urine Glucose 
Qualitative Test 

Total Cholesterol Direct Eosinophil 
Count 

Surgery duration Systolic arterial 
pressure 

Neutrophil 
Percentage 

Total Protein Direct Bilirubin Urine Ketone 
Test 

High-Density 
Lipoprotein 
Cholesterol 
(HDL-C) 

Blood Culture 
(Aerobic) + 
Identification + 
Drug Sensitivity 



 

 

Cardiopulmonary 
bypass 

mean arterial 
pressure 

Lymphocyte 
count 

Aspartate 
Aminotransferase 
(AST) 

C-Reactive 
Protein 
Measurement 
(CRP) 

Urine 
Biliverdin 
Qualitative Test 

Low-Density 
Lipoprotein 
Cholesterol 
(LDL-C) 

Irregular Antibody 
Screening 

Intraoperative blood 
transfusion 

diastolic arterial 
pressure 

Monocyte 
count 

Potassium Fecal White Blood 
Cells 

Urine Bilirubin 
Qualitative Test 

Occult blood test 
(stool) 

Urine Red Cell 
Forward Scatter 
Width 

Comorbidity Body temperature Eosinophil 
count 

Blood Urea Nitrogen 
(BUN) 

Fecal Red Blood 
Cells 

Urine Red 
Blood Cell 
Examination 

Urine Red Blood 
Cells 

Urine 
Conductivity 

Diabetes Mellitus heart rate Basophil count Serum Albumin Fecal Parasite Ova Urine Casts 
Examination 
(Microscopy) 

Urine White 
Blood Cells 

Hepatitis B e 
Antibody 
(Luminescence 
Method) 

Hypertension Respiratory 
frequency 

White Blood 
Cell Count 
(WBC) 

Alanine 
Transaminase 

Hepatitis B 
Surface Antibody 
(Luminescence 
Method) 

ABO Blood 
Group 
Identification 

Urine Epithelial 
Cells 

Hepatitis B Core 
Antibody 
(Luminescence 
Method) 

Respiratory System ACE 
inhibitors/ARBs 

Red Blood Cell 
Count (RBC) 

Chloride Hepatitis B e 
Antigen 

Prothrombin 
Time 
Measurement 

Urine Crystals RH Blood Typing 
(D Antigen) 

Heart Failure Clopidogrel Hemoglobin 
Measurement 

Serum Creatinine Urine Red Blood 
Cells Examination 
(Microscopy) 

Prothrombin 
Activity 
Measurement 

Serum Uric Acid 
 



 

 

F. The AUROC of REACT and other methods at different time points. 

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind). The term "(Causal feat)" indicates that 

the model was constructed using causal variables identified through our methodology. 

 

 

 

 

 

 Mild AKI  Moderate AKI  Severe AKI  
 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

REACT 
0.886 / 
0.899 

0.886 / 
0.897 

0.887 / 
0.892 

0.857 / 
0.884 

0.930 / 
0.939 

0.931 / 
0.939 

0.932 / 
0.936 

0.904 / 
0.917 

0.964 / 
0.972 

0.965 / 
0.971 

0.964 / 
0.969 

0.937 / 
0.949 

MLP 
0.693 / 
0.831 

0.688 / 
0.829 

0.679 / 
0.823 

0.666 / 
0.830 

0.726 / 
0.871 

0.721 / 
0.867 

0.711 / 
0.862 

0.704 / 
0.855 

0.755 / 
0.915 

0.748 / 
0.916 

0.739 / 
0.913 

0.738 / 
0.901 

LSTM 
0.753 / 
0.780 

0.755 / 
0.782 

0.758 / 
0.787 

0.737 / 
0.802 

0.806 / 
0.810 

0.808 / 
0.814 

0.809 / 
0.820 

0.794 / 
0.825 

0.848 / 
0.871 

0.849 / 
0.874 

0.850 / 
0.880 

0.832 / 
0.875 

Transformer 
0.840 / 
0.881 

0.839 / 
0.878 

0.835 / 
0.872 

0.799 / 
0.876 

0.892 / 
0.921 

0.892 / 
0.920 

0.889 / 
0.912 

0.855 / 
0.901 

0.927 / 
0.948 

0.927 / 
0.949 

0.926 / 
0.943 

0.899 / 
0.931 

MLP(Causal feat) 
0.717 / 
0.813 

0.719 / 
0.813 

0.719 / 
0.809 

0.707 / 
0.819 

0.713 / 
0.836 

0.711 / 
0.836 

0.717 / 
0.831 

0.719 / 
0.830 

0.710 / 
0.864 

0.711 / 
0.861 

0.726 / 
0.859 

0.738 / 
0.865 

LSTM(Causal feat) 
0.713 / 
0.783 

0.717 / 
0.784 

0.721 / 
0.786 

0.699 / 
0.803 

0.784 / 
0.797 

0.788 / 
0.798 

0.789 / 
0.800 

0.767 / 
0.813 

0.830 / 
0.841 

0.832 / 
0.843 

0.833 / 
0.844 

0.811 / 
0.847 

Transformer 
(Causal feat) 

0.851 / 
0.877 

0.854 / 
0.877 

0.851 / 
0.870 

0.816 / 
0.872 

0.899 / 
0.921 

0.901 / 
0.922 

0.898 / 
0.916 

0.865 / 
0.903 

0.930 / 
0.947 

0.931 / 
0.949 

0.929 / 
0.943 

0.900 / 
0.928 



 

 

G. The AUPRC of REACT and other methods at different time points. 

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind). The term "(Causal feat)" indicates that 

the model was constructed using causal variables identified through our methodology. 

