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Abstract (200 words) 
Dietary biomarkers reflecting habitual diet are explored largely in European and 
American populations. However, the “food metabolome” is highly complex, with its 
composition varying to region and culture. Here, by assessing 1,055 plasma metabolites 
and 169 foods/beverages in 8,391 comprehensively phenotyped individuals from the 
multi-ethnic Asian HELIOS cohort (69% Chinese, 12% Malay, 19% South Asian), we 
report novel observations for ethnic-relevant and common foods. Using machine-
learning feature selection approach, we developed dietary multi-biomarker panels (3-39 
metabolites each) for key foods and beverages in respective training sets. These panels 
comprised distinct and shared metabolite networks, and captured variances in intake 
prediction models in test sets better than single biomarkers. Composite metabolite 
scores, derived from the biomarker panels, associated significantly and more strongly 
with clinical phenotypes (HOMA-IR, type 2 diabetes, BMI, fat mass index, carotid intima-
media thickness and hypertension), compared to self-reported intakes. Lastly, in 235 
individuals that returned for a repeat visit (averaged 322 days apart), diet-metabolite 
relationships were robust over time, with predicted intakes, derived from biomarker 
panels and metabolite scores, showing better reproducibility than self-reported intakes. 
Altogether, our findings show new insights into multi-ethnic diet-related metabolic 
variations and new opportunity to link exposure to health outcomes in Asian 
populations.  
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Main 
Non-communicable diseases (NCDs) including obesity, diabetes and cardiovascular 
diseases are leading global causes of death and disability. Although there are 
established genetic and environmental contributors to NCD risk, modifiable lifestyle 
determinants such as diet, play a major role1. The marked rise in NCDs has a causal 
link to global dietary habits becoming increasingly urbanised, being characterised by 
higher intakes of processed foods, refined grains and saturated fat, and concomitant 
lack of fibre-rich foods2. This connection emphasises the importance of accurate 
assessment of dietary intakes, and their relationship to health, to underpin nutritional 
recommendations and policy formulations. 

Assessment of dietary intakes in epidemiological or interventional studies 
typically is a 2-step process involving self-report and subsequent estimation of 
daily/weekly intakes using food and/or nutrient composition databases. Limitations of 
self-reporting tools are well-documented including poor reproducibility, recall bias, 
misjudgement in portion sizes/frequency, and restricted list of foods and/or 
beverages3,4, which are compounded by variability in composition databases. These 
limitations may attenuate diet-disease relationships or lead to spurious findings. 

Profiling our “food metabolome” using untargeted approaches has emerged as a 
valuable strategy in discovery of dietary biomarkers5 as objective measures of habitual 
dietary exposures. This approach has created awareness of the untracked diversity of 
compounds in foods that remains largely invisible to epidemiological or hypothesis-
driven nutrition studies6. These diet-derived metabolites reflect true concentrations in 
biofluids (blood, urine) and could potentially overcome limitations of current dietary 
instruments, while also accounting for determinants of interindividual variability in 
metabolism including genetic background and gut-microbial composition7,8. Dietary 
biomarkers have been identified and validated for coffee9, orange10, banana11 and red 
meat12 in European populations but are lacking for other foods, foods consumed as part 
of complex dietary patterns and/or relevant to populations in other regions. For 
example, different biomarkers of coffee intake, rather than a unique biomarker, were 
identified across four European populations13, corresponding to how coffee was 
prepared in each country. Considering the regional and cultural diversity of diet across 
the world, biomarkers relevant to Asian populations are lacking, compared to 
common/Westernised foods. 

In this study, we aim to i) identify relevant dietary biomarker panels reflecting 
food and beverage intakes within a multi-ethnic Asian population, and ii) develop 
metabolite scores to improve accuracy of assessing clinical associations with diet. 
 
Results 
Study design 
Baseline dietary, clinical and biological measurements were collected from 10,004 free-
living adults from the Singapore population. Longitudinal data were recollected in a 
random subset of individuals (n=235) on average one year after their baseline visit 
(range 58-1025 days), to enable assessment of reproducibility. The study design is 
illustrated in Fig. 1. Further details are provided in Methods and Extended Data Table 1. 
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Fig. 1. Overview of study design. The HELIOS study comprises a population-based
sample of 10,004 Asian men and women living in Singapore. Longitudinal data were
collected in a random subset of 235 individuals.  
 
Plasma metabolome reflects self-reported dietary exposure 
Plasma metabolomics profiling by mass spectrometry revealed 1,055 distinct
metabolites, of which 887 (80%) are structurally identified. We found 156 metabolites
positively correlated with 37 foods and beverages after adjusting for age, sex and
ethnicity (r=0.15-0.68, FDR<0.05; Fig. 2). These metabolites reflect habitual dietary
intakes within the multi-ethnic study population and are primarily from xenobiotics, lipid
and amino acid pathways (Fig. 2).  

We observed novel correlations for Asian ethnic-relevant foods, processed foods,
fruits and vegetables, red meat, seafood, and nuts and seeds. Chapati, idli, thosai and
rasam soup, which are frequently consumed by South Asians, were uniquely correlated
with betainised compounds (homostachydrine and tryptophan betaine; P≤1.13x10-7)
and other metabolites (X-11849, X-11858, X-21661, X-11847 and X-23639; P≤1.75x10-

4). 4-Hydroxychlorothalonil, a metabolite of crop fungicide, Chlorothalonil, widely used to
manage fungal diseases in agricultural crops14, was correlated with plant-based foods
including vegetables, legumes, nuts and seeds (P≤2.05x10-7). Novel correlations were
observed for roti (X-21383; P=2.52x10-13), apple (branched chain 14:0 dicarboxylic acid,
methyl glucopyranoside, X-11315 and X-24475; P≤1.71x10-7) and tropical fruits
including melon (X-25271; P=1.59x10-14), pineapple (4-allylphenol sulfate; P=2.84x10-7)
and papaya (N2,N5-diacetylornithine and N-delta-acetylornithine; P≤3.94x10-8). N2,N5-
diacetylornithine was previously reported elevated in blood after intakes of legumes15

and dry-bean enriched16 diets. X-11381 was correlated with burger and red meat
(r=0.20-0.25; P≤6.0x10-12), similar to previous reports with red meat and milk17. 

