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ABSTRACT 

 

Objective 

This study aims to address disparities in risk prediction by evaluating the performance of polygenic 

risk score (PRS) models using the 90 risk variants across 78 independent loci previously linked to 

Parkinson’s disease (PD) risk across seven diverse ancestry populations. 

 

Methods 

We conducted a multi-stage study, testing PRS models in predicting PD status across seven 

different ancestries applying three approaches: 1) PRS adjusted by gender and age; 2) PRS adjusted 

by gender, age and principal components (PCs); and 3) PRS adjusted by gender, age and percentage 

of population admixture. These models were built using the largest four population-specific 

summary statistics of PD risk to date (base data) and individual level data obtained from the Global 

Parkinson's Genetics Program (target data). We performed power calculations to estimate the 

minimum sample size required to conduct these analyses. A total of 91 PRS models were developed 

to investigate cumulative known genetic variation associated with PD risk and age of onset in a 

global context. 

 

Results 

We observed marked heterogeneity in risk estimates across non-European ancestries, including 

East Asians, Central Asians, Latino/Admixed Americans, Africans, African admixed, and Ashkenazi 

Jewish populations. Risk allele patterns for the 90 risk variants yielded significant differences in 

directionality, frequency, and magnitude of effect. PRS did not improve in performance when 

predicting disease status using similar base and target data across multiple ancestries, 

demonstrating that cumulative PRS models based on current known risk are inherently biased 

towards European populations. We found that PRS models adjusted by percentage of admixture 

outperformed models that adjusted for conventional PCs in highly admixed populations. Overall, 

the clinical utility of our models in individually predicting PD status is limited in concordance with 

the estimates observed in European populations. 

 

Interpretation 

This study represents the first comprehensive assessment of how PRS models predict PD risk and 

age at onset in a multi-ancestry fashion. Given the heterogeneity and distinct genetic architecture 

of PD across different populations, our assessment emphasizes the need for larger and diverse 

study cohorts of individual-level target data and well-powered ancestry-specific summary statistics. 

Our current understanding of PD status unraveled through GWAS in European populations is not 

generally applicable to other ancestries. Future studies should integrate clinical and *omics level 

data to enhance the accuracy and predictive power of PRS across diverse populations. 
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INTRODUCTION  

 

The heritability attributed to idiopathic Parkinson’s disease (PD) in European populations is 

estimated to be around 22% 
1
. Genome-wide association studies (GWAS) have been key at 

identifying common loci that contribute to PD risk. A total of 90 risk variants across 78 independent 

loci have been associated with PD risk in the European ancestry populations 
1
. More recently, large-

scale efforts are focusing on increasing genetic diversity in PD studies to unravel the genetic 

architecture of disease across ancestries 
2–5

. The largest trans-ethnic PD GWAS meta-analysis to 

date performed in European, East Asian, Latino/Admixed American, and African ancestry 

populations identified a total of 78 loci, 12 of which had not been previously identified 
6
.  

 

A polygenic risk score (PRS) can be generated to estimate an individual's susceptibility to a binary 

outcome, exploring the cumulative estimated effect of common genetic variants on an individual's 

phenotype like PD 
7,8

. However, PRS alone has not been shown to have clinical utility in predicting 

PD in European populations, with only 56.9% sensitivity and 63.2% specificity at best to predict 

disease 
9
. PRS utility improves both sensitivity (83.4%) and specificity (90.3%) to predict disease 

when including relevant clinical criteria such as olfactory function, family history, age, and gender 
9,10

. Similarly, the integration of environmental factors ameliorates case/control stratification 
10,11

 

while the combination of multi-omics and clinical criteria in PRS models boosts prediction models 

across multiple diseases 
11,12

. 

 

PRS estimates are still limited by cohort size, sparse or inconsistent clinical characteristics, and 

especially by a lack of diverse genetic background, as most GWAS data are only available for 

Europeans. Using PRS to calculate disease risk in a single population may exacerbate existing health 

disparities as it cannot be accurately implemented across diverse ancestries 
13,14

. To date, this 

limitation has been underscored by a number of studies in diseases such as coronary artery 

disease, type 2 diabetes, and breast and prostate cancer, where PRS models largely based on 

European population estimates fail to predict risk accurately in a global context 
15–17

. Therefore, 

more studies that investigate how genetic risk of disease varies within and between different 

ancestral populations are needed.  

 

In this study, we assess differences in the power, application, and generalizability of PRS models for 

PD by comparing European-ancestry risk and age at onset association models across six diverse 

non-European ancestry populations including: East Asians (EAS), Central Asians (CAS), 

Latino/Admixed Americans (AMR), Africans (AFR), African admixed (AAC), and Ashkenazi Jewish 

(AJ) individuals. Here we apply three approaches to investigate how PRS performs in a multi-

ancestry context including: 1) PRS adjusted by gender and age, 2) PRS adjusted by gender, age and 
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principal components (PCs) and, lastly, 3) PRS adjusted by gender, age (PCs) and percentage of 

population admixture. Lastly, we assess and compare disease risk probabilities, magnitude of 

effects, sensitivity, specificity, and risk heterogeneity across ancestries. 
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METHODS 

 

Study Participants 

Our study workflow is highlighted in Figure 1. We obtained individual-level data from the Global 

Parkinson's Genetics Program (GP2; DOI 10.5281/zenodo.7904832, release 5);https://gp2.org/; 
18

. 