 

  

 Mild AKI  Moderate AKI  Severe AKI  
 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

REACT 
0.652 / 
0.663 

0.653 / 
0.654 

0.654 / 
0.637 

0.593 / 
0.599 

0.667 / 
0.688 

0.668 / 
0.682 

0.669 / 
0.670 

0.603 / 
0.607 

0.668 / 
0.739 

0.670 / 
0.737 

0.670 / 
0.724 

0.606 / 
0.665 

MLP 
0.280 / 
0.475 

0.278 / 
0.464 

0.266 / 
0.445 

0.259 / 
0.434 

0.213 / 
0.424 

0.212 / 
0.408 

0.200 / 
0.387 

0.195 / 
0.355 

0.155 / 
0.402 

0.153 / 
0.385 

0.143 / 
0.368 

0.143 / 
0.347 

LSTM 
0.387 / 
0.428 

0.388 / 
0.424 

0.385 / 
0.419 

0.367 / 
0.425 

0.347 / 
0.381 

0.348 / 
0.379 

0.343 / 
0.375 

0.328 / 
0.367 

0.308 / 
0.387 

0.311 / 
0.391 

0.309 / 
0.396 

0.292 / 
0.388 

Transformer 
0.564 / 
0.592 

0.562 / 
0.583 

0.553 / 
0.564 

0.516 / 
0.545 

0.579 / 
0.584 

0.577 / 
0.574 

0.566 / 
0.553 

0.527 / 
0.501 

0.590 / 
0.607 

0.590 / 
0.604 

0.579 / 
0.590 

0.541 / 
0.540 

MLP(Causal feat) 
0.272 / 
0.417 

0.273 / 
0.413 

0.272 / 
0.393 

0.264 / 
0.389 

0.162 / 
0.324 

0.163 / 
0.315 

0.165 / 
0.292 

0.163 / 
0.277 

0.086 / 
0.250 

0.088 / 
0.242 

0.090 / 
0.226 

0.092 / 
0.230 

LSTM(Causal feat) 
0.289 / 
0.388 

0.290 / 
0.383 

0.288 / 
0.375 

0.271 / 
0.379 

0.226 / 
0.298 

0.227 / 
0.292 

0.223 / 
0.285 

0.210 / 
0.278 

0.158 / 
0.271 

0.158 / 
0.269 

0.156 / 
0.271 

0.150 / 
0.278 

Transformer 
(Causal feat) 

0.547 / 
0.594 

0.551 / 
0.588 

0.545 / 
0.563 

0.501 / 
0.540 

0.540 / 
0.605 

0.542 / 
0.600 

0.537 / 
0.575 

0.491 / 
0.523 

0.529 / 
0.628 

0.531 / 
0.636 

0.525 / 
0.611 

0.476 / 
0.559 



 

 

H. The AUROC of REACT at different time points in different subgroups in internal validation. 

  Mild AKI Moderate AKI Severe AKI 
  6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

Gender 
Male 0.904 0.901 0.9 0.89 0.944 0.95 0.942 0.923 0.982 0.979 0.977 0.96 

Female 0.885 0.882 0.874 0.877 0.919 0.923 0.918 0.899 0.955 0.949 0.956 0.931 

Center 
The First Center 0.899 0.896 0.891 0.883 0.944 0.935 0.935 0.917 0.972 0.969 0.968 0.943 

The Third Center 0.892 0.905 0.91 0.918 0.959 0.946 0.954 0.953 0.989 0.988 0.982 0.981 

Age 

18 - 35 0.907 0.89 0.9 0.899 0.943 0.943 0.947 0.941 0.987 0.982 0.98 0.975 

35 - 45 0.939 0.924 0.917 0.914 0.981 0.981 0.975 0.951 0.99 0.985 0.989 0.964 

45 - 55 0.901 0.906 0.908 0.907 0.953 0.943 0.949 0.949 0.978 0.974 0.976 0.974 

55 - 65 0.888 0.89 0.874 0.871 0.922 0.915 0.901 0.886 0.962 0.962 0.961 0.927 

65 - 75 0.898 0.9 0.885 0.868 0.945 0.94 0.929 0.906 0.953 0.955 0.955 0.93 

75 - 100 0.938 0.903 0.894 0.881 0.968 0.954 0.937 0.924 0.994 0.992 0.987 0.986 

Year 

2010 - 2012 0.904 0.901 0.893 0.883 0.95 0.95 0.943 0.928 0.983 0.984 0.983 0.95 

2012 - 2014 0.912 0.914 0.912 0.885 0.957 0.948 0.958 0.94 0.986 0.986 0.985 0.966 

2014 - 2016 0.902 0.894 0.897 0.883 0.93 0.935 0.928 0.904 0.981 0.98 0.978 0.957 

2016 - 2018 0.872 0.885 0.874 0.878 0.899 0.912 0.911 0.895 0.957 0.93 0.94 0.919 

2018 - 2020 0.909 0.899 0.889 0.882 0.947 0.936 0.938 0.909 0.959 0.964 0.956 0.949 

2020 - 2022 0.894 0.897 0.903 0.889 0.905 0.933 0.92 0.893 0.969 0.965 0.96 0.947 

Surgery  
Type 

Artery Surgery 0.903 0.894 0.914 0.895 0.925 0.941 0.935 0.928 0.953 0.961 0.953 0.928 

Congenital Heart Surgery 0.901 0.899 0.904 0.876 0.959 0.956 0.97 0.934 0.955 0.953 0.964 0.921 

CABG 0.903 0.895 0.891 0.88 0.953 0.947 0.945 0.928 0.99 0.989 0.984 0.968 

Pericardiectomy 0.913 0.912 0.896 0.892 0.904 0.887 0.855 0.842 0.989 0.993 0.992 0.953 

Valve Surgery 0.901 0.901 0.902 0.895 0.942 0.946 0.939 0.925 0.977 0.974 0.975 0.965 

CABG+Valve Surgery 0.864 0.897 0.861 0.865 0.912 0.907 0.899 0.902 0.975 0.916 0.961 0.909 



 

 

CABG, coronary artery bypass grafting. 

 

  

Valve Surgery+Congenital Heart Surgery 0.909 0.921 0.914 0.869 0.989 0.982 0.985 0.952 0.99 0.979 0.963 0.925 

Valve Surgery+Artery Surgery 0.767 0.866 0.844 0.824 0.431 0.436 0.602 0.692 0.472 0.631 0.651 0.749 

Others Surgery 0.872 0.878 0.85 0.856 0.936 0.914 0.894 0.883 0.966 0.918 0.934 0.905 

Mode of  
admission 

Normal 0.903 0.895 0.893 0.883 0.936 0.941 0.932 0.915 0.974 0.968 0.97 0.948 

Emergency 0.923 0.901 0.938 0.883 0.974 0.971 0.983 0.974 0.953 0.964 0.975 0.981 



 

 

I. The AUPRC of REACT at different time points in different subgroups in internal validation. 
  Mild AKI Moderate AKI Severe AKI 

  6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

Gender 
Male 0.695 0.682 0.672 0.626 0.725 0.733 0.695 0.645 0.808 0.801 0.799 0.735 

Female 0.589 0.588 0.579 0.557 0.598 0.59 0.595 0.522 0.608 0.602 0.587 0.557 

Center 
The First Center 0.666 0.662 0.64 0.595 0.695 0.668 0.665 0.605 0.731 0.719 0.725 0.655 

The Third Center 0.602 0.626 0.618 0.624 0.639 0.654 0.706 0.69 0.797 0.781 0.735 0.707 

Age 

18 - 35 0.702 0.691 0.684 0.62 0.837 0.81 0.779 0.702 0.814 0.868 0.773 0.759 

35 - 45 0.764 0.753 0.728 0.682 0.837 0.834 0.81 0.759 0.825 0.812 0.838 0.791 

45 - 55 0.601 0.63 0.618 0.593 0.694 0.703 0.698 0.617 0.668 0.743 0.759 0.714 

55 - 65 0.67 0.657 0.661 0.606 0.712 0.692 0.709 0.653 0.752 0.755 0.74 0.707 

65 - 75 0.697 0.689 0.653 0.621 0.687 0.646 0.649 0.597 0.665 0.68 0.683 0.659 

75 - 100 0.767 0.756 0.752 0.66 0.836 0.815 0.775 0.688 0.755 0.804 0.801 0.685 

Year 

2010 - 2012 0.647 0.647 0.625 0.573 0.651 0.637 0.622 0.562 0.696 0.722 0.709 0.584 

2012 - 2014 0.723 0.703 0.699 0.627 0.799 0.756 0.777 0.694 0.846 0.843 0.829 0.812 

2014 - 2016 0.692 0.677 0.693 0.648 0.741 0.714 0.719 0.658 0.751 0.726 0.739 0.691 

2016 - 2018 0.626 0.626 0.584 0.582 0.637 0.641 0.657 0.592 0.742 0.671 0.626 0.598 

2018 - 2020 0.686 0.689 0.651 0.609 0.721 0.689 0.672 0.589 0.694 0.725 0.681 0.696 

2020 - 2022 0.591 0.593 0.603 0.55 0.583 0.654 0.592 0.538 0.766 0.757 0.757 0.661 

Surgery  
Type 

Artery Surgery 0.671 0.676 0.708 0.631 0.656 0.711 0.685 0.626 0.676 0.718 0.674 0.623 

Congenital Heart Surgery 0.735 0.713 0.723 0.643 0.808 0.79 0.833 0.734 0.725 0.735 0.779 0.716 

CABG 0.689 0.673 0.656 0.6 0.751 0.716 0.701 0.647 0.82 0.831 0.805 0.727 

Pericardiectomy 0.713 0.685 0.636 0.623 0.588 0.602 0.435 0.45 0.552 0.772 0.534 0.484 

Valve Surgery 0.629 0.624 0.617 0.596 0.653 0.642 0.631 0.583 0.683 0.687 0.631 0.611 

CABG+Valve Surgery 0.57 0.641 0.542 0.539 0.689 0.644 0.593 0.529 0.843 0.715 0.754 0.617 



 

 

Valve Surgery+Congenital Heart Surgery 0.8 0.813 0.785 0.677 0.897 0.847 0.903 0.844 0.86 0.816 0.815 0.744 

Valve Surgery+Artery Surgery 0.264 0.461 0.306 0.24 0.009 0.008 0.015 0.03 0.014 0.014 0.008 0.041 

Others Surgery 0.674 0.684 0.609 0.583 0.778 0.701 0.692 0.64 0.924 0.823 0.863 0.726 

Mode of  
admission 

Normal 0.67 0.651 0.637 0.589 0.674 0.686 0.661 0.604 0.749 0.716 0.725 0.665 

Emergency 0.831 0.77 0.827 0.712 0.827 0.837 0.888 0.824 0.656 0.75 0.763 0.86 

CABG, coronary artery bypass grafting. 

  



 

 

J. The AUROC of REACT at different time points in different subgroups in external test. 
  Mild AKI Moderate AKI Severe AKI 

  6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

Gender 
Male 0.892 0.894 0.892 0.864 0.939 0.94 0.941 0.914 0.971 0.971 0.971 0.948 

Female 0.879 0.881 0.881 0.857 0.914 0.915 0.919 0.892 0.945 0.952 0.95 0.917 

Center 

The Sixth Center 0.839 0.838 0.825 0.808 0.906 0.9 0.899 0.875 0.951 0.944 0.945 0.906 

The Seventh Center 0.85 0.843 0.844 0.87 0.882 0.884 0.884 0.873 0.952 0.943 0.933 0.887 

The Nangjing Drum 0.891 0.891 0.893 0.861 0.933 0.934 0.936 0.906 0.966 0.966 0.966 0.94 

Age 

18 - 35 0.901 0.9 0.9 0.871 0.923 0.919 0.923 0.904 0.954 0.947 0.946 0.916 

35 - 45 0.917 0.916 0.919 0.894 0.942 0.945 0.947 0.928 0.97 0.973 0.971 0.952 

45 - 55 0.899 0.899 0.903 0.868 0.934 0.94 0.941 0.91 0.972 0.976 0.972 0.942 

55 - 65 0.878 0.88 0.882 0.851 0.933 0.934 0.939 0.907 0.966 0.967 0.965 0.938 

65 - 75 0.874 0.872 0.875 0.84 0.922 0.926 0.928 0.896 0.96 0.962 0.957 0.937 

75 - 100 0.858 0.859 0.856 0.825 0.893 0.901 0.894 0.865 0.955 0.944 0.944 0.913 

Year 

2010 - 2012 0.876 0.876 0.877 0.844 0.926 0.918 0.918 0.89 0.957 0.96 0.953 0.922 

2012 - 2014 0.862 0.862 0.863 0.844 0.908 0.903 0.911 0.886 0.956 0.958 0.954 0.92 

2014 - 2016 0.873 0.872 0.862 0.831 0.923 0.918 0.924 0.89 0.963 0.965 0.957 0.92 

2016 - 2018 0.881 0.885 0.887 0.859 0.931 0.932 0.927 0.901 0.957 0.958 0.957 0.928 

2018 - 2020 0.901 0.903 0.907 0.88 0.942 0.939 0.94 0.922 0.969 0.969 0.97 0.954 

2020 - 2022 0.884 0.884 0.886 0.852 0.931 0.933 0.934 0.902 0.967 0.965 0.967 0.937 

Surgery  
Type 

Artery Surgery 0.92 0.918 0.916 0.895 0.948 0.943 0.948 0.928 0.965 0.964 0.964 0.943 

Congenital Heart Surgery 0.844 0.853 0.863 0.82 0.907 0.895 0.903 0.879 0.967 0.963 0.961 0.954 

CABG 0.843 0.847 0.846 0.818 0.926 0.932 0.937 0.9 0.959 0.965 0.961 0.935 

Pericardiectomy 0.849 0.834 0.831 0.788 0.882 0.895 0.876 0.844 0.907 0.931 0.923 0.886 

Valve Surgery 0.877 0.873 0.87 0.849 0.915 0.911 0.913 0.877 0.942 0.946 0.937 0.902 

CABG+Artery Surgery 0.869 0.879 0.883 0.856 0.924 0.925 0.925 0.907 0.935 0.95 0.945 0.917 



 

 

CABG+Valve Surgery 0.882 0.881 0.881 0.855 0.917 0.917 0.922 0.897 0.967 0.963 0.965 0.936 

Valve Surgery+Congenital Heart 
Surgery 

0.876 0.873 0.889 0.835 0.921 0.902 0.925 0.881 0.972 0.975 0.986 0.961 

Valve Surgery+Artery Surgery 0.892 0.889 0.895 0.86 0.947 0.942 0.941 0.919 0.982 0.979 0.982 0.966 

Others Surgery 0.895 0.89 0.899 0.877 0.936 0.944 0.94 0.91 0.973 0.976 0.979 0.966 

Mode of 
admission 

Normal 0.874 0.874 0.875 0.844 0.923 0.923 0.925 0.892 0.957 0.959 0.959 0.926 

Emergency 0.908 0.907 0.908 0.891 0.924 0.926 0.926 0.907 0.95 0.953 0.951 0.929 

CABG, coronary artery bypass grafting. 

  



 

 

K. The AUPRC of REACT at different time points in different subgroups in external test. 
  Mild AKI Moderate AKI Severe AKI 

  6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

Gender 
Male 0.687 0.687 0.687 0.63 0.712 0.717 0.713 0.647 0.719 0.726 0.725 0.655 

Female 0.599 0.597 0.601 0.546 0.589 0.588 0.58 0.521 0.539 0.555 0.556 0.502 

Center 

The Sixth Center 0.606 0.607 0.592 0.554 0.596 0.595 0.601 0.55 0.593 0.582 0.581 0.523 

The Seventh Center 0.579 0.546 0.543 0.528 0.627 0.612 0.613 0.556 0.765 0.76 0.719 0.637 

The Nangjing Drum 0.661 0.662 0.667 0.599 0.68 0.674 0.677 0.611 0.675 0.683 0.674 0.611 

Age 

18 – 35 0.705 0.702 0.701 0.633 0.739 0.714 0.714 0.666 0.755 0.739 0.746 0.663 

35 – 45 0.758 0.752 0.756 0.707 0.74 0.75 0.749 0.709 0.736 0.742 0.735 0.676 

45 – 55 0.693 0.688 0.699 0.619 0.724 0.734 0.732 0.649 0.734 0.726 0.721 0.663 

55 – 65 0.616 0.621 0.625 0.558 0.662 0.66 0.654 0.587 0.641 0.645 0.65 0.581 

65 – 75 0.618 0.622 0.634 0.568 0.625 0.628 0.644 0.572 0.634 0.647 0.628 0.585 

75 – 100 0.622 0.621 0.619 0.569 0.542 0.561 0.54 0.491 0.512 0.505 0.486 0.429 

Year 

2010 – 2012 0.681 0.682 0.674 0.624 0.68 0.649 0.66 0.618 0.656 0.652 0.65 0.595 

2012 – 2014 0.61 0.61 0.613 0.569 0.607 0.598 0.61 0.545 0.575 0.575 0.588 0.524 

2014 – 2016 0.628 0.621 0.603 0.545 0.637 0.636 0.641 0.57 0.634 0.653 0.613 0.573 

2016 – 2018 0.661 0.659 0.659 0.593 0.673 0.678 0.665 0.597 0.699 0.703 0.694 0.614 

2018 – 2020 0.712 0.715 0.726 0.668 0.726 0.723 0.725 0.677 0.709 0.721 0.724 0.68 

2020 – 2022 0.631 0.625 0.629 0.56 0.65 0.661 0.657 0.586 0.666 0.648 0.662 0.579 

Surgery 
Type 

Artery Surgery 0.81 0.809 0.806 0.76 0.804 0.796 0.801 0.756 0.767 0.75 0.753 0.701 

Congenital Heart Surgery 0.513 0.538 0.558 0.459 0.52 0.533 0.531 0.479 0.506 0.484 0.467 0.517 

CABG 0.535 0.539 0.545 0.479 0.561 0.576 0.59 0.51 0.58 0.568 0.566 0.481 

Pericardiectomy 0.599 0.596 0.58 0.539 0.472 0.532 0.499 0.43 0.492 0.435 0.448 0.483 

Valve Surgery 0.578 0.568 0.566 0.522 0.591 0.581 0.59 0.51 0.601 0.612 0.574 0.507 

CABG+Artery Surgery 0.66 0.665 0.66 0.621 0.642 0.669 0.656 0.608 0.65 0.612 0.584 0.528 



 

 

CABG+Valve Surgery 0.613 0.614 0.625 0.583 0.547 0.572 0.578 0.539 0.656 0.672 0.656 0.617 

Valve Surgery+Congenital Heart 
Surgery 

0.498 0.542 0.562 0.439 0.502 0.466 0.509 0.438 0.632 0.615 0.64 0.564 

Valve Surgery+Artery Surgery 0.556 0.565 0.584 0.517 0.602 0.61 0.604 0.553 0.589 0.596 0.622 0.572 

Others Surgery 0.598 0.625 0.648 0.599 0.624 0.664 0.672 0.581 0.758 0.752 0.766 0.72 

Mode of 
admission 

Normal 0.588 0.586 0.591 0.527 0.605 0.602 0.607 0.543 0.627 0.632 0.627 0.56 

Emergency 0.816 0.815 0.816 0.784 0.773 0.778 0.777 0.738 0.747 0.747 0.732 0.688 

CABG, coronary artery bypass grafting. 

 
 
 
 
 
  



 

 

L. The number of input variables and the model performance of REACT with different λ. 

The notation "/" separates the performance metrics of our model on external test sets (before) from its performance on internal validation sets (behind).  

  

Λ 
Variable 

num 
Mild AKI  Moderate AKI  Severe AKI  

6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 

AUROC 

5e-05 1 
0.88 
/0.82  

0.88 
/0.82  

0.88 
/0.82  

0.88 
/0.78  

0.91 
/0.86  

0.91 
/0.86  

0.90 
/0.86  

0.89 
/0.82  

0.93 
/0.91  

0.93 
/0.91  

0.92 
/0.91  

0.91 
/0.88  

5e-04 6 
0.89 
/0.84  

0.89 
/0.84  

0.89 
/0.84  

0.89 
/0.80  

0.92 
/0.88  

0.92 
/0.89  

0.92 
/0.89  

0.91 
/0.85  

0.95 
/0.93  

0.95 
/0.93  

0.95 
/0.93  

0.94 
/0.90  

5e-03 31 
0.90 
/0.89  

0.90 
/0.89  

0.89 
/0.89  

0.88 
/0.86  

0.94 
/0.93  

0.94 
/0.93  

0.94 
/0.93  

0.92 
/0.90  

0.97 
/0.96  

0.97 
/0.96  

0.97 
/0.96  

0.95 
/0.94  

5e-02 59 
0.84 
/0.80  

0.84 
/0.80  

0.83 
/0.81  

0.83 
/0.78  

0.88 
/0.84  

0.88 
/0.84  

0.88 
/0.84  

0.86 
/0.81  

0.91 
/0.87  

0.91 
/0.87  

0.91 
/0.87  

0.89 
/0.84  

AUPRC 

5e-05 1 
0.82 
/0.61  

0.82 
/0.61  

0.82 
/0.59  

0.78 
/0.57  

0.86 
/0.57  

0.86 
/0.57  

0.86 
/0.55  

0.82 
/0.50  

0.91 
/0.61  

0.91 
/0.60  

0.91 
/0.58  

0.88 
/0.53  

5e-04 6 
0.84 
/0.62  

0.84 
/0.62  

0.84 
/0.60  

0.80 
/0.57  

0.88 
/0.60  

0.89 
/0.59  

0.89 
/0.58  

0.85 
/0.52  

0.93 
/0.64  

0.93 
/0.63  

0.93 
/0.61  

0.90 
/0.56  

5e-03 31 
0.89 
/0.66  

0.89 
/0.65  

0.89 
/0.64  

0.86 
/0.60  

0.93 
/0.69  

0.93 
/0.68  

0.93 
/0.67  

0.90 
/0.61  

0.96 
/0.74  

0.96 
/0.74  

0.96 
/0.72  

0.94 
/0.66  

5e-02 59 
0.80 
/0.48  

0.80 
/0.47  

0.81 
/0.46  

0.78 
/0.43  

0.84 
/0.44  

0.84 
/0.43  

0.84 
/0.41  

0.81 
/0.37  

0.87 
/0.39  

0.87 
/0.38  

0.87 
/0.36  

0.84 
/0.33  



 

 

M. The sensitivity (True Positive Rate) corresponding to different CSA-AKI risk score thresholds. 
 

 
  

Threshold 
Mild AKI Moderate AKI Severe AKI 

6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48hrs 

0.01 0.97  0.98  0.98  0.97  0.94  0.94  0.95  0.95  0.95  0.95  0.95  0.93  

0.02 0.95  0.96  0.96  0.95  0.91  0.91  0.92  0.91  0.93  0.92  0.93  0.87  

0.05 0.91  0.92  0.91  0.90  0.85  0.85  0.86  0.81  0.86  0.86  0.88  0.82  

0.1 0.85  0.86  0.85  0.82  0.77  0.78  0.79  0.72  0.80  0.80  0.82  0.76  

0.2 0.75  0.77  0.75  0.67  0.68  0.68  0.69  0.61  0.71  0.72  0.74  0.68  

0.3 0.67  0.68  0.67  0.57  0.61  0.61  0.62  0.54  0.64  0.65  0.68  0.61  

0.4 0.60  0.61  0.60  0.49  0.56  0.56  0.58  0.49  0.58  0.59  0.62  0.54  

0.5 0.54  0.54  0.53  0.42  0.53  0.52  0.53  0.44  0.53  0.55  0.56  0.48  

0.6 0.47  0.47  0.47  0.35  0.49  0.47  0.49  0.38  0.48  0.49  0.51  0.42  

0.7 0.40  0.39  0.40  0.29  0.43  0.42  0.43  0.32  0.43  0.44  0.44  0.35  

0.8 0.33  0.32  0.33  0.22  0.37  0.35  0.35  0.25  0.37  0.39  0.39  0.28  

0.9 0.23  0.23  0.24  0.13  0.27  0.26  0.26  0.16  0.26  0.28  0.27  0.17  



 

 

N. The specificity (True Negative Rate) corresponding to different CSA-AKI risk score thresholds. 

 
 
  

Threshold 
Mild AKI Moderate AKI Severe AKI 

6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48hrs 

0.01 0.29  0.26  0.27  0.25  0.66  0.65  0.65  0.50  0.84  0.86  0.83  0.73  

0.02 0.42  0.40  0.39  0.38  0.78  0.77  0.77  0.65  0.90  0.91  0.90  0.86  

0.05 0.59  0.57  0.59  0.54  0.88  0.88  0.88  0.85  0.95  0.95  0.95  0.94  

0.1 0.75  0.73  0.75  0.70  0.93  0.93  0.93  0.93  0.97  0.97  0.97  0.96  

0.2 0.87  0.86  0.87  0.87  0.97  0.97  0.96  0.97  0.98  0.98  0.98  0.98  

0.3 0.92  0.91  0.92  0.93  0.98  0.98  0.98  0.98  0.99  0.99  0.98  0.99  

0.4 0.94  0.94  0.95  0.96  0.98  0.98  0.98  0.99  0.99  0.99  0.99  0.99  

0.5 0.96  0.96  0.97  0.98  0.99  0.99  0.99  0.99  0.99  0.99  0.99  0.99  

0.6 0.98  0.98  0.98  0.99  0.99  0.99  0.99  0.99  1.00  0.99  0.99  1.00  

0.7 0.99  0.99  0.99  0.99  0.99  0.99  0.99  1.00  1.00  1.00  1.00  1.00  

0.8 0.99  0.99  0.99  1.00  0.99  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

0.9 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  0.73  



 

 

O. The False discovery rate corresponding to different CSA-AKI risk score thresholds. 

 
  

Threshold 
Mild AKI Moderate AKI Severe AKI 

6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48hrs 

0.01 0.85  0.85  0.85  0.85  0.85  0.85  0.85  0.89  0.85  0.83  0.85  0.91  

0.02 0.82  0.83  0.83  0.83  0.79  0.79  0.79  0.86  0.77  0.75  0.78  0.84  

0.05 0.77  0.78  0.77  0.79  0.68  0.69  0.69  0.75  0.64  0.63  0.66  0.72  

0.1 0.69  0.70  0.69  0.73  0.57  0.58  0.58  0.62  0.55  0.54  0.57  0.62  

0.2 0.57  0.58  0.56  0.59  0.42  0.43  0.44  0.46  0.46  0.46  0.48  0.50  

0.3 0.48  0.49  0.48  0.47  0.35  0.35  0.36  0.37  0.40  0.41  0.43  0.44  

0.4 0.41  0.41  0.40  0.38  0.31  0.30  0.32  0.32  0.35  0.36  0.37  0.38  

0.5 0.34  0.34  0.33  0.31  0.28  0.27  0.28  0.27  0.30  0.31  0.32  0.32  

0.6 0.27  0.27  0.26  0.23  0.25  0.24  0.25  0.23  0.25  0.26  0.28  0.27  

0.7 0.20  0.19  0.20  0.17  0.21  0.20  0.21  0.19  0.21  0.23  0.23  0.20  

0.8 0.14  0.14  0.14  0.12  0.17  0.16  0.16  0.13  0.17  0.18  0.18  0.14  

0.9 0.10  0.10  0.10  0.06  0.11  0.11  0.11  0.07  0.13  0.13  0.13  0.09  



 

 

P. The recommend thresholds and its corresponding evaluation indexes. 

TPR, True Positive Rate, sensitivity; FDR, False Discovery Rate; TNR, True Negative Rate, specificity. 
  

  Mild AKI Moderate AKI Severe AKI 

 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48 hrs 6 hrs 12 hrs 24 hrs 48hrs 

External 
tests 

Threshold 0.11  0.12  0.11  0.14  0.05  0.06  0.06  0.07  0.04  0.04  0.05  0.07  

TPR 0.83  0.83  0.83  0.75  0.84  0.84  0.85  0.76  0.88  0.88  0.88  0.79  

FDR 0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  

TNR 0.77  0.77  0.78  0.80  0.89  0.89  0.89  0.90  0.94  0.94  0.95  0.95  

Internal 
Validation  

Threshold 0.09  0.10  0.10  0.12  0.04  0.04  0.04  0.07  0.02  0.02  0.03  0.05  

TPR 0.84  0.83  0.82  0.80  0.82  0.82  0.81  0.71  0.88  0.88  0.86  0.78  

FDR 0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  0.67  

TNR 0.78  0.79  0.80  0.80  0.91  0.92  0.92  0.93  0.95  0.95  0.96  0.96  



 

 

Q. Comparison of patient characteristics on cohorts whether AKI stage I is observed by doctors. 
 Observed Unobserved Unoccurred P-value 
 (n = 4,939) (n = 842) (n = 23,234)  

Sex (%)    0.003 

Female 1883 (38.1) 304 (36.1) 9385 (40.4)  

Male 3056 (61.9) 538 (63.9) 13840 (59.6)  

Age  
(median [IQR]) 

63.00 [53.00, 70.00] 56.00 [46.00, 66.00] 57.00 [47.00, 66.00] <0.001 

Center    <0.001 

The First Center 2177 (44.1) 220 (26.1) 8978 (38.6)  

The Third Center 162 (3.3) 74 (8.8) 709 (3.1)  

The Sixth Center 368 (7.5) 44 (5.2) 1524 (6.6)  

The Seventh Center 71 (1.4) 16 (1.9) 239 (1.0)  

The Nangjing Drum 2161 (43.8) 488 (58.0) 11784 (50.7)  

Commodities     

Hypertension 3639 (73.7) 632 (75.1) 12874 (55.4) <0.001 

Diabetes 1536 (31.1) 191 (22.7) 4688 (20.2) <0.001 

Congestive heart failure 2144 (43.4) 359 (42.6) 9731 (41.9) 0.137 

Pulmonary disease 1215 (24.6) 219 (26.0) 4928 (21.2) <0.001 

Chronic kidney disease 484 (9.8) 216 (25.7) 522 (2.2) <0.001 

Outcome     

Death (%) 236 (4.8) 96 (11.4) 97 (0.4) <0.001 

Length of Stay (median [IQR]) 22.86 [17.14, 32.02] 24.00 [16.00, 35.00] 19.04 [14.95, 26.00] <0.001 

 



 

 

R. Convergence conditions for Granger causality 
We show in Theorem 1 that under certain assumptions, the discovered causal vector will converge to the true Granger causal relationships.  

Assumption 1. ∃λ!, ∀𝑖 = 1,… ,𝑁, ℒpred(𝒀, 𝑿⊙ 𝑺"#!) − ℒpred(𝒀, 𝑿⊙ 𝑺"#$) > λ! if and only if time-series 𝑖 Granger cause 𝑌, where 𝑆"#% is set S with 
element 𝑠" = 𝑙. 

Theorem 1.   Given a time-series dataset 〈𝑿, 𝒀〉 and prediction model 𝑓&(∙). Under Assumptions 1, ∃𝜆, CPG element 𝑚" = 𝜎(𝜃") converges to 0 if time-
series 𝑖 does not Granger cause 𝑌, and 𝑚" converges to 1 if time-series i Granger cause 𝑌. 

The implications behind Assumption 1 can be intuitively explained. It means there exists a threshold λ! to binarize ℒpred(𝒀, 𝑿⊙ 𝑺"#!) − ℒpred(𝒀, 𝑿⊙ 𝑺"#$), 
serving as an indicator as to whether time-series 𝑖 contributes to prediction of 𝑌. The proof of Theorem1 is provided in the supplementary material.  

Proof of Theorem 1: In Causal Discovery Stage the loss function 

ℒgraph(𝑿, 𝒀, 𝜽) = ℒpred(𝒀, 𝑿⊙ 𝑺)  + 𝜆‖𝜎(𝜽)‖$ 

where 𝑠" ∼ 𝐵𝑒𝑟Gσ(θ")J. We use the REINFORCE [1] trick for theoretical analysis and 𝜃" 's gradient is calculated as 

∂
∂θ'

𝔼(!MℒgraphN = 𝔼("Mℒpred(𝒀, 𝑿⊙ 𝑺)N + 𝜆𝜎)G𝜃*,",J

= ℒpred(𝒀, 𝑿⊙ 𝑺"#$)𝜎(𝜃")
𝜕
𝜕𝜃'

𝜎(𝜃") + ℒpred(𝒀, 𝑿⊙ 𝑺"#!)G1 − 𝜎(𝜃")J
𝜕
𝜕𝜃'

G1 − 𝜎(𝜃")J + 𝜆𝜎)G𝜃*,",J

= 𝜎)(𝜃")Gℒpred(𝒀, 𝑿⊙ 𝑺"#$) − ℒpred(𝒀, 𝑿⊙ 𝑺"#!) + 𝜆J 

where 𝑆"#% is set S with element 𝑠" = 𝑙, and 𝑓&(𝑋 ⊙ 𝑆) ≡ 𝑓&G𝑥-./:-.$,$ ∙ 𝑠$, … , 𝑥-.*:-.$,1 ∙ 𝑠1J, where 𝜏 is the maximal time lag. According to Definition 1, 
time-series 𝑖 does not Granger cause 𝑌 if 𝑥-./:-.$," is invariant of the prediction of 𝑌. Then we have ∀𝑐 ∈ {1,… ,M}, 𝑓2,3G… , 𝑥-./," , … J = 𝑓2#(… ,0, … ), 

i.e., ℒpred(𝒀, 𝑿⊙ 𝑺"#$) = ℒpred(𝒀, 𝑿⊙ 𝑺"#!). Then we can derive that  

𝜕
𝜕𝜃'

𝔼(!MℒgraphN = 𝜆𝜎)(𝜃") 

This is a sigmoidal gradient, whose convergence is analyzed in [2]. Likewise, we have ∃𝑐 ∈ {1,… ,𝑀},  𝑓&,3G… , 𝑥-.*," , … J ≠ 𝑓&#(… ,0, … ) if time-series 𝑖 does 
not Granger cause 𝑌. With Assumption 1, ∃λ!, ∀𝑖 = 1,… ,𝑁, ℒpred(𝒀, 𝑿⊙ 𝑺"#!) − ℒpred(𝒀, 𝑿⊙ 𝑺"#$) > λ!. when we select the hyper-parameter λ < λ!, we have 

𝜕
𝜕𝜃'

𝔼(!MℒgraphN = 𝜎)(𝜃")Gℒpred(𝒀, 𝑿⊙ 𝑺"#$) − ℒpred(𝒀, 𝑿⊙ 𝑺"#!) + 𝜆J < 𝜎)(𝜃")(𝜆 − λ!) < 0 



 

 

This gradient is expected to be negative, and θ" will go towards +∞ and 𝑚" → 1. In our implementation, we use Gumbel-Softmax estimator for improved 
performance and lower variance [3]. 

  



 

 

S. Related works for causal discovery 
Our approach supports CSA-AKI prediction generalizable to different environments by identifying causal relationships, which is related to the area of causal 
discovery. Causal Discovery (or Causal Structural Learning), including static settings and dynamic time-series, has been a hot topic in machine learning and made 
big progress in the past decades. We roughly categorized these methods into multiple classes.  

(i) Constraint-based approaches: such as PC [4], FCI[5], build causal graphs by performing conditional independence tests. This line of works are later 
extended to time-series settings, e.g. tsFCI [6], and PCMCI [7]–[9]. 

(ii) Score-based learning algorithms: include recovering causal graphs by applying penalized Neural Ordinary Differential Equations or acyclicity constraint 
[10], [11].  

(iii) Additive Noise Model (ANM): infer causal graph based on additive noise assumption [12], under the assumptions of linear data generating process, no 
unobserved confounders, and disturbance variables have non-Gaussian distributions of non-zero variances. ANM is extended by [13] to nonlinear models with almost 
any nonlinearities and additive noise.  

(iv) Granger-causality-based approaches: Granger causality was initially introduced by [14] who proposed to analyze the temporal causal relationships by 
testing the help of a time-series on predicting another time-series. Recently, Deep Neural Networks (NNs) have been widely applied to nonlinear Granger causality 
discovery [2], [15]–[19].  