Deep fried foods correlated with fatty acids 2-hydroxylaurate and eicosanedioate
(P≤3.15x10-8) and other metabolites (X-11880, X-11372, X-16935, X-21383 and X-
21339; P≤1.06-11) previously associated with french fries, chips and fried food in 2 US
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and UK cohorts17,18. Specific lipid classes were characteristic for red meat, poultry and 
egg including phosphatidylethanolamines and plasmalogens containing stearoyl moiety 
(P≤4.72x10-6), which were distinct from the sphingomyelins, phosphatidylcholines, 
lysophospholipids and fatty acids characteristic for dairy products (P≤4.96x10-7, Fig. 2), 
of which tridecenedioate and sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) were  
previously associated with cheese17. Phytate, derived through ruminant metabolism of 
chlorophyl19, correlated with dairy products (r=0.18, P=3.0x10-10). Nuts and seeds 
correlated with 2-hydroxydecanoate, 1-margaroyl-2-linoleoyl-GPC and amino fatty acids 
(N-acetyl-2-aminooctanoate and N-acetyl-2-aminooctanoate; P≤1.09x10-8).  

We also observed multiple known biomarkers of fish, coffee, cruciferous 
vegetables, mushroom and orange in our study, validating their relevance in our multi-
ethnic Asian population. Fish had the most correlations (39 metabolites), where 3-
carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF)20,21 and hydroxy-CMPF22 were 
most strongly correlated (r>0.30; P≤6.87x10-28), followed by various n3 and n6 PUFA21, 
long chain acylcarnitines, lysophospholipids and plasmalogens containing 
docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) moiety (P≤5.23x10-7). 
Novel fish-related correlations included X-13866, X-25417, X-23974 and X-23782 
(P≤2.50-9). Seafood is generally categorised as a broad food group but in this study, 
was categorised separately to reflect different organisms. Distinct correlations for 
crustacean and mollusk were observed for X-23587, X-25810 and X25419 (P≤2.56x10-

11).  
Coffee had the next most correlations (27 metabolites; P≤4.14x10-7) with 

caffeine, xanthines, alkaloids (trigonelline), phenolic acids and diketopiperazines 
(cyclo(leu-pro) and cyclo(pro-val)) previously reported in global cohort studies9,13,23 and 
coffee itself23,24. X-23639 was reported for the first time in this population (P=6.12x10-

51). X-17685, X-13728 and X-11795 were uniquely correlated to tea (P=1.37x10-13), 
chocolate-containing products (P=1.68x10-7) and mushroom (P=2.42x10-8), 
respectively.  

Other known biomarkers replicated in our study population included 
ergothioneine and its metabolite, hercynine (P≤1.13x10-20) for mushroom25,26; sulfur-
containing amino acids (S-methylcysteine sulfoxide, S-methylcysteine and S-
methylmethionine; P≤2.30x10-7) for cruciferous vegetables17,27; proline betaine, N-
methylproline and N-methylhydroxyproline (P≤2.63x10-24) for orange/citrus fruits28-31; β-
cryptoxanthin (P≤2.86x10-8) for orange, pineapple and papaya32,33; 2-aminophenol 
sulfate (microbial metabolite of benzoxazinoids found in wheat and rye34) for wholegrain 
foods (P=1.22x10-14); 3-bromo-5-chloro-2,6-dihydroxybenzoic acid, 3,5-dichloro-2,6-
dihydroxybenzoic acid and N,N,N-trimethyl-5-aminovalerate (P≤2.91x10-13) for 
dairy/milk17,21. 
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Fig. 2. Plasma metabolome-wide association heatmaps with FFQ food and beverage items from partial correlation
analysis, adjusted for age, sex and ethnicity. Left panel comprises of metabolites from amino acid, carbohydrate,
cofactors and vitamins, peptide and xenobiotics pathways, and structurally unidentified metabolites; right panel comprises
of metabolites from lipid pathways. *indicates FDR P<0.05, and correlation coefficients, r≥0.15. Ordering of variables were
determined by hierarchical clustering. 

5 

ion 
te, 
es 
re 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted D

ecem
ber 4, 2023. 

; 
https://doi.org/10.1101/2023.12.04.23299350

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2023.12.04.23299350
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Dietary biomarker panels comprise shared and distinct metabolite networks 
To demonstrate the potential for plasma metabolites to be used as objective 
assessment of dietary intakes in our Asian epidemiological setting, we developed 
candidate dietary multi-biomarker panels for key foods and beverages using elastic net 
penalisation as a machine-learning feature selection approach. These biomarker panels 
were curated for specific foods (e.g., orange), broader food groups (e.g., fruits) and 
complex mixed dishes (e.g., noodle dishes) based on the available FFQ questions and 
achieving model variance adjusted-R2>0.1 (to minimise less precise predictions) in 
respective training sets. 