This data (here referred to as target data) was used to test PRS models and comprised a total of 

24,935 participants, including 12,728 individuals diagnosed with PD, 10,533 controls, and 1,674 

participants diagnosed with diseases other than PD. After excluding related individuals (those who 

are cousins or closer) that could bias our PRS assessments and those classified as non-PD cases, our 

dataset comprised a total of 22,828 individuals, of which 12,551 individuals were PD cases and 

10,277 individuals were controls. The following ancestries were included: African admixed, African, 

Ashkenazi Jewish, Latino/Admixed American, Central Asian, East Asian, and European 

(Supplementary Figure 1, see Methods for ancestry clustering description). Detailed demographic 

and clinical characteristics can be found in Table 1. 

 

Our reference datasets (here referred to as base data) consisted of summary statistics from 

previously published GWAS in addition to 23andMe. 

23andMe participants provided informed consent and volunteered to participate in the research 

online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent 

(E&I) Review Services. As of 2022, E&I Review Services is part of Salus IRB 

(https://www.versiticlinicaltrials.org/salusirb).The full GWAS summary statistics for the 23andMe 

discovery data set will be made available through 23andMe to qualified researchers under an 

agreement with 23andMe that protects the privacy of the 23andMe participants. Datasets will be 

made available at no cost for academic use. Please visit 

https://research.23andme.com/collaborate/#dataset-access/ for more information and to apply to 

access the data.    

We obtained summary statistics for the European population from the largest European PD GWAS 

meta-analysis to date conducted by Nalls and colleagues (2019) (https://pdgenetics.org/resources). 

This GWAS meta-analysis included 1,456,306 individuals, of which 1,400,000 were controls, 37,688 

were cases and 18,618 were proxy cases (defined as having a first degree relative with PD). African 

admixed summary statistics were obtained from 23andMe, which are based on 194,273 individuals 

including 193,985 controls and 288 cases. In order to achieve better-powered summary statistics 

for the East Asian population, we meta-analyzed a combination of two independent summary 

statistics from the largest East Asian PD GWAS meta-analysis to date 
2
 and East Asian 23andMe 

summary statistics, which yielded a total of 183,802 individuals, including 176,756 controls and 

7,046 cases. In a similar way, we conducted GWAS meta-analysis to generate better powered 

Latino/Admixed American summary statistics, combining the largest Latino PD GWAS meta-analysis 
3
 with 23andMe Latino/Admixed American summary statistics. This cohort consisted of a total of 
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584,660 individuals, where 582,220 were controls and 2,440 PD cases. A summary of these data 

could be found in Supplementary Table 1. 

 

Sample size calculation 

We conducted power calculations estimating the sample size needed to achieve an 80% power 

with a significance level of 0.05 in PRS models predicting disease status and age of disease onset 

using the methodology proposed by Dudbridge et al., 
19

. The estimations were made considering 

the 90 risk variants and the heritability estimates reported in Nalls et al. 2019 (defined as the 

percentage of the phenotype attributed to genetic variation, h
2
 = 22%) at a 0.5% general PD 

prevalence. The sample size required for PRS to predict disease status was 549 individuals, while 

for PRS predicting age at onset was 1,718. Additional details regarding the sample calculation can 

be found at https://github.com/DudbridgeLab/avengeme/. A total of three out of the ten 

ancestries (South Asian, Middle East, and Finnish ancestries) present in the GP2 cohort did not 

meet the minimum required sample size and therefore were excluded from further analysis.  

 

Target data 

Genotype data generation and quality control 

We performed genotype data generation according to standard protocols from the Global 

Parkinson's Genetics Program (GP2; DOI 10.5281/zenodo.7904832, release 5; https://gp2.org/; 
18

. 

In summary, samples were genotyped on the NeuroBooster array (v.1.0, Illumina, San Diego, CA) 

that includes 1,914,935 variants encompassing ancestry informative markers, markers for identity 

by descent determination, and X-chromosome SNPs for sex determination. Additionally, the array 

includes 96,517 customized variants. Automated genotype data processing was conducted on 

GenoTools, a Python pipeline built for quality control and ancestry estimation of data. Additional 

details can be found at (https://github.com/GP2code/GenoTools). 

Quality control (QC) was performed according to standard protocols. Samples with a call rate below 

95%, sex mismatches, or high heterozygosity (estimated by an |F| statistics of > 0.25) were 

excluded from analyses. Further QC measures included the removal of SNPs with missingness 

above 5%, variants with significant deviations from Hardy-Weinberg Equilibrium (HWE P value < 1E-

4), variants with non-random missingness (case-control status at P≤1E-4), and variants with missing 

data patterns (haplotype at P≤1E-4 per ancestry).  

Ancestry predictions 

The samples were divided into different groups based on ancestry estimates, which involved 

determining the ancestral background of each sample using reference panels from the 1000 

Genomes Project (https://www.internationalgenome.org/data-portal/data-collection/phase-1) 
20

, 

Human Genome Diversity Project 
21

, and an Ashkenazi Jewish population dataset 
22

. Our reference 

panel, at time of writing (July 2023), consists of 703 African, 601 South Asian, 585 East Asian, 534 

European, 490 Latin American, 471 Ashkenazi Jewish, 190 African admixed, