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Abstract 

Impulsivity is a complex psychological construct that represents a core feature of many psychiatric and 

neurological conditions. Here, we used multivariate methods to formally model the genetic architecture of 

impulsivity in humans, advancing genomic discovery and revealing pervasive pleiotropy that largely counters 

theories of impulsivity as a unitary construct. We identified 18 loci and 93 genes with diverse effects in GWAS 

and TWAS analyses, respectively, including a hotspot at 17q21.31 that harbors genes involved in 

neurodevelopmental and neurodegenerative disorders. Downstream analyses revealed that heterogeneous signals 

were localized to specific biological correlates, including expression in brain tissue during fetal development and 

cortical alterations in the inferior frontal gyrus. Polygenic score analyses suggested that liability for different 

forms of impulsivity may differentiate across development, operating via broad pathways early in life but 

affecting diverse outcomes by adulthood. Collectively, our study generates new insights into the pleiotropic 

architecture of impulsivity, which provides a more comprehensive understanding of its multi-faceted biology. 
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Introduction 

Impulsivity is a complex psychological construct that has a considerable role in health and behavior. 

Broadly characterized as a predisposition towards rapid, unplanned responses to stimuli1, impulsivity has been 

implicated in multiple psychiatric conditions2,3, maladaptive decision-making4,5, and risk-taking behaviors6. With 

well-established links to brain structure and function4,7, it is considered to be an endophenotype that mediates 

genetic effects on diverse cognitive, emotional, and behavioral domains across various clinical and non-clinical 

populations3,8–12. Given its cross-cutting relevance, a deeper etiological understanding of impulsivity could 

improve patient risk stratification and facilitate the development of novel therapeutic approaches with 

transdiagnostic applications13–15. However, there remains considerable debate surrounding its definition, 

dimensionality, and optimal measurement1,16, which presents a challenge to achieving these aims. 

Insights from neuroscience research increasingly suggest that impulsivity can be ‘split’ into related-but-

distinct facets rather than considered a unitary trait. These different aspects, such as motor and choice impulsivity, 

have been found to reflect only partially shared neural circuitry7. This recognition has spurred the development of 

numerous theoretical models, including reinforcement sensitivity theory17–19 and the dual systems model20–22, that 

attempt to explain the heterogeneous biology underlying impulsivity in humans. Although considerable progress 

has been made in this domain, the etiology of impulsivity remains insufficiently characterized. Disentangling 

shared and unique biological influences on different manifestations of impulsivity will require comprehensive 

multi-modal data and integrative approaches13,23. 

In contrast to these neuroscientific findings, advances in the fields of clinical psychology, psychiatry, and 

genetics have revealed that many complex mental constructs can be effectively ‘lumped’ into broader categories 

at multiple levels of analysis. For example, multivariate models have provided compelling evidence for a 

hierarchical structure of mental disorders, where higher-order dimensions of psychopathology, such as thought 

disorder, internalizing, and externalizing, explain substantial phenotypic and genetic covariance in psychiatric 

diagnoses or symptoms24–27. This perspective has transformed our understanding of psychiatric conditions, leading 

to the identification of shared genetic influences, prioritizing novel transdiagnostic therapeutic targets, and 

accelerating genomic discovery for understudied conditions28–33. Considering the success of this approach in 

explaining the widespread pleiotropy observed among similarly complex traits34–36, it stands to reason that genetic 

studies of impulsivity may similarly benefit from lumping37. 

With the recent completion of a large-scale genome-wide association study (GWAS) of multiple 

measures of impulsivity (maximum N = 133,517)38, we now have sufficient data to characterize the joint genetic 

architecture of multiple forms of impulsivity. In the present study, we conducted a multivariate GWAS of eight 

facets measured with two psychological instruments: the Barratt Impulsiveness Scale39 and the UPPS-P Impulsive 

Behavior Scale40 (see Method for further description of phenotypes). Specifically, we use the Genomic Structural 

Equation Modeling (Genomic SEM)29 framework to test the ‘splitting’ versus ‘lumping’ hypotheses with two 

distinct statistical models: (1) an “omnibus” model that provides an unstructured meta-analytic test of association, 

and (2) a common factor of impulsivity, in which associations operate through a latent genetic factor. We evaluate 
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these models and their outputs across molecular genetic, transcriptomic, neurogenomic, and phenomic levels to 

gain a more comprehensive understanding of the underpinnings and correlates of impulsivity across biological 

scales. By doing so, we discover new insights into the complex etiology of impulsivity that advance 

understanding of its multifaceted nature and relationship with health and well-being.  

 

Results 

Genomic factor analysis reveals widespread pleiotropy among facets of impulsivity 

To characterize the genomic relationships between impulsivity facets (see Table 1 for overview), we first 

used linkage disequilibrium (LD) score regression to estimate the genetic covariances among study phenotypes. 

Generally, BIS and UPPS-P phenotypes exhibited patterns of moderate-to-large genetic overlap (mean rg = 0.434; 

Figure 1a), except for sensation seeking which had a more modest overlap with other facets (maximum | rg | = 

0.337). Examination of the standardized genetic covariance matrix revealed that the first eigenvector explained 

54% of the total genetic variance among these traits (Figure 1b). Consistent with this observation, we found that 

a common factor model provided a good fit to the data (χ2[17] = 325.079, CFI = 0.947, SRMR = 0.08; Figure S1; 

see Supplementary Note for additional details on the factor analysis). Accordingly, we proceeded with the 

omnibus and common factor models, as described below (Figure 1c,d).  

 

Table 1. Summary of eight impulsivity GWAS included in the present study. 
Impulsivity Facet N h2 λGC Mean χ2 Intercept Ratio # of loci 
Attentional (ATTN) 124,739 0.070 1.147 1.201 1.026 0.127 2 
Motor (MOTR) 124,104 0.067 1.147 1.178 1.011 0.064 3 
Negative Urgency (NEGU) 132,559 0.079 1.200 1.236 1.017 0.071 5 
Nonplanning (NONP) 123,509 0.093 1.200 1.252 1.022 0.087 6 
(Lack of) Perseverance (PERS) 133,517 0.063 1.147 1.186 1.018 0.094 2 
Positive Urgency (POSU) 132,132 0.061 1.147 1.182 1.017 0.093 2 
(Lack of) Premeditation (PREM) 132,667 0.065 1.147 1.175 1.003 0.017 2 
Sensation Seeking (SENS) 132,395 0.097 1.200 1.265 0.998 < 0 7 
Note: All GWAS summary statistics originate from Sanchez-Roige and colleagues’ univariate study of 
impulsivity facets38. The statistics in this table were calculated with linkage disequilibrium score regression 
except for the number of loci, which were defined using the same pipeline as the multivariate results 
(Methods). N = GWAS sample size; h2 = observed SNP heritability; λGC = genomic inflation factor; mean χ2 
= average χ2 statistic; intercept = estimated intercept from linkage disequilibrium score regression; ratio = the 
attenuation ratio, which is defined as (intercept − 1)/(mean χ2 − 1); # of loci = number of independent genome-
wide significant loci. 
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Figure 1. Modeling the multivariate genetic architecture of impulsivity. a, Matrix of genetic correlations (rg) among the eight impulsivity facets, 
as estimated with LD score regression. b, Bar chart illustrating the proportion of variance explained by each eigenvector from the genetic correlation 
matrix. c,d, Path diagrams of the two discovery models employed in the present study. The omnibus model (c) provides an unstructured multivariate 
test of association across study phenotypes (y1 - yk), while the common factor model (d) estimates SNP effects that operate through latent genetic 
factor f. Circles represent the inferred genetic components of model indicators and the common factor. One-headed arrows pointing from independent 
variables to dependent variables reflect regression relationships (regression coefficients as b1 - bk, factor loadings as λ1 - λk). Dotted one-headed 
arrows refer to the independent pathways examined in the QSNP test. Two-headed arrows connecting variables represent covariance relationships. For 
simplicity, (residual) variances are not depicted. e,f, Manhattan (e) and Miami (f) plots of GWAS results for the omnibus and common factor models, 
respectively, where the x-axis refers to chromosomal position, the y-axis refers to statistical significance on a -log10 scale, the horizontal dashed line 
denotes genome-wide significance (P = 5e-8), and the horizontal dotted line marks suggestive significance (P = 1e-5). Lead SNPs of independent 
genomic risk loci are represented by white diamonds. g,h, Scatter plots depicting the indicator GWAS estimates and corresponding standard errors 
for the lead CADM2 (g) and FOXP2 (h) variants as a function of unstandardized factor loadings. 
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Multivariate GWAS and TWAS identifies novel risk genes with significant heterogeneity 

 Using Genomic SEM, we conducted a series of multivariate GWAS (nSNPs = 7,053,212) and 

transcriptome-wide association study (TWAS; ngene-tissue pairs = 51,698) analyses to investigate the joint genomic 

architecture of impulsivity in a sample of 134,935 individuals. Specifically, we employed two models for gene 

discovery: (1) an ‘omnibus’ model (i.e., an unstructured meta-analytic test of association) (Figure 1c), and (2) the 

common factor of impulsivity described above, where SNP- and gene-level associations operate through a latent 

genetic factor (Figure 1d). In other words, for each SNP or gene, the omnibus model tested whether the overall 

pattern of effects was non-zero, while the common factor model tested whether the SNP or gene influenced the 

indicators via a common pathway (the latent factor). QSNP and QGene tests were also used to evaluate the degree to 

which effects were (in)consistent with the common pathway, providing an index of heterogeneity at each level of 

analysis (see Methods for further description and comparison of all models).  

 We observed substantial inflation of the GWAS test statistics for both the omnibus (λGC = 1.592, mean χ2 

= 1.535) and common factor (λGC = 1.22, mean χ2 = 1.237) models (Figure 1e,f). The LD score regression 

intercepts and attenuation ratios indicated that test-statistic inflation was primarily due to robust polygenic 

architecture as opposed to population stratification or other confounding (omnibus: intercept = 1.021 [s.e. = 

0.009], attenuation ratio = 0.039 [s.e. = 0.017]; common factor: intercept = 1.008 [s.e. = 0.008], attenuation ratio 

= 0.033 [s.e. = 0.034]). However, the substantially larger mean χ2 of the omnibus results suggests that there is an 

appreciable signal that is not captured by the common factor. This inference is further supported by the QSNP 

statistics (λGC = 1.607, mean χ2 = 1.568), which also show a stronger signal than the common factor GWAS 

(Figure S2). 

 With respect to the omnibus GWAS results, we identified 18 independent (r2 < 0.1) genome-wide 

significant loci after applying a standard clumping algorithm (Figure 1e, Table S1), 11 of which were novel 

associations that were not observed in any of the facet-level results. Some of these novel risk loci include highly 

pleiotropic genes, such as: a locus indexed by intronic variant rs4411372 (Pomnibus = 1.16e-8) near the STK24 gene 

on chromosome 13, which has been broadly linked to cognitive and psychiatric outcomes41–43; a locus tagged by 

intergenic variant rs6507215 on chromosome 14 near VRK1, a gene that has been previously associated with 

alcohol consumption and insomnia43,44; and another indexed by rs6507215 (Pomnibus = 1.25e-8), an intergenic 

variant near MIR4318, which has been linked to a variety of internalizing phenotypes45,46. All remaining loci are 

reported in Table S1. 

 We found markedly fewer associated loci in the common factor GWAS. After applying a standard 

clumping algorithm, only four independent genomic loci were associated with a general liability toward 

impulsivity (Figure 1f, Table S2). Two signals were particularly robust: (1) rs1865250 (b = 0.028, s.e. = 0.004, P 

= 1.06e-12), an intronic variant in CADM2 that was associated with several of the constituent impulsivity 

phenotypes and other related behaviors38; and (2) rs1563408 (b = -0.021, s.e. = 0.004, P = 2.44e-8), an intronic 

variant in FOXP2, a gene that has been previously linked to neurodevelopmental and externalizing conditions31,47–

49, but not individual differences in impulsivity per se. Although subsequent QSNP tests highlighted a significant 
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degree of heterogeneity in the CADM2 locus (Figure 1f,g), the effects of the FOXP2 variant on impulsivity facets 

were consistent with the common pathway model (Figure 1f,h). The other two genome-wide significant loci on 

chromosomes 2 and 22 consisted of only two SNPs, which is not indicative of a robust association (Table S2). 

Overall, these results provided limited genome-wide evidence for a common factor of impulsivity, which was 

further corroborated by the greater number of QSNP loci relative to GWAS loci (Table S3), as well as the finding 

that most QSNP signals were driven by multiple facets (Figure S3). 

  When examining effects at the level of gene expression via multivariate TWAS, we found a similar 

pattern of results. In the omnibus TWAS, we identified 325 gene-tissue pairs (88 unique genes) that were 

significantly associated with impulsivity (Figure 2a, Table S4). In contrast, no genes were significantly 

associated with a general liability to impulsivity in the common factor TWAS (Figure 2b, Table S4). Consistent 

with the stark contrast between our discovery models, QGene analyses revealed that 96% (311/325 gene-tissue 

pairs) of the associations identified in the omnibus TWAS had significantly heterogeneous effects across the 

impulsivity facets (Table S4). 

 Given the strong concordance of effects across brain tissues (all cross-tissue rs > 0.856), we used an 

aggregated Cauchy association test (ACAT) to integrate associations across all available tissues and further 

improve statistical power (Methods). The results of these multi-tissue TWAS analyses identified a total of 93, 1, 

and 92 unique genes associated with impulsivity in the omnibus, common factor, and QGene models, respectively 

(Table S5). In the omnibus results, some of the strongest associations were concentrated within chromosome 17 

at cytogenetic region 17q21.31, with MAPT and its non-coding RNA transcripts (MAPT-AS1 and MAPT-IT1), 

KANSL1 and its antisense transcript (KANSL1-AS1), and CRHR1 all showing robust links to impulsivity (all 

ACAT Pomnibus < 7.79e-14; Figure 2c). Notably, these genes are located in a genetically complex segment of 

17q21.31 harboring a common inversion polymorphism50,51 that has been linked to neurodevelopmental and 

neurodegenerative disorders52–56, as well as individual differences in brain structure57. For the common factor of 

impulsivity, the only transcriptome-wide significant association mapped to LINC01819 (also known as KPRT4; 

ACAT P = 1.27e-6), a long non-coding RNA that has been associated with some psychological phenotypes (e.g., 

insomnia44) but has no known relevance to neurobiology. 
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Figure 2. Multivariate modeling of transcriptomic architecture and its links to neurodevelopment. a,b, 
Manhattan (a) and Miami (b) plots of TWAS results for the omnibus and common factor models, respectively, 
where the x-axis refers to chromosomal position, the y-axis refers to statistical significance on a -log10 scale, the 
horizontal dashed line denotes genome-wide significance (P = 9.67e-7), and each point corresponds to one of the 
tested 51,698 gene-tissue pairs (spanning 13 GTEx brain tissues). c, Polar plots of ACAT TWAS P values for MAPT 
and KANSL1 on a -log10 scale across all multivariate and univariate tests. d, Line plot of gene property analysis for 
TWAS results, illustrating patterns of enrichment and depletion of transcriptomic signals in developmentally 
specific genes across the lifespan. Developmental windows measured in PsychENCODE are plotted on the x-axis, 
while the Z statistic of enrichment or depletion is plotted on the y-axis. The dark gray band denotes the non-
significant range of Z statistics, the light gray bands reflect nominal significance, and white reflects significance at 
a Bonferroni-corrected threshold. 
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 Molecular bases of impulsivity facets implicate differing aspects of neurobiology 

 To characterize the biological pathways involved in the etiology of impulsivity, we used MAGMA to 

conduct gene-based association analyses for each of the three multivariate models (Methods). These gene-based 

test statistics were then used in gene property and gene set enrichment analyses to identify specific tissues, 

biological processes, molecular functions, and cellular components implicated in the molecular genetic 

architecture of impulsivity. 

Consistent with the results of our multivariate GWAS, MAGMA-based association analyses implicated 

64, 1, and 68 genes in the omnibus, common factor, and QSNP models, respectively (Table S6). As expected, all 

three models showed significant enrichment in brain tissues, with the omnibus model evincing the broadest and 

strongest pattern (Figure S4, Table S7). We also found that the omnibus GWAS results were enriched for genes 

preferentially expressed during fetal neurodevelopment (P = 0.001; Figure S5, Table S8). Follow-up facet-level 

analyses revealed similar results. For example, all impulsivity facets showed a broad pattern of enrichment across 

brain tissues, albeit to a weaker degree than the multivariate models (Figure S4). Similarly, developmental results 

indicated that genes preferentially expressed during early-to-mid fetal neurodevelopment tended to be most 

strongly enriched among facets. The exception to this pattern involved non-planning and urgency traits, which 

showed the greatest relative enrichment in genes preferentially expressed during late infancy (Figure S5). 

With respect to gene set enrichment, no gene sets were significantly enriched in the omnibus or common 

factor results after correcting for multiple comparisons, though we did observe an enrichment of QSNP signal in 

genes related to synapse organization (P = 3.39e-6). Further inspection suggested there was a general pattern of 

enriched signal in gene sets related to synaptic biology across models, as many of the top-ranked gene sets were 

related to the synapse (Table S9). Subsequent permutation testing indicated that synaptic location and process 

gene sets were indeed more strongly enriched in all GWAS results compared to other collective sets of the same 

size (all Ps < 1e-4, Figure S6; Methods). 

To characterize the biology implicated in the transcriptomic architecture of impulsivity, we translated the 

MAGMA statistical framework to facilitate gene-based association, gene property, and gene set enrichment 

analyses of multivariate TWAS results (Methods). Briefly, paralleling the results described above, we found that 

signal from the omnibus TWAS was enriched in genes specifically expressed during early to mid-fetal 

development at multiple stages (Ps < 0.004; Figure 2d; Table S10). In contrast, neither the common factor 

TWAS nor the QGene results showed any pattern of enrichment across neurodevelopment. Facet-level results 

revealed that most impulsivity facets exhibited a similar pattern of enrichment as the omnibus model, except for 

premeditation, which showed a suggestive depletion of signal in genes specifically expressed during early 

prenatal development (Figure S7). 

For TWAS-based gene set enrichment analyses, results implicated nitric oxide mediated signal 

transduction genes in the omnibus transcriptomic architecture of impulsivity (P = 2.92e-8; Table S11) – 

noteworthy given the key regulatory role of nitric oxide in central and peripheral neuronal signaling58,59. Follow-
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up tests revealed that this gene set was not significantly enriched in any of the lesser-powered facet-level results; 

however, there were nominally significant signals for attentional impulsivity and sensation seeking (Ps = 0.003 

and 0.006, respectively) that may be contributing to the omnibus signal. Finally, to parallel the MAGMA-based 

analyses, we performed permutation testing to evaluate whether gene sets related to synaptic locations and 

processes were enriched in the TWAS results, finding no evidence of categorical enrichment for these gene sets 

(all Ps > 0.151; Methods). 

 

Impulsivity facets are differentially related to endophenotypes and other complex traits 

 Within the Genomic SEM framework, we next conducted a series of genetic correlation and QTrait 

analyses to explore how impulsivity relates to other complex traits and further evaluate the psychometric validity 

of the common impulsivity factor. Specifically, we used the common factor and QTrait models to estimate genetic 

relationships between impulsivity and three categories of traits: imaging-derived measures of brain structure, 

accelerometer-based metrics of physical activity, and psychological and psychiatric outcomes (Methods). 

 To gain greater insight into the etiological relationships between impulsivity and neuroanatomy, we 

estimated the genetic correlations between the common impulsivity factor and 34 bilateral regional measures of 

cortical thickness and surface area.  The common factor was mostly negatively correlated with these measures of 

cortical morphology at a genetic level (Figure 3a, Table S12), which suggests that variants associated with a 

greater liability for impulsivity also tend to be associated with reduced cortical thickness (rg = -0.21 to -0.019 

[mean = -0.096]) and surface area (rg = -0.115 to 0.063 [mean = -0.032]). Notably, some of the stronger genetic 

relationships between impulsivity and reduced cortical thickness were consistent with a shared pathway in 

frontotemporal regions (Figure 3a,b,c), including the lateral orbitofrontal cortex (rg = -0.210, s.e. = 0.065, P = 

0.001, QTrait P = 0.117) and the medial orbitofrontal cortex (rg = -0.183, s.e. = 0.069, P = 0.008, QTrait P = 0.084).  

 Generally, though, QTrait analyses revealed widespread heterogeneity throughout the cortex for both 

thickness and surface area associations (Figure 3c, Table S12). With respect to cortical thickness, we observed 

strong evidence of trait-specific genetic relationships between impulsivity facets and cortical thickness, including 

in all three subregions of the inferior frontal gyrus: the pars orbitalis (QTrait P = 1.3e-9), pars triangularis (QTrait P = 

8.09e-11), and pars opercularis (QTrait P = 2.43e-7). Notably, each of these regions has been functionally 

implicated in partially distinct aspects of self-regulatory control, as well as switching between goal-directed and 

habit-based responses. Examination of the facet-level genetic correlations revealed heterogeneity within the 

inferior frontal gyrus (Figure 3d), with QTrait signals driven by the divergent effects of attentional impulsivity and 

negative urgency, which, at times, had weak positive associations with cortical thickness. At the network level, 

topographical annotation indicated that cortical regions in the visual and default mode networks tended to harbor 

the most trait-specific surface area associations (Pspin = 0.005; Figure 3e; Supplementary Information).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.23299133doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.28.23299133
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

 
Figure 3. Topography of genetic relationships between cortical morphology and impulsivity. a, Map of genetic 
correlations between the common impulsivity factor and cortical surface area and thickness. b, Polar plot of genetic 
correlations between specific facets of impulsivity and thickness of the lateral orbitofrontal cortex, where facet-
level effects are consistent with a shared pathway. c, Map of QTrait -log10(P) values for cortical surface area and 
thickness, indexing the degree to which effects are incompatible with a common factor model. d, Scatter plots 
depicting the facet-level genetic relationships for all three subdivisions of the inferior frontal gyrus as a function of 
unstandardized factor loadings. e, Bar chart illustrating the difference in QTrait for cortical surface area across the 
Yeo-Krienen functional networks, which are displayed on the right for reference. 
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 Given that motor alterations are a prominent feature of several neurological and psychiatric disorders, we 

next characterized the genomic relationships between impulsivity and accelerometer-based metrics of physical 

activity. We found that the common impulsivity factor was modestly genetically correlated with physical activity 

across the day, with positive genetic correlations during the early morning hours (00:00–06:59) and negative 

genetic correlations throughout the remainder of the day (07:00–23:59) (Table S13; Figure S8). Only 3 hourly 

associations were significant following correction for multiple testing, all of which showed significant evidence of 

heterogeneity in subsequent QTrait analyses. Inspection of the facet-level genetic correlations revealed that the 

links between impulsivity and physical activity were generally similar during morning hours, but these diverged 

in the afternoon and evening (Figure 4a, Table S13). Perseverance and sensation seeking displayed some of the 

clearest facet-specific patterns, with the former linked to a more pronounced dip in activity during the afternoon 

(lowest rg = -0.231) and the latter linked to increased activity during the evening (highest rg = 0.178).  

  Finally, we examined genomic relationships between impulsivity and 23 psychiatric phenotypes. As 

might be expected, genetic correlations between the common impulsivity factor and these outcomes were 

generally positive (range = 0.039 - 0.621) and statistically significant (Figure 4b, Figure S9). We observed some 

of the largest genetic correlations with attention-deficit/hyperactivity disorder (rg = 0.567, s.e. = 0.043), alcohol 

use disorder (rg = 0.535, s.e. = 0.072), and cannabis use disorder (rg = 0.479, s.e. = 0.058). However, follow-up 

QTrait analyses revealed significant facet-level specificity for every tested trait (all QTrait P < 8.48e-6; Figure 4c, 

Table S14; Figure S10). For example, attention-deficit/hyperactivity disorder and its various clinical 

presentations (e.g., childhood, persistent, late-onset) exhibited null genetic correlations with perseverance in a 

manner that deviated from the common pathway model. Other notable deviations include facet-specific genetic 

correlations between schizophrenia and premeditation (rg = -0.104, s.e. = 0.036), bipolar disorder and motor 

impulsivity (rg = 0.22, s.e. = 0.039), and alcohol consumption and sensation seeking (rg = 0.228, s.e. = 0.043) 

(Figure 4c). Collectively, results revealed that genetic relationships with psychopathology were inconsistent with 

a model of general liability to impulsivity and instead better captured with facet-specific pathways. 
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Figure 4. Facet-specific and heterogeneous genetic correlations between impulsivity and behavioral phenotypes. a, Line plots of 
genetic correlations between impulsivity facets and accelerometer-based measures of physical activity, as estimated with LOESS. Vertical 
gray bands highlight time periods when QTrait P was non-significant (i.e., periods when the observed pattern of effects was consistent with a 
common pathway). b, Bar charts depicting the genetic correlations between impulsivity facets and select psychiatric outcomes. Horizontal 
blue lines index the genetic correlation between an outcome and the impulsivity factor (and the corresponding standard error). c, Scatter plots 
illustrating how genetic correlations with psychiatric outcomes are inconsistent with a common factor model in multiple ways, where facet-
level relationships are plotted as a function of unstandardized factor loadings. Error bars depict standard errors. 
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Facet-level polygenic scores are generally more informative than one for a common factor of impulsivity 

We next tested whether a polygenic score for common impulsivity might be more strongly or broadly 

associated with impulsivity and other health-related outcomes. To accomplish this, we calculated polygenic scores 

for the common factor of impulsivity and the constituent facets in two independent samples that span most of the 

human lifecourse: the Adolescent Brain and Cognitive Development Study (ABCD)60,61 and the Vanderbilt 

University Medical Center biobank (BioVU)62,63. ABCD was used to examine associations between polygenic 

scores and psychological measures, while BioVU was used to examine associations with medical outcomes.    

In ABCD, we found that the common factor polygenic score was robustly associated with psychological 

measures closely related to impulsivity, with similar ∆R2 values as the facet-level polygenic scores across eight 

outcomes: the five UPPS-P subscales (negative urgency, [lack of] premeditation, [lack of] perseverance, positive 

urgency, and sensation seeking) and three subscales from the Child Behavior Checklist (CBCL)64,65 (attention, 

externalizing, and internalizing problems). Here, through a set of novel Q-like analyses, we found that the effects 

of facet-level polygenic scores largely aligned with a common pathway model (Figure 5a, Methods) – a finding 

that was further supported by the relatively strong performance of the impulsivity factor polygenic score in 

ABCD (Table S15). There were, however, six instances where the effects of sensation seeking or perseverance 

polygenic scores significantly deviated from expectation (Table S15, Figure S11), suggesting that some 

relationships in the sample are better captured by facet-specific versus shared pathways.  

A very different pattern emerged in BioVU, where the common factor polygenic score was neither 

strongly nor broadly associated with health-related outcomes, with only five phenome-wide significant 

associations. By comparison, polygenic scores for negative urgency and nonplanning were linked to 52 and 47 

medical outcomes, respectively. More precisely, when compared to all facet-level polygenic scores, significant 

associations with 67 unique health outcomes were obfuscated when the common factor polygenic score was used 

(Figure 5b, Table S16, Figures S12-20). Some of the missed relationships included novel links between urgency 

traits and increased odds for neurodevelopmental disorders (e.g., negative urgency–autism spectrum disorder: OR 

= 1.219, P = 2e-8; positive urgency–autism spectrum disorder: OR = 1.197, P = 8.82e-5; positive urgency–

pervasive developmental disorder: OR = 1.119, P = 1.64e-5), negative urgency and increased odds for disorders 

of the circulatory system (e.g., negative urgency–myocardial infarction: OR = 1.103, P = 1.57e-7), and 

nonplanning and increased odds for viral hepatitis C (OR = 1.151, P = 1.42e-6). In addition to the expected 

associations with externalizing disorders (e.g., substance use disorders), there were significant positive links 

between multiple facets of impulsivity and internalizing conditions (e.g., major depressive disorder), buttressing 

the etiological connections between a broad spectrum of dysregulated behavioral and emotional processes.  

Given the distinct PheWAS results, we sought to better understand the relationship between the common 

factor and facet-level polygenic score effects. In general, we found that the correlation between the two varied 

considerably across scores and medical categories (Figure 5c). Even in the mental disorders category, where 

concordance was generally higher, patterns ranged from modest negative correlations (r = -0.213 for 

perseverance) to strong positive correlations (r = 0.771 for nonplanning impulsivity).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.28.23299133doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.28.23299133
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 
Figure 5. Polygenic scores and the validity of a common pathway in independent datasets. a, Scatter plot depicting the effect of each facet-level polygenic 
score for the CBCL outcomes in the ABCD Study as a function of the unstandardized factor loadings. Error bars depict the standard error. Asterisks denote 
significant deviations from the common pathways model. b, Manhattan plot of the strongest associations between facet-level polygenic scores and medical 
outcomes defined by “phecodes” in BioVU. The y-axis refers to the category of phecode, the x-axis refers to the statistical significance of the association on -
log10 scale, and the dashed line denotes the Bonferroni-adjusted significance threshold (P = 0.05/1,380 = 3.62e-5). Each point in the plot corresponds to the 
minimum P value for an association between the eight facet-level polygenic scores and a phecode. Circles denote nonsignificant associations, upward-facing 
triangles are significant positive associations, and downward-facing triangles are significant negative associations. Size reflects the effect size, with larger 
points reflecting a larger absolute effect. For plotting purposes, the x-axis has been truncated to begin at P < .05 (1.301 on the -log10 scale), and conditions that 
did not meet this threshold were omitted. NEC = not elsewhere classified, SUD = substance use disorder. c, Scatter plot of the correlation between the effects 
of the common factor polygenic score and the effects of facet-level polygenic scores, where error bars correspond to the standard error of the estimate.  
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Discussion 

Advancing etiological understanding of impulsivity is necessary to develop more effective therapeutic 

interventions for numerous psychiatric and neurological disorders. In the present study, we investigated the 

genetic architecture of impulsivity, employing complementary multivariate models to advance genomic discovery 

and formally evaluate pleiotropy across biological scales. Our results provide insight into the heterogeneous 

biology underlying impulsivity, revealing pervasive pleiotropy that is largely inconsistent with a common factor 

model of impulsivity in downstream analyses at molecular genetic, transcriptomic, neurogenomic, and phenomic 

levels. Three key insights emerge from this work: (1) there is more evidence for splitting over lumping that 

emerges at granular levels of analysis, especially for sensation seeking and (lack of) perseverance; (2) despite 

limited support for lumping, there are instances where the common factor approach may facilitate robust and 

interpretable discoveries for impulsivity; and (3) the etiology of impulsivity is closely linked to early 

neurodevelopment and related conditions. 

The considerably greater evidence for fractionating impulsivity stands in stark contrast to recent findings 

in psychiatric and behavioral genetics, which indicate that substantial genetic risk is shared across related 

psychological outcomes. This is particularly striking since a common factor model showed good fit to our data, 

and this would typically suggest overlapping architecture that is consistent with a general dimension of liability. 

However, while a parsimonious lumping approach seemed viable at the level of genome-wide covariance, it 

performed poorly in subsequent analyses where many trait-specific patterns and signals were observed – 

especially for sensation seeking and (lack of) perseverance. These results align with related insights from 

neuroscience7, and they underscore the importance of evaluating conceptual models across levels of analysis, 

especially considering the growing trend to group related psychological constructs together13,14. 

Notably, our results show a distinct advantage of the omnibus model (i.e., the unstructured splitting 

approach) in GWAS and TWAS results. This approach markedly improved statistical power, enabling the 

discovery of novel risk loci and biological pathways related to multiple aspects of human impulsivity. For 

instance, our results revealed strong novel signals within chromosome 17 that localized to cytogenetic region 

17q21.31. Here, we found a particularly robust association between impulsivity and the MAPT gene, along with 

its related non-coding RNA transcripts MAPT-AS1 (antisense) and MAPT-IT1 (intronic). Converging lines of 

evidence have linked genetic variation in MAPT to difficulties with self-regulation in the general population31,66, 

with potential mechanisms including altered expression of either MAPT or its regulatory RNA transcripts, which 

can disrupt tau protein function67. This disruption can lead to aberrant microtubule dynamics, synaptic 

dysfunction, and compromised neural circuitry involved in impulse control and executive functions68,69. We also 

identified robust associations between impulsivity and KANSL1 and its antisense transcript, KANSL1-AS1, which 

play a key role in autophagy and synaptic activity70. Variation in this gene has previously been linked to 

neurodevelopmental and neurodegenerative disorders that exhibit difficulties with self-regulation53,56,71, and 

changes to its expression or function could influence individual differences in impulsivity as well. 
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The improved statistical power of the omnibus model also facilitated new discoveries in downstream 

analyses, such as links to synaptic biology and nitric oxide signaling in the genomic and transcriptomic 

architecture of impulsivity, respectively. Nitric oxide plays a complex and multifaceted role in the central nervous 

system59, where it is involved in mediating and modulating neurotransmission, neurovascular coupling, and 

neuroinflammatory processes. Disrupted nitric oxide metabolism also engenders impulsive, hyperactive, and 

aggressive behavior in murine models72–75, and altered nitric oxide signaling is linked to attention deficits in 

patients with certain neurometabolic disorders (e.g., argininosuccinate lyase deficiency)76. 

 Our heterogeneity tests also advanced understanding of the pleiotropy across biological scales by 

identifying loci with divergent or trait-specific effects, such as CADM2. Here, we used QSNP and QGene analyses to 

reveal that the effects of CADM2 were highly specific to certain facets and inconsistent with a general liability to 

impulsivity, granting new insights not afforded by univariate GWAS or TWAS38. Bioinformatic analyses 

indicated that the most heterogeneous and facet-specific signals localized to genes that are preferentially 

expressed during early neurodevelopment. Furthermore, our QTrait analyses detected several divergent effects on 

brain structure. We found that the inferior frontal gyrus exhibited pronounced heterogeneity with impulsivity, 

with highly facet-specific signals observed in all three of its cytoarchitecturally diverse subdivisions: the pars 

orbitalis, pars triangularis, and pars opercularis. As alterations in cortical thickness partly reflect variability in 

cellular organization (e.g., disturbances in neural progenitor cell proliferation or neuronal differentiation)77,78, 

differences in cell type distributions or morphology may influence regional-specific links to impulse control and 

decision-making.  

Beyond clarifying the unique biology associated with specific impulsivity facets, the Q tests also allowed 

us to identify effects that plausibly operate via a common pathway, such as the FOXP2 gene. QSNP and QGene 

results indicated that the effects of this gene on impulsivity were consistent with a general liability model, which 

is noteworthy given its prior associations with externalizing psychopathology31,48,49, as well as speech and 

language disorders47,79,80. With established roles in the regulation of neural plasticity, synaptic connectivity, and 

neurite outgrowth81, FOXP2 may exert a highly pleiotropic effect on psychological outcomes during early 

development, with impulsivity serving as an intermediate phenotype. Furthermore, we found several nominal 

genetic correlations with cortical thickness that were consistent with a common pathway model, such as the 

medial and the lateral orbitofrontal cortex (OFC). Both of these regions have been functionally implicated in 

impulsive behavior, with medial OFC responses encoding the subjective value of delayed reward in order to 

support goal-directed behavior82, and lateral OFC responses, together with the insula, supporting learning from 

aversive outcomes to guide adaptive behavior83–85.  

Finally, we identified several specific risk genes and pathways that are involved in critical developmental 

programs, and we found that both the genetic and transcriptomic architectures of impulsivity are enriched for 

genes that are primarily expressed during early-to-mid fetal neurodevelopment. These links were underscored in 

our polygenic score analyses, including the first PheWAS of impulsivity, where we identified novel associations 

between facet-level polygenic scores and neurodevelopmental conditions. In scanning the medical phenome, we 
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found that genetic liability for urgency-related traits was linked to autism spectrum disorder in a manner that 

appeared to be trait-specific, with effects that were larger than any other association (e.g., negative urgency–

autism spectrum disorder: OR = 1.219; positive urgency–autism spectrum disorder: OR = 1.197). Notably, these 

relationships were not observed when using a common factor polygenic score. However, although the common 

factor polygenic score was not informative in adults, we did find that it was robustly associated with 

psychological measures in children, where facet-level effects largely aligned with a common pathway model. One 

interpretation of this pattern is that genetic risk for impulsivity largely operates via broad, general pathways in 

children but canalizes into more unique channels across development, such that a general index becomes less 

informative by adulthood, as seen for problematic alcohol use86–88. 

These findings should be interpreted in light of several limitations, such as the exclusion of individuals 

with non-European ancestry due to methodological constraints. This, coupled with the participation biases in the 

present cohort89, may affect the generalizability of our findings to other populations. Furthermore, all univariate 

GWAS analyses were conducted using facet-level sum scores from the BIS-11 and the UPPS-P, as opposed to 

item-level measures. It has previously been demonstrated that the use of item-level modeling can ameliorate 

certain confounds and generate deeper insights into the shared genetic architecture among complex traits30,66,90. 

Additionally, the present study was limited to self-report measures of impulsivity, which may not fully generalize 

to task-based measures of similar cognitive and behavioral processes. Thus, future research should seek to 

replicate and extend our findings in more diverse and representative samples with more granular measures of 

impulsive traits.  

Nevertheless, our study considerably advances understanding of impulsive traits and their genetic 

architectures. Through multivariate modeling across biological scales, we identified novel risk genes for 

impulsivity facets, uncovered trait-specific effects at multiple levels of analysis, and highlighted new genetic links 

with neurodevelopment. While we do find several instances of convergent biology that implicate a shared 

pathway, we find substantially more evidence for trait-specific biology underlying the impulsivity facets. 

Sensation seeking and perseverance clearly differ from other facets in their etiological underpinnings, and they are 

perhaps better conceptualized as indices of psychological motivation or reward sensitivity rather than self-

regulation, per se37. Indeed, this would align with phenotypic factor analytic research that suggests these facets 

tend to be more distinct from other impulsive traits91,92.  

Collectively, these results cast considerable doubt on the validity of impulsivity as a unitary construct, 

challenging the conventional practice of lumping together diverse cognitive and behavioral tendencies that share 

only modest overlap. Instead, our findings advocate for a more refined and nuanced approach to studying 

impulsivity and its links to psychiatric and neurological disorders, one that recognizes its multifaceted nature and 

the distinct biology that influences its various facets. This shift in perspective paves the way for a deeper 

exploration of impulsive traits, promising new insights into the complexities of human psychology and health. 
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Methods 

This study is accompanied by Supplementary Information, which includes additional tables and figures.  

 

GWAS data acquisition and pre-processing 

Univariate GWAS summary statistics were obtained from a previously published study of impulsivity38. 

In the present study, we analyzed GWAS summary statistics for two psychometrically validated measures of 

impulsivity: the Barratt Impulsiveness Scale (BIS-11)39 and the UPPS-P Impulsive Behavior Scale40. The former 

includes subscales that measure attentional, motor, and nonplanning impulsiveness, while the latter includes 

subscales that measure (lack of) premeditation, (lack of) perseverance, positive urgency, negative urgency, and 

sensation seeking. These phenotypes are succinctly described below: 

 

• Attentional Impulsiveness (ATTN): An inability to concentrate or focus attention. 

• Motor Impulsiveness (MOTR): A predisposition to hastily engage in behaviors in response to 

internal or external stimuli. 

• Negative Urgency (NEGU): A tendency to react rashly to negative affect without consideration of 

potential consequences. 

• Nonplanning Impulsiveness (NONP): An inclination to forgo future planning and forethought. 

• Lack of Perseverance (PERS): An inability to remain focused on tasks that may be boring or 

difficult. 

• Positive Urgency (POSU): A tendency to rashly react to positive affect without consideration of 

potential consequences. 

• Lack of Premeditation (PREM): A tendency not to think about or reflect on the consequences of an 

action before taking it. 

• Sensation Seeking (SENS): A predisposition to seek out new and exciting experiences, potentially 

without evaluating the risk. 

 

As described by the original authors38, these GWAS were conducted in a cohort of up to 133,517 

participants of European ancestry collected by 23andMe, Inc., a direct-to-consumer genetics company. Further 

description of the cohort can be found in the original study by Sanchez-Roige and colleagues38.All summary 

statistics included in the present analysis had significant SNP-based heritability and robust polygenic signal 

(Table 1). Reference alleles were aligned across univariate GWAS summary statistics, and only SNPs with a 

minor allele frequency ≥ 0.5% and an imputation quality score ≥ 0.6 were included in analyses. 

 

Multivariate GWAS of impulsivity 

Using Genomic SEM v0.0.529,33, we performed multivariate genome-wide association analyses for two 

distinct statistical models: the omnibus model (i.e., “splitting” impulsivity) and the common factor model (i.e., 
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“lumping” impulsivity). We also perform follow-up QSNP tests to determine whether SNP effects on the common 

factor are statistically plausible. Details of the exploratory and confirmatory factor analyses are reported in the 

Supplementary Information. All analyses were conducted adhering to best practices, using standard reference 

panels and parameter settings, and diagonally weighted least squares (DWLS) estimation. The estimated sample 

size of the latent genetic factor was calculated in the manner described by Mallard and colleagues32. 

We refer interested readers to the original methodology papers by Grotzinger and colleagues29,33 for 

exhaustive description of the method, but we provide an overview of the genomic structural equation models 

reported herein below. As illustrated in Figure 1c,d, the omnibus model tests the degree to which a SNP has non-

zero effects on impulsivity facets, the common factor model tests the degree to which a SNP influences 

impulsivity facets via a common pathway, and the QSNP model tests the degree to which said common pathway is 

statistically plausible.   

Omnibus model. To test whether the overall pattern of effects for a given SNP was non-zero across study 

phenotypes, we performed genome-wide unstructured tests of association, where all relationships among 

impulsivity facets and their relationships with tested SNPs were freely estimated. This was accomplished by first 

fitting the following system of regressions for each SNP: 

 

y1 = b1 ⋅ SNPi + ϵ1 

y2 = b2 ⋅ SNPi + ϵ2 

⋮ 

yk = bk ⋅ SNPi + ϵk 

 

Where y refers to the k facets in the structural equation model, SNPi is the tested SNP, b represents the 

estimated regression coefficients, and ϵ denotes the error terms. We then fit a null model with all regression 

coefficients constrained to equal zero for the tested SNP, such that 

 

y1 = 0 ⋅ SNPi + ϵ1 

y2 = 0 ⋅ SNPi + ϵ2 

⋮ 

yk = 0 ⋅ SNPi + ϵk 

 

The difference in fit between these two models was then calculated with a χ2 difference test, where ∆χ2 = 

χ2
free - χ2

constrained and ∆df = dffree - dfconstrained. The omnibus P value for SNPi can then be calculated as P = 1 - 

𝐶𝐷𝐹!!(∆χ2, Δdf), where 𝐶𝐷𝐹!! is the cumulative distribution function of the chi-square distribution with Δdf 

degrees of freedom. 

Common factor model. To estimate the effect of a given SNP on a general dimension of impulsivity, we 

used the common factor approach described by Grotzinger and colleagues29 to model the genetic covariances 
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among study phenotypes. In this framework, a measurement model describes the genetic relationships between 

model indicators and a latent factor as 

 

y1 = λ1 ⋅ F + ϵ1 

y2 = λ2 ⋅ F + ϵ2 

⋮ 

yk = λk ⋅ F + ϵk 

 

Where y refers to the k observed indicators in the measurement model, F is the latent genetic factor, λ 

represents the factor loadings, and ϵ denotes the residual variances or errors associated with each indicator. The 

latent genetic factor can then be regressed onto a given SNP as 

 

F = b ⋅ SNPi + ζ 

 

Here, b refers to the regression coefficient representing the effect of SNPi on F, and ζ is the residual. Note 

that the standard error and P value for this estimated parameter were computed within the model, as well. 

QSNP model. To statistically test whether the estimated SNP effect plausibly operated via the latent factor 

(i.e., a common pathway), we conducted follow-up QSNP tests for every tested SNP. This involved comparing the 

common factor model to one where SNPs directly influence indicators through freely estimated independent 

pathways, as opposed to the common pathway. The difference in model fit can then be quantified with a χ2 

difference test, where ∆χ2 = χ2
independent - χ2

common and ∆df = dfindependent - dfcommon. The QSNP P value for SNPi was 

subsequently calculated as P = 1 - 𝐶𝐷𝐹!!(∆χ2, Δdf), as described above. 

Note that the expectation is not necessarily that SNP-level effects are homogenous across model 

indicators. Instead, under the common pathway model, we would expect that the effect of a given SNP on model 

indicators scales proportionally with the unstandardized factor loadings, where 

 

𝔼

⎣
⎢
⎢
⎡
𝑏"#$",&#
𝑏"#$",&!

⋮
𝑏"#$",&$⎦

⎥
⎥
⎤
= 𝑏"#$",' ⋅ /

𝜆(
𝜆)
⋮
𝜆*

1 

 

Here, 𝑏"#$",&$ represents the effect of SNP i on indicator k,	𝑏"#$",' is the effect of the SNP i on latent 

factor F, and λk represents the unstandardized loadings on the latent factor. As described by de la Fuente and 

colleagues93, misfit will occur when the vector of expected SNP effects on indicators is discordant with the 

observed SNP effect on indicators. The resulting Q statistic will be high, and the model in which the SNP 
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influences indicators exclusively via the common pathway will be rejected. Interpretation can be facilitated by 

plotting the univariate GWAS betas by the unstandardized factor loadings, as illustrated in Figure 1g,h. 

 

Biological annotation of GWAS results 

To characterize genome-wide significant loci, we used the FUMA v1.5.4 SNP2GENE pipeline with 

default parameters to apply a standard clumping algorithm to our GWAS results. The European ancestry samples 

from the 1000 Genomes Project Phase 3v5 (n = 503) were used as a LD reference panel. To identify putative risk 

genes, we conducted positional mapping using field standard ANNOVAR annotations (version 2017.07.17). We 

also used FUMA to investigate whether loci associated with impulsivity have been previously linked to other 

complex traits in the GWAS Catalog (version e0_r2022-11-29). 

Gene-based analyses. We used MAGMA94 v1.08 to conduct gene-based association, gene property, and 

gene set enrichment analyses. Standard procedures were followed for gene-based association analyses based on 

GWAS summary statistics and default MAGMA parameters were employed throughout the pipeline.  

MAGMA was also used to conduct competitive gene property and gene-set enrichment analyses based on 

the gene-level P values produced in the association analyses. These analyses evaluated whether genes in a specific 

annotation had a stronger association with the GWAS outcome compared to other genes.  

In the gene property analyses, we utilized the GTEx v8 dataset, comprising 54 tissues, to examine 

enrichment in various bodily tissues. Additionally, we used brain tissue data from 11 developmental epochs in the 

BrainSpan dataset to assess enrichment throughout neurodevelopment. In the gene set enrichment analyses, we 

tested up to 9,988 gene sets from the Molecular Signatures Database v2023.1. These sets correspond to 7,343 

biological processes, 1,001 cellular components, and 1,644 molecular functions. For determining statistical 

significance, we used Bonferroni-corrected thresholds of P ≤ 9.26e-4 for the GTEx tests, P ≤ 4.54e-3 for the 

BrainSpan tests, and P ≤ 5.01e-6 for the gene set tests. 

Permutation test for synaptic gene sets. Given the relatively strong signals observed for several gene sets 

related to the synapse, we sought to test whether gene sets robustly implicated in synaptic biology, especially 

those robustly linked to synaptic locations and processes, were significantly enriched in the genetic architecture of 

impulsivity. To accomplish this, we utilized the SynGO database95, a meticulously curated repository of synaptic 

gene ontologies, to identify with high confidence gene sets related to the synapse as well as those that were not. 

We then used a permutation-based approach to test whether the mean Z statistic from our synapse-related gene 

sets was significantly different from what we might expect by chance, which we empirically established by 

randomly sampling the mean Z statistic of 10,000 combinations of gene sets of the same size. Statistical 

significance was calculated based on the number of times the observed value was greater than the randomly 

sampled value (i.e., 𝑃 = +,-./0	23	4/0-,5/6	-/7+8	9	2.8/0:/6	-/7+
5257;	+,-./0	23	4/0-,575<2+8

). 
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Multivariate TWAS of impulsivity 

To investigate the effects of tissue-specific gene expression on impulsivity, we used Transcriptome-Wide 

Structural Equation Modeling96 (version 0.0.5), which is based on the FUSION TWAS method. Specifically, we 

used this approach to conduct multivariate transcriptome-wide association analyses for the omnibus and common 

factor models. We also performed follow-up tests and calculated QGene statistics to evaluate whether SNP effects 

on the common factor were plausible.  

Within this framework, GWAS summary statistics for the impulsivity facets were then paired with cis 

gene expression quantitative trait locus data for 13 brain tissues from the Genotype-Tissue Expression Project 

(GTEx) v8 dataset to produce univariate TWAS estimates for 51,698 gene-tissue pairs. These gene-level 

summary statistics were then used as input for the multivariate TWAS, which yielded results for the omnibus, 

common factor, and QGene models.  

Aggregated Cauchy association test. Given that effects were strongly and positively correlated across 

tissues (all cross-tissue rs > 0.856), we used an aggregated Cauchy association test (ACAT) to integrate 

information across all available tissues and improve statistical power prior to downstream bioinformatic analyses. 

Specifically, for each multivariate model, we used the ACAT R package (version 0.91) to combine TWAS P 

values across available tissues for each gene. Following the recommendations of the developers, any ACAT P 

value equal to 1 was replaced by 1-1/d, where d refers to the number of TWAS P values combined by ACAT. We 

calculated Z statistics using the inverse cumulative density function (or quantile function) of the standard normal 

distribution, such that 𝑍	 = 	Φ=((1 − $
)
). 

 

Biological annotation of TWAS results 

To assess the enrichment of TWAS signals across various biological contexts, we employed a series of 

regression-based procedures, drawing inspiration from the MAGMA framework94. Specifically, we examined 

enrichment across neurodevelopmental epochs and gene ontology terms.  

For neurodevelopmental enrichment, we leveraged gene expression data from the PsychENCODE 

Consortium, deriving gene expression specificity scores for nine neurodevelopmental epochs (see following 

subsection). Each epoch's enrichment was then assessed by regressing gene-level Z statistics, obtained from the 

ACAT TWAS P values, on specificity scores for each developmental window. The median number of SNPs used 

in the TWAS weights, the median gene expression heritability, and the number of TWAS P values combined via 

ACAT were included as covariates in this analysis.  

For gene ontology terms, we characterized the enrichment of TWAS signals for all terms in the Molecular 

Signatures Database v2023.1. This was achieved by regressing the ACAT TWAS Z statistics onto a binary 

variable indicating gene set membership while accounting for the same gene-level covariates described above. 

Gene sets with less than three genes available for analysis were excluded. Finally, to parallel our GWAS 

bioinformatic analyses, we also conducted permutation-based tests of enrichment for SynGO95 gene sets as 

described in the previous section.  
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Statistical significance was tested using two-sided P values for the continuous neurodevelopmental 

specificity scores, while one-sided P values were used for the binary gene sets, consistent with the MAGMA 

framework. Bonferroni-corrected thresholds for significance were set at P ≤ 5.55e-3 for developmental analyses 

and P ≤ 7.72e-6 for gene set analyses.  

Specificity scores. To assess the specificity of expression for each gene across development, we 

calculated specificity scores in PsychENCODE data, using a similar specificity metric as Skene and colleagues97. 

First, we employed a normalization procedure that scaled the expression of a gene in each developmental window 

based on its relative expression in other windows, using the developmental periods defined by PsychENCODE 

investigators98. This was achieved by computing the average expression of each gene within each window as 

𝐴>? =
(
+%
∑ 𝐸<?
+%
<@( , where 𝐴>? denotes the average expression of gene j for window w, 𝐸<? represents the 

expression level of gene j in sample i from window w, and 𝑛> is the number of samples associated with window 

w. We then calculated the specificity score, S, for each gene in each window as 𝑆>? =
A%&

∑ A$&'
$(#

, where m is the 

total number of windows.  

 

Genetic correlations with other complex traits 

Genomic SEM v0.0.5, which is based on LD score regression99,100, was used to estimate genetic 

correlations between general impulsivity and other complex traits, as well as between the impulsivity facets and 

these traits. In the present paper, we selected traits from three domains for study: (i) imaging-derived measures of 

cortical structure, (ii) accelerometer-based measures of physical activity throughout the day, and (iii) psychiatric 

outcomes.  

Genetic correlations were estimated adhering to best practices, using standard reference panels and 

parameter settings. All GWAS summary statistics were processed with the munge function of Genomic SEM, 

which retained only HapMap3 SNPs outside of the major histocompatibility complex regions with an allele 

frequency ≥ 0.01 for analysis. Within each family of tests, P values were adjusted for multiple comparisons via a 

Bonferroni correction. Note that all genetic correlations with the common factor were subsequently examined 

with QTrait tests, as previously described33. This test parallels QSNP and QGene, as it evaluates the degree to which 

genetic relationships between model indicators and an external trait plausibly operate via a common pathway, 

aligning with the magnitude of factor loadings. 

 

Polygenic score analyses 

PRS-CS101 v2021.06.04 and PLINK102 v2.00 were used to calculate polygenic scores for the impulsivity 

facets and the common factor of impulsivity. Briefly, we first used PRS-CS to apply a continuous shrinkage prior 

to SNP effect estimates and infer posterior SNP weights for 875,517 common SNPs (minor allele frequency ≥ 

0.01) that were present across the HapMap3 and 1000 Genomes Project Phase 3v5 datasets. European ancestry 

samples from the 1000 Genomes Project Phase 3v5 reference panel were used to model LD among variants. We 
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then used PLINK to calculate polygenic scores for individuals in each sample by summing all included variants 

weighted by the inferred posterior effect size for the effect allele. The resulting polygenic scores were 

subsequently standardized to unit variance. 

 This process was used to calculate polygenic scores in two independent datasets: the Adolescent Brain 

and Cognitive Development Study (ABCD)60,61 and the Vanderbilt University Medical Center Biobank 

(BioVU)62,63. The former was used to examine associations between genetic liability for impulsivity and a select 

number of psychological outcomes in children, while the latter was used to examine associations between genetic 

liability for impulsivity and a wide array of medical outcomes, as described below. 

Adolescent Brain and Cognitive Development Study. We used the ABCD Study (n = 4,314) to examine 

relationships between liability for impulsivity and closely related psychological outcomes in children. 

Specifically, we sought to characterize associations between impulsivity polygenic scores and eight outcomes 

measured at baseline: the five UPPS-P subscales (negative urgency, [lack of] premeditation, [lack of] 

perseverance, positive urgency, and sensation seeking)40 and three subscales from the Child Behavior Checklist 

(CBCL) (attention, externalizing, and internalizing problems)64,65. 

To accomplish this, we used the lavaan R package (version 0.6-12) to conduct multiple regression 

analyses with DWLS estimation. For each outcome, we first fit a baseline model that only included sex, age, and 

the first 10 principal components of ancestry as covariates. We then fit models that iteratively added each 

polygenic score to the model, freely estimating the effect of the polygenic score on the outcome while adjusting 

for covariates. The variance explained by each score was calculated as ∆R2 = R2
full - R2

covariates. As results revealed 

that the common factor polygenic score performed quite well in terms of ∆R2, we next sought to determine if the 

pattern of effects was consistent with a common pathway model. Below, we describe a novel means of testing for 

facet-specific relationships that is conceptually similar to QSNP, QGene, and QTrait tests, but allows us to test whether 

individual effects deviate from expectation.  

Recall that facet-level effects are expected to scale proportionally with the magnitude of unstandardized 

factor loadings if the common pathway model is valid. Thus, we began by establishing the expected beta 

coefficient for each facet-level polygenic score based on the effect of the common factor polygenic score and the 

facet’s unstandardized factor loading from the genomic factor model, such that 

 

𝔼

⎣
⎢
⎢
⎡
𝑏$C"#,2,5D2-/
𝑏$C"!,2,5D2-/

⋮
𝑏$C"$,2,5D2-/⎦

⎥
⎥
⎤
= 𝑏$C")*,2,5D2-/ ⋅ /

𝜆(
𝜆)
⋮
𝜆*

1 

 

We then fit a follow-up model with a constraint imposed, wherein the effect of the polygenic score was 

fixed to its expected value. The freely estimated and constrained models were then compared using a likelihood 

ratio test, which allowed us to quantitatively determine whether deviations from expectation were statistically 

significant. Note that this approach is only suitable when the univariate GWAS (i.e., the input for Genomic SEM), 
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have comparable statistical power. That is to say, if polygenic scores for the model indicators vary drastically in 

their predictive power, we may observe deviations that are not informative about the common pathway.  

Vanderbilt University Medical Center Biobank. The genotyped BioVU sample (n = 66,915) served as 

the basis for examining associations between impulsivity polygenic scores and a broad range of medical 

phenotypes. The genotyping process and the quality control measures for this sample have been described in 

previous publications. Medical phenotypes, termed here as “phecodes”, were derived from the International 

Classification of Disease (ICD) diagnostic codes present in the electronic health records of participants. For a 

participant to be recognized as a case for a given phecode, we required that two separate ICD diagnostic code 

instances be present in their record. Only phecodes with at least 100 cases were considered for analysis. This 

resulted in 1,380 phecodes being included in the present study.  

The PheWAS R package (version 0.99.5-2) was then used to conduct phenome-wide association analyses, 

where, for each of the phecodes, a logistic regression model was used to estimate the odds of each diagnosis based 

on each impulsivity polygenic score. Covariates included sex, median age from the longitudinal electronic health 

record data, and the first 10 principal components of ancestry. Phenome-wide significance was set at a 

Bonferroni-adjusted threshold of P ≤ 3.62e-5. 
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