These panels each consisted of 3-39 metabolites (280 total metabolites, of which 
211 were unique), primarily from lipid (30%), xenobiotics (16%) and amino acid (16%)  
pathways (Fig. 3a). The panels comprised a combination of i) known diet-derived 
metabolites (e.g., CMPF for fish, proline betaine for orange), ii) metabolites incorporated 
into endogenous metabolism (e.g., 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-
18:0/20:4) for red meat, 1-palmityl-2-arachidonoyl-GPC (O-16:0/20:4) for processed 
meat), as well as 51 structurally unidentified metabolites that were iii) previously 
reported (4%) or iv) potentially novel (22%, Fig. 3b). Notably, metabolite panels for 
mollusk, poultry and red meat were partially composed of per- and polyfluoroalkyl 
substances (PFAS) including perfluorooctanesulfonate (PFOS) and 
perfluorooctanoate (PFOA), persistent environmental contaminants recognised as 
‘forever chemicals’35, while metabolite panels for cruciferous vegetables, legumes, 
mushroom and wholegrain foods comprised 4-hydroxychlorothalonil; consistent with  
positive partial correlation results. 

Metabolic variation across different foods and beverages showed unique and 
shared networks (Fig. 3c). Red meat, processed meat, poultry and deep fried foods 
shared highly correlated networks, including 2R,3R-dihydroxybutyrate (formed via 
degradation of di/polysaccharides during cooking), X-11299 (associated with processed 
meat17), X-11880, X-16935, X21383 (associated with french fries and/or chips17) and 47 
other metabolites. Ribitol, orotidine and a sulfated piperine metabolite (alkaloid in 
black/long pepper36) were distinct to processed meat panel. Margaroylcarnitine (C17), 
various plasmalogens, X-12822 and X-22776 were distinct to red meat panel, while 
gluconate, various peptides and lipids, X-11308, X-11372, X-21339 and X-23680 were 
unique to deep fried panel.  

The meat-related foods were linked, via eicosanedioate (C20-DC), N-stearoyl-
sphingosine (d18:1/18:0), X-23662 and X-07765, to noodle dishes as a mixed complex 
food group, typically composed of noodles with minor heterogenous proportions of 
seafood, animal and/or plant-based ingredients. This reflects its metabolite panel, being 
largest (39 metabolites) of the foods/beverages, distinctly including a glucuronidated 
piperine metabolite, S-allycysteine (biomarker of garlic37), androgenic steroids (reflective 
of animal organs intake), delta-CEHC (metabolite of tocopherol, a fortified ingredient in 
Asian wheat noodles38), anthranilate, X-13507, X-235937, X-11843, X-26106 and X-
21310. Noodle dishes also shared networks with mushroom via ergothioneine and 
hercynine, with seafood via hydroxy-CMPF, X-23587, X-25417 and X-25810, and with 
coffee via γ-glutamylvaline.  

Besides sharing 3 caffeine-related networks with coffee, the tea panel distinctly 
comprised N1-methyladenosine, N-lactoyl valine (formed from free amino acids and 
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lactic acid in fermented foods39, and also associated with dairy (P=2.08x10-5)), thymol 
sulfate, 5-hydroxyindole sulfate, X-17685 and X-23654. Tea correlated highly with 
idli/thosai (r=0.68) and connected via X-18901. South Asian-ethnic foods shared 3 
networks via X-13658, homostachydrine and 2,6-dihydroxybenzoic acid, of which the 
latter 2 were also present in wholegrain panel. Various dicarboxylate-, polyunsaturated-, 
long- and medium-chain fatty acids, amino acids, X-17654, X-24494, X-14939, X18799, 
X-21467 and X11478 were unique to wholegrain panel. The cruciferous vegetable panel 
shared common networks with legumes via S-methylcysteine sulfoxide, S-
methylmethionine, carotene diol (2), 4-hydroxychlorothalonil, and with fruits via 4-
allylphenol sulfate, a non-specific microbial metabolite of polyphenols40. We developed 
metabolite panels for fruits as a broad category of 17 fruits, and specifically for orange 
and papaya, which had strong discriminating metabolites (X-25271 for papaya, X-24475 
for fruits).  
 Dairy panel shared 6 networks with red meat via X-11381, with noodle dishes via 
ceramide (d18:1/14:0, d16:1/16:0), with wholegrain via 10-undecenoate (11:1n1), with 
chapati via tridecenedioate (C13:1-DC) and heptenedioate (C7:1-DC), while having 16 
distinct metabolites including phytanate, 3-bromo-5-chloro-2,6-dihydroxybenzoic acid, 
N,N,N-trimethyl-5-aminovalerate and 1-(14 or 15-methyl)palmitoyl-GPC (a17:0 or i17:0). 
 
Multi-biomarker panels improve prediction of dietary intakes  
We evaluated the effectiveness of our multi-biomarker panels in estimating dietary 
intakes in respective test sets using regression models adjusted for age, sex, ethnicity 
(model 1), additionally for income and years of education (model 2), and multi-
biomarker panels (model 3). Models with multi-biomarker panels accounted for 3-48% 
higher variances (P≤1.95x10-19; Fig. 4a). Coffee panel achieved the most variance 
(51%, P=2.23x10-308), followed by idli/thosai panel (50%, P=5.79x10-42) and chapati 
panel (43%, P=5.12x10-37). The latter two foods strongly reflected ethnic-specific foods, 
and in combination with legumes, are frequently consumed by South Asians, compared 
to Chinese and Malay populations. This finding is consistent with (South Asian) ethnicity 
being a major contributor to the variance for these foods (idli/thosai: β=1.70±0.69, 
P=2.12x10-120; chapati: β=0.95±0.05, P=3.17x10-78; legumes: β=0.64±0.05, P=6.96x10-

32). These multi-biomarker panels explained 0.02-7% more variance of intakes 
(P≤2.23x10-4) compared to single biomarkers (with highest variance; Extended Fig. 1). 