(v) Convergent Cross Mapping (CCM): proposed by [20] that reconstructs nonlinear state space for nonseparable weakly connected dynamic systems. This 
approach is later extended to situations of synchrony, confounding, or sporadic time-series [21]–[23].  

  



 

 

T. Implementation details 
We conduct experiments on a PC with Intel Core CPUs and NVIDIA GeForce RTX 3090 GPUs. We implement our algorithm and neural-network-based 

comparison algorithms with PyTorch1, XGBoost with python package xgboost2. 

a) Network Architecture 
Our causal learning model in REACT consists of two stages, outcomes prediction and causal discovery. The former stage utilize a neural network based on 

LSTM and MLP. To be able to handle both static and dynamic input, the network can be further divided into three parts: static encoder with MLP, dynamic encoder 
with LSTM, and decoder with another MLP. 

As for comparison models, “LSTM / Transformer” in Fig. 3 means the same architecture with LSTM / Transformer dynamic encoder. “MLP” means all-MLP 
network, i.e., flatten all dynamic and static input before feeding into a single MLP encoder. “MLP”, “LSTM”, and “XGBoost” are without causal discovery, i.e., all 
variables are used in the prediction. In the experiments shown in Extended Figure 5, we show that training a regular neural network (e.g. MLP, LSTM, Transformer) 
with only selected variables, i.e., performing feature selection before deep learning instead of our causal learning strategy. For this setting, we only use the selected 
variables as input and set other variables to 0, which permit using the same network architecture with the same hidden layer width. 

 
Supplementary Figure 1. Network architecture. 

 
1 https://pytorch.org/ 
2 https://pypi.org/project/xgboost/ 



 

 

 

b) Training Strategy 

Outcomes prediction stage. The learning rate is set to be relatively high initially and gradually decrease to 10% of the initial value (using 
torch.optim.lr_scheduler.StepLR, γ = 0.1$/565_896:;). 

Causal discovery stage. Initially, each element in the causal probability graph 𝜎(𝜽) is set to be 0.5, i.e. 𝜽 being all 0. The learning rate for this stage is set 
differently from the outcomes prediction stage. The learning rate also gradually decrease to 10% of the initial value. See the detailed settings of the parameters in the 
following section. To avoid the ‖𝜎(𝜽)‖$ from being too large, it is first divided by the total numbers of the elements in 𝜽 and then multiplied by λ. As a result 

XGBoost. Our dataset contains more than a million samples, which is too large to load into memory. We implement XGBoost with data iterator, each containing 
50000 samples. 

c) Parameter Search 
Hyperparameters play important roles in deep learning model developments. We perform standard parameter grid search for each of the deep learning models 

and our causal learning model. The best set of hyperparameters is selected by choosing the best performance on the validation dataset. Since each training takes hours 
or even days, we can only covers a few values in the grid search, which is demonstrated as follow. 

 

Parameters Ours MLP LSTM 

Batch size 512, 1024, 2048 512, 1024, 2048 512, 1024, 2048 / 

Total epoch number 10, 20, 40 10, 20, 40 10, 20, 40 / 

Activation LeakyReLU LeakyReLU LeakyReLU / 

Encoder layer 3, 6 3, 6 3, 6 / 

Decoder layer 3, 6 3, 6 3, 6 / 

Hidden width 32, 128 32, 128 32, 128 / 



 

 

  

Weight decay 0, 10!", 3 × 10!", 10!# 0, 10!", 3 × 10!", 10!# 0, 10!", 3 × 10!", 10!# / 

Dropout 0, 0.1, 0.25 0, 0.1, 0.25 0, 0.1, 0.25 / 

τ 0.1, 0.01 0.1, 0.01 0.1, 0.01 / 

λ 5 × 10!$, 5 × 10!", 5 × 10!#, 

5 × 10!% 

5 × 10!$, 5 × 10!", 5 × 10!#, 

5 × 10!% 

5 × 10!$, 5 × 10!", 5 × 10!#, 

5 × 10!% 

/ 



 

 

U. More Examples with Counterfactual Explanations   

 
Supplementary Figure U-1. A female patient in their 50s with hypertension, diabetes mellitus, and chronic heart failure was admitted to the hospital for coronary (aortic) coronary artery 

bypass grafting, mitral-valve replacement, and tricuspid valvuloplasty. The length of stay of the patients was 37 days. Creatinine, uric acid, and urea nitrogen indices were stable before 

surgery, with a slight increase in creatine kinase enzymes. Finally, the patient developed CSA-AKI. 



 

 

 
Supplementary Figure U-2. A lengthy 38-day admission of a male in their 50s with a history of hypertension and diabetes. The patient underwent atrial septal defect repair combined with 

tricuspid valvuloplasty. Although creatinine, uric acid and urea nitrogen were slightly increased after surgery, no CSA-AKI occurred. 



 

 

 
Supplementary Figure U-3. A female in their 60s who had undergone coronary-artery bypass grafting alone had respiratory comorbidities. All laboratory examination indicators were 

stable prior to surgery, and there was no underlying renal disease. On the 6th day after surgery, creatinine, urea nitrogen, uric acid and lactate dehydrogenase began to change unsteadily 

and eventually CSA-AKI occurred. 



 

 

 
Supplementary Figure U-4. A male in their 60s with multiple comorbidities (including chronic heart failure, hypertension, diabetes mellitus, chronic kidney disease, chronic obstructive 

pulmonary disease) underwent coronary-artery bypass grafting. Creatinine, urea nitrogen, uric acid, and lactate dehydrogenase increased and decreased with time after surgery, but the creatine 

kinase enzyme was measured only once after surgery. The patient eventually developed CSA-AKI. 



 

 

 

 
Supplementary Figure U-5. A male in their 70s with diabetes mellitus, who was urgently admitted for coronary artery bypass grafting. Due to the emergency surgery, the pre-surgery 

laboratory examination was measured only once. After the surgery, the creatinine, urea nitrogen, uric acid, lactate dehydrogenase, and creatine kinase enzymes significantly changed over time, 

and the patient eventually developed CSA-AKI.  
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