Estimated dietary intakes, derived from these panels showed moderate to good 
agreement and ranking validity with self-reported FFQ intakes, r=0.33-0.72 (Fig. 4b). 
Error was greatest amongst individuals reporting zero intake and excluding this group of 
individuals improved median prediction accuracy (Extended Data Fig. 2). Coffee had 
highest prediction accuracy (84%), compared to other foods, but accuracy was also 
high (>70%) for meat, fish, fruits, cruciferous vegetables and noodle dishes. This 
demonstrates the utility of biomarker panels as a more accurate dietary assessment, 
compared to self-reporting tools.  
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Fig. 3. Candidate dietary multi-biomarker panels for foods and beverages a) assigned to super pathways, and b)
categorised into reported or potentially novel biomarkers. C) Network graph summarising within and between dietary
variables (foods and beverages) and metabolites derived from the biomarker panels reflecting respective dietary intakes,
based on partial correlation coefficients (spearman r) adjusted for age, sex and ethnicity. Each node represents a food,
beverage or metabolite. Line/edge colour represents direction of correlation (red for positive, blue for negative) and
line/edge thickness represents strength of correlation.  
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Fig. 4. A) Dietary multi-biomarker panels improved prediction of intakes of foods and beverages in independent regression
models of respective test sets (sample sizes for test sets in Extended Data Table 3). Values represent proportion of
variance estimated. Significant difference between models (model 1 vs 2; model 2 vs 3) is represented by **P<0.01
***P<0.001. b) Scatter plots showing agreement (spearman r) between self-reported (x-axis) vs predicted (y-axis) intakes
(log-transformed) for each food and beverage. Each point represents an individual and are coloured by their reported
ethnicity.
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Utilising metabolite scores to investigate association with clinical phenotypes 
We developed metabolite composite scores for each food and beverage, as a weighted 
sum of metabolites from the dietary biomarker panels. Compared to self-reported 
intakes, the scores associated significantly and more strongly with clinical phenotypes 
including homeostatic model assessment for insulin resistance (HOMA-IR), type 2 
diabetes (T2D), BMI, fat mass index (FMI), carotid intima-media thickness (cIMT) and 
hypertension (Fig. 5). Scores of ‘healthy’ plant-based foods including fruits, vegetables, 
wholegrain foods and chapati as well as fish and dairy products were negatively 
associated with these phenotypes, with the third tertile corresponding to the strongest 
associations (P=2.39x10-119-2.37x10-2), as expected and consistent with the direction of 
associations based on self-reporting (P=3.03x10-16-5.91x10-3). For glycemic and 
adiposity indices, fruits scores showed the most protective effect (HOMA-IR: β=-
0.60±0.03, P=4.34x10-110; T2D: β=-1.37±0.10, P=1.78x10-45; BMI: β=-0.56±0.03, 
P=7.21x10-104; FMI: β=-0.57±0.02, P=2.39x10-119). For vascular disease risks, legume 
scores showed the most protective effect (cIMT: β=-0.22±0.03, P=2.29x10-18; 
hypertension: β=-0.59±0.07, P=5.62x10-17). 

In contrast, other seafood, animal-based and processed foods associated 
positively with these cardiometabolic phenotypes (scores: P=1.05x10-61-3.08x10-2; 
reported intakes: P=6.67x10-19-3.61x10-2). Amongst the ‘unhealthy’ foods, processed 
meat scores showed the most detrimental effect (HOMA-IR: β=0.45±0.03, P=6.53x10-60; 
T2D: β=0.95±0.09, P=6.27x10-24; BMI: β=0.43±0.03, P=1.05x10-61; FMI: β=0.35±0.02, 
P=1.69x10-45; cIMT: β=0.22±0.03, P=7.22x10-18; hypertension: β=0.65±0.03, 
P=2.38x10-21). Red meat score associated negatively with most phenotypes except 
cIMT (P≤1.15x10-2), contrasting the positive associations from self-reported intakes in 
our study (P≤1.25x10-2) and meta-analysis of 3 US cohorts41, suggesting preparation 
methods42 and biomarker composition play a role in influencing health associations. The 
red meat panel comprised primarily PUFA, and lesser proportions of amino acids, and 
trans and saturated fatty acids (‘unhealthy fats’), likely contributing to overall negative 
associations.  

Coffee and tea intakes, derived from both scores and self-reported intakes, were 
positively associated with most phenotypes (P≤3.10x10-2), considering the trend of 
intakes in this study population being predominately energy-dense variations (with 
condensed/evaporated/whole milk, sugar or 3-in-1, Extended Data Fig. 3). Overall, the 
associations with metabolite scores were robust to BMI as a mediator, unlike the 
associations with self-reported intakes, which were no longer significant (Extended Data 
Fig. 4). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.23299350doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.04.23299350
http://creativecommons.org/licenses/by-nc-nd/4.0/


11
 

 
Fig. 5. Associations between clinical phenotypes and third tertiles of dietary intakes
derived from FFQ-based self-reported intake or metabolite score, adjusted for age, sex
and ethnicity (n=8,391), with first tertile (either intake or score) as reference. β-
coefficients were obtained from independent linear regression (for HOMA-IR, BMI, FMI,
cIMT) or logistic regression (for T2D, hypertension) for each food/beverage, based on
the following sample sizes: T2D (n=1,040 T2D, n=7,351 non-T2D), hypertension
(n=2,411 with hypertension, n=5,980 without hypertension). Association strength
represents log-transformed P values. Circle border represents significant associations
(P<0.05). HOMA-IR, homeostatic model assessment for insulin resistance; T2D, type 2
diabetes; FMI, fat mass index; cIMT, carotid intima-media thickness. 
 
Diet-metabolite relationships are robust across multiple visits 
We evaluated the temporal consistency of diet-metabolite relationships in the subset of
individuals who returned for a repeat visit. Plasma metabolites of the dietary biomarker
panels from the first visit were present also in plasma profiles at the repeat visit,
showing stability of these metabolites and diet-associations over time. Using prediction
models of biomarker panels trained in the first visit, we estimated intakes of respective
foods and beverages at the repeat visit, which showed good agreement with self-
reported intakes recorded at the repeat visit, r=0.35-0.73 (Fig. 6a). Metabolite scores
also showed good agreement between first and repeat visits, r=0.46-0.80 (Extended
Data Fig. 5a). 

Across first and repeat visits, the reliability and reproducibility of predicted intakes
(intraclass correlation coefficients (ICC)=0.54-0.91) consistently outperformed the self-
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reported intakes (ICC=0.32-0.85), with 50% of foods and beverages achieving
ICC>0.75, indicating good reliability (Fig. 6b). Similarly, metabolite scores showed good
reliability (ICC=0.50-0.89; Extended Data Fig. 5b).  
 

 
Fig. 6. A) Scatter plots showing agreement (spearman r) between self-reported (x-axis)
vs predicted (y-axis) intakes (log-transformed) for each food and beverage in the repeat
visit (n=195 pairs of individuals); predicted intakes were derived from models trained in
training sets from first visit sets. Each point represents an individual and are coloured by
their reported ethnicity. B) Intraclass correlation coefficients (ICC) showing reliability of
reported and predicted intakes across first and repeat visits. 
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Discussion 
We generated fasting plasma profiles of 1,055 metabolites in 8,391 individuals (235 with 
repeat data) for whom we had extensive dietary records, sociodemographic, health and 
lifestyle variables. We carried out diet-metabolite association analyses and developed 
20 dietary biomarker panels that were representative of food and beverage intakes 
within a multi-ethnic Asian population, using machine-learning based prediction models 
for each intake. We showed the feasibility and application of these biomarker panels to 
objectively assess dietary intakes, compared to self-reports, whose limitations are well-
recorded.  

Biomarker-calibrated models for single foods12,43,44 based on highly specific 
biomarkers and broader metabolomics profiles characterising dietary patterns (DASH44 
and HEI45) have been reported in American and European populations but not 
developed or validated in other populations. Considering the chemical complexity of 
diets in different regions, our study highlights the importance of mapping the highly 
individualised Asian metabolome in a geographically and culturally relevant context. 
When used to predict daily intakes, some of these biomarker panels captured ethnic 
differences in dietary habits (e.g., idli/thosai and noodle dishes), which is key to 
documenting diets underlining a multi-ethnic population. Metabolite-based modelling 
represents an avenue to explore, particularly for culturally-relevant foods that are under-
studied, compared to common/Westernised foods. 

Metabolites of these dietary biomarker panels were derived from dietary or 
environment sources as well as compounds incorporated into metabolic or physiological 
processes. We showed that using a combination of metabolites (as a panel) explained 
higher variance of dietary intakes and significantly improved intake predictions, 
compared to models composed only of sociodemographic variables. Dietary intakes 
estimated by an individual’s plasma biomarker panel  correlated with self-reports for 
specific foods or complex dishes, and these food-metabolite relationships were stable 
over time. Apart from the utility as an intake prediction tool, the panels also behaved as 
a proxy of intakes that improved accuracy of clinical associations.  

We acknowledge our study is observational with most individuals having dietary 
and metabolite datasets at one timepoint and the metabolite-phenotype associations do 
not highlight causal relationships, a similar limitation encountered by other 
epidemiological studies. Plasma metabolite levels mirror recent diet history and may not 
reflect long-term kinetics beyond the metabolites half-times (few hours to days) 
depending on frequency of intakes. Some metabolites within the panels are structurally 
unidentified and hence not well-studied in the context of their derived source or 
chemistry, and should be interpretated with caution. Our novel metabolite associations 
and panels, particularly for ethnic-specific foods will benefit from replication in other 
Asian populations. 

Our multi-ethnic Asian population study provides new insights into diet-related 
metabolic variations, including ethnic-specific dietary habits and environmental effects 
on the food supply. We demonstrate that the application of dietary biomarker panels, 
objectively representative of food and beverage intakes in complex diets, is feasible, 
and generates clinically-relevant insights. Our research provides a pathway to new 
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opportunities to assess interindividual variability in metabolism and discriminate 
metabotypes, and to link exposure to health outcomes in Asian populations. 
 
 
Methods 
General cohort information Datasets were derived from the Health for Life in 
Singapore (HELIOS) study (ethics approval IRB-2016-11-030, www.healthforlife.sg), a 
multi-ethnic prospective cohort of adults aged 30-84 years old46. In HELIOS, 10,004 
individuals (Singapore citizens or permanent residents) were recruited from the general 
population across socio-economic backgrounds and excluded if they were pregnant, 
breastfeeding or had prior major illness. Consenting individuals underwent extensive 
questionnaire, physiological, imaging and biological sample phenotyping. Individuals’ 
age, sex and ethnicity were recorded as per their identity card. Environmental and 
lifestyle information including income level, years of education, cigarette smoking and 
medical history were recorded using self-administered questionnaires. In this study, we 
excluded individuals whose ethnicity were not of the primary ethnic groups (Chinese, 
Malay, South Asian) or who did not complete physiological or biochemical assessments, 
FFQ or reported implausible total energy intake, or who did not have metabolomics data 
(Fig. 1).  
 
Clinical phenotyping Fasted blood biochemistry including fasting glucose, HbA1c, total 
cholesterol, LDL, HDL and triglycerides were measured by local accredited laboratory 
(QuestLab Singapore, SAC-SINGLAS ISO 15189:2012). Insulin was measured in-
house using ADVIA Centaur XP Immunoassay System (Siemens Healthcare, Erlangen, 
Germany). HOMA-IR is calculated as insulin (mIU/L)*glucose (mM)/22.1512. FMI was 
derived from body fat mass (kg) quantified using whole-body Dual X-ray Absorptiometry 
(DEXA) scans (HorizonTM W densitometer S/N 30052M, Hologic, Massachusetts, USA, 
QDR software version 13.6.0.5) and normalised against height (m2). cIMT, a subclinical 
atherosclerotic phenotype, was estimated from 2D and 3D carotid ultrasound imaging of 
the common carotid artery using Philips iU 22 ultrasound system. cIMT measurement 
was centered at 1 cm proximal to the carotid bifurcation; images were obtained at the 
lateral and posterior angles bilaterally, and analysed using Philips Qlab software. 
Measurements were quality checked to ensure ≥95% of tracing were correctly identified 
and coefficient of variation was < 5% for inter-operator and inter-reader variability. Mean 
cIMT values were natural log-transformed for downstream analyses. Individuals were 
classified with T2D based on ≥7 mM fasting glucose level, ≥6.5% HbA1C or prior 
diagnosis by doctor (self-reported history). Individuals were classified with hypertension 
based on systolic blood pressure (SBP) ≥140 mmHg, diastolic blood pressure (DBP) 
≥90 mmHg, prior diagnosis by doctor (self-reported history) or taking hypertensive 
medications. 
 
Data generation and preprocessing 
Dietary assessment Dietary intakes were assessed by self-administered computerised 
Food Frequency Questionnaire (FFQ), which was validated in a local population47. The 
FFQ comprises of 169 local multi-ethnic food and beverage items with corresponding 
energy and nutrient composition database (Singapore Health Promotion Board, 
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https://focos.hpb.gov.sg/eservices/ENCF). Total daily energy intakes were calculated for 
each individual and excluded if their energy intakes were considered implausible based 
recommended energy intake thresholds, i.e., <500 kcal/day or >3 SD of gender specific 
mean)48. Individual food or beverage items were grouped into broader food and 
beverage groups based on their biological classification and/or nutritional property 
(Extended Data Table 2). For each food/beverage group, intakes (grams/day) >99.5 
percentile were considered outliers and excluded. 
 
Plasma metabolome. Untargeted metabolomics profiling of plasma samples was 
performed by Metabolon, Inc (North Carolina, USA)49-51 on fasting plasma samples. 
Briefly, samples were methanol-extracted and analysed by untargeted liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) Metabolon Global Discovery 
platform using 2 reversed-phase (RP) methods in positive electrospray ionisation (ESI) 
mode, a RP method in negative ESI and a HILIC method in negative ESI, from 70-1000 
m/z range. A cocktail of quality control (QC) standards was added to each sample 
(before injection) for monitoring of instrument performance and chromatographic 
alignment. Aliquots from each sample were pooled to generate a pooled matrix sample 
that was periodically injected as technical replicates and to distinguish between 
biological and process variability. Samples were randomised within batch runs. Raw 
semi-quantitative data of peaks was extracted and quantified from area-under-the-
curve, identified, QC-processed and normalised across shipment batches using 
median-scaling. Annotated/identified metabolites were assigned to nine pathways 
corresponding to their broad chemical class. Metabolites of unknown structural identity 
were assigned numeric reference numbers beginning with X.  

Five samples that failed QC standards were excluded. Metabolites with >20% 
missingness (assuming not detected) were excluded and the remaining were imputed 
with minimum value for each metabolite (assuming missingness due to low abundance). 
Metabolites were further excluded if they were considered outliers (defined as >6 SD 
away from the mean of the first 2 principal components in overall and platform-specific 
Principal Component Analysis. Median relative standard deviation (SD) of instrument 
and technical variability between batch runs ranged from 6-9% and 10-12%, 
respectively. Metabolite levels were natural log-transformed and scaled for downstream 
analyses.  
 
Statistical analysis 
Metabolome-wide correlation with dietary habits. To assess associations between 
diet variables and metabolites, partial correlation analysis was performed and controlled 
for effects of age, sex, ethnicity and batch. P values were FDR-adjusted with Benjamin-
Hochberg method. To select meaningful associations, only spearman rank correlation 
coefficients, r≥0.15 that were significant (FDR<0.05) were considered.  
 
Estimating variance of individual metabolites. To estimate the variance of each 
metabolite that contributed to individual diet variables, we applied univariate OLS 
regression (glmnet package, version 4.1-7), adjusted for age, sex, ethnicity and batch. 
In all regression analyses, all numeric variables were natural log-transformed and 
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scaled in advance. In all cases of multiple testing, P values were FDR-adjusted with 
Benjamin-Hochberg method and considered significant if P<0.05. 
 
Metabolite panels for predicting dietary intakes. Each food/beverage dataset was 
split into training (70%) and test (30%) sets based on similar proportions of respective 
food/beverage, age, sex and ethnicity (refer to Extended Data Table 3 for training and 
test sets’ sample sizes). As a variable selection method and for handling highly 
correlated predictors, we applied machine learning-based elastic net52 regression with 
10-fold cross-validation (glmnet package, version 4.1-7) to each training set. Covariates 
(age, sex, ethnicity, income and years of education) were included in elastic net 
regression models without penalty factor (implying no shrinkage), unlike the metabolites 
whose coefficients were subjected to lambda, λ, penalty term. Optimal alpha, α, values 
were tuned at 2 levels, from 0 to 1 (resolution=0.1) and subsequently from ±0.05 of α (at 
the minimum mean-squared error, resolution=0.01). To achieve a parsimonious multi-
biomarker panel for each food/beverage (outcome variable), metabolites derived from 
each model with non-zero positive coefficients were inspected and excluded from 
respective panels based on condition that they were not more strongly associated with 
other types of food/beverage. Partial correlations within and between metabolites (of the 
metabolite panels) and foods/beverages were summarised into graphical networks 
using fruchterman-reingold layout (ggraph package, version 2.1.0). The metabolite 
panels were evaluated for their effectiveness as a tool for predicting respective food and 
beverage intakes in the test sets based on their variance (adjusted R2>0.1) and 
spearman rank correlation coefficient, r, for agreement between reported and predicted 
intakes. Dietary variables were assigned to four categories corresponding to source and 
complexity (plant-based, animal-based, seafood and mixed foods). 
 
Metabolite scores for assessing phenotypes’ associations. Composite scores were 
developed for each multi-biomarker panel as an objective assessment of each food and 
beverage intake for each individual, by applying penalised weights derived from ridge 
regression coefficients to the metabolites abundance and taking the sum. The 
composite scores were subsequently categorised into tertiles and tested for 
associations with clinical phenotypes (HOMA-IR, T2D, BMI, FMI, cIMT and 
hypertension) in comparison to self-reported intakes (also categorised into tertiles) in 
independent OLS regression models (for HOMA-IR, BMI, FMI, cIMT) or logistic 
regression models (for T2D and hypertension), adjusted for age, sex and ethnicity. As 
BMI may be a potential confounder for the tested phenotypes, we performed sensitivity 
analysis including BMI as an additional covariate. Clinical data was scaled to allow 
comparison across phenotypes. 
 
Temporal consistency of individual metabolite/diet variables. There were 235 
individuals for whom data and samples had been collected from 2 visits, 336 days apart 
on average, which were used to evaluate the temporal consistency of diet-metabolite 
relationships. After excluding 40 individuals with implausible daily energy intakes48, 195 
individuals remained with data collected, 322 days apart on average (~11 months). 
Prediction models, for each food and beverage, trained using data from the first visit 
was used to predict respective intakes in the repeat visit, and assessed for agreement 
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between reported and predicted intakes via spearman rank correlation coefficient, r. The 
test-retest reliability within reported intakes, predicted intakes and metabolite scores 
across visits were determined via ICC using a two-way mixed effects model (type= 
consistency; irr package, version 0.84.1). 
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Extended Data 
Extended Data Tables 
 
Extended Data Table 1. Characteristics of HELIOS study population at baseline visit 
and subset of population at repeat visit. Values are presented as mean ± SD. 
 Overall population 

(n=8,391, baseline visit) 
Subset population 

(n=195, repeat visit) 
Sociodemographic variables 
Age, years old 52.25 ± 11.54 51.33 ± 11.71 
Sex, n (%) 

- Female 
- Male 

 
4971 (59.2%) 
3420 (40.8%) 

 
103 (52.8%) 
92 (47.2%) 

Ethnicity, n (%) 
- Chinese 
- Malay 
- South Asian 

 
5783 (68.9%) 
1038 (12.4%) 
1570 (18.7%) 

 
73 (37.4%) 
50 (30.3%) 
72 (36.9%) 

Education, total years 13.91 ± 3.35 14.58 ± 3.15 
Income category, n (%) 

- <S$4,000 
- S$4,000-9,999 
- ≥S$10,000 
- not applicable (NA) 

 
2118 (25.3%) 
3127 (37.3%) 
2036 (24.3%) 
1085 (12.9%) 

 
44 (22.6%) 
77 (39.5%) 
54 (27.7%) 
20 (10.3%) 

Smoking status, n (%) 
- Non-smoker 
- Ex-smoker 
- Smoker 

 
6938 (82.7%) 

729 (8.7%) 
697 (8.3 %) 

 
156 (80%) 
18 (9.2%) 

21 (10.8%) 
Biochemistry variables 
Fasting glucose, mM 5.08 ± 1.22 5.00 ± 1.22 
HbA1C, mmol/mol 5.71 ± 0.86 5.80 ± 0.79 
Total cholesterol, mM 5.22 ± 0.98 5.17 ± 0.97 
HDL-cholesterol, mM 1.53 ± 0.42 1.49 ± 0.42 
LDL-cholesterol, mM 3.12 ± 0.86 3.12 ± 0.85 
Triglycerides, mM 1.27 ± 0.82 1.22 ± 0.61 
Clinical phenotypes 
Homeostatic model assessment 
for insulin resistance (HOMA-
IR), n 

 
2.47 ± 2.23 

 
- 

Type 2 diabetes (T2D), n (%) 1040 (12.4%)  
BMI, kg/m2 24.78 ± 4.58 25.52 ± 4.38 
Fat mass index, kg/m2 9.40 ± 3.10 9.49 ± 3.03 
Carotid intima-media thickness 
(cIMT), n 0.60 ± 0.13 - 

Hypertension, n (%) 2411 (28.7%) - 
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Extended Data Table 2. Description of food and beverage groups 
Foods and/or beverages eFFQ items 
Seafood:  

- Fish raw fish, nigiri, dried fish, canned fish, white fish, oily fish 
- Crustacean prawn, crab 
- Mollusk squid, oyster 

Animal-based:  
- Poultry poultry 
- Red meat  fresh pork (fat, lean), fresh beef (fat, lean), mutton (fresh, 

lean) 
- Processed meat  poultry ham, processed poultry, cured pork 
- Dairy butter, milk (non-fat, low-fat, whole), yoghurt (reduced fat, 

regular), cheese (reduced fat, regular) 
Plant-based:  

- Cruciferous vegetables broccoli, cauliflower, chye sim, kailan, white cabbage, 
coleslaw 

- Legumes peas, long beans, other beans, dhal  
- Mushroom mushroom 
- Fruits orange, apple, avocado, banana, blueberries, dragonfruit, 

durian, grape, guava, kiwi, mango, melon, papaya, pear, 
pineapple, strawberries, dried fruit  

- Orange orange 
- Papaya papaya 
- Wholegrain oats, wholemeal bread, wholemeal pasta 
- Chapati chapati 
- Idli and thosai idli, thosai 

Mixed foods:  
- Noodle dishes noodles in gravy, noodles in soup, dry noodles, fried noodles 
- Deep fried french fries, fried chips, deep fried sweet snacks, puri  
- Coffee  coffee with the following: condensed milk, evaporated milk, 

whole milk, low-fat milk, skimmed milk, soya milk, creamer no 
sugar, 3in1, 2in1, no milk, bottled 

- Tea tea with the following: condensed milk, evaporated milk, 
whole milk, low-fat milk, skimmed milk, soya milk, creamer no 
sugar, 3in1, 2in1, no milk, bottled 
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Extended Data Table 3. Summary of dietary multi-biomarker panels for the tested foods 
and beverages in respective training and test sets. For each food/beverage, intakes > 
99.5 percentile were considered outliers and excluded before splitting into training 
(70%) and test (30%) sets based on similar proportions of age, sex, ethnicity and 
respective food/beverage. 
Foods and/or beverages No. of 

metabolites in 
panel 

No. of potentially 
novel metabolites 
(known identity) 

Training 
set (n) 

Test set 
(n) 

Seafood:     
- Fish 9 5 (2) 5,809 2,487 
- Crustacean 11 10 (6) 5,793 2,490 
- Mollusk 6 6 (2) 5,790 2,490 

Animal-based:     
- Poultry 7 6 (6) 5,788 2,488 
- Red meat  24 23 (16) 5,778 2,496 
- Processed meat  21 19 (12) 5,797 2,486 
- Dairy 22 16 (16) 5,803 2,492 

Plant-based:     
- Cruciferous vegetables 9 6 (5) 5,801 2,495 
- Legumes 7 2 (2) 5,801 2,495 
- Mushroom 4 2 (1) 5,799 2,499 
- Fruits 9 7 (5) 5,798 2,498 
- Orange 3 0 5,803 2,493 
- Papaya 3 2 (1) 5,804 2,492 
- Wholegrain 29 22 (15) 5,805 2,491 
- Chapati 13 11 (8) 5,803 2,494 
- Idli and thosai 14 14 (5) 5,800 2,496 

Mixed foods:     
- Noodle dishes 39 39 (28) 5,799 2,496 
- Deep fried 22 16 (12) 5,804 2,492 
- Coffee  17 9 (9) 5,733 2,478 
- Tea 11 6 (5) 5,766 2,482 
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Extended Data Figures 
 

 
Extended Data Fig. 1. Dietary multi-biomarker panels significantly contribute more
variance, compared to single metabolites, for respective food and beverage intakes.
Significance difference between models is represented by ***P<0.001 (P from 1.06x10-

12-1.10x10-111). 
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Extended Data Fig. 2. a) Percent (%) error observed between predicted and self-
reported intakes (log-transformed) of foods and beverages in respective test sets. b)
Density distribution of prediction error % of foods and beverages in respective test sets
with dotted line indicating median error and text insert indicating median prediction
accuracy (formula: 1 - error %). 
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Extended Data Fig. 3. a) Percent (%) of variations of total daily coffee and tea intakes
recorded via FFQ in the study population. b)  Proportion of kilocalories across the top 5
most consumed variations of coffee or tea. 
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Extended Data Fig. 4. Sensitivity analysis of associations between clinical phenotypes
and third tertiles of dietary intakes derived from FFQ-based self-reported intake or
metabolite score, adjusted for age, ethnicity and BMI (n=8,391), with first tertile (either
intake or score) as reference. β-coefficients were obtained from independent linear
regression (for HOMA-IR, FMI, cIMT) or logistic regression (for T2D, hypertension) for
each food/beverage, based on the following sample sizes: T2D (n=1,040 T2D, n=7,351
non-T2D), hypertension (n=2,411 with hypertension, n=5,980 without hypertension).
Association strength represents log-transformed P values. Circle border represents
significant associations (P<0.05). HOMA-IR, homeostatic model assessment for insulin
resistance; T2D, type 2 diabetes; FMI, fat mass index; cIMT, carotid intima-media
thickness. 
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Extended Data Fig. 5. a) Scatter plots showing agreement (spearman r) between
metabolite composite scores at first and repeat visits for each food and beverage in the
repeat visit (n=195 pairs of individuals). b) Intraclass correlation coefficients (ICC)
showing reliability of metabolite scores across first and repeat visits. 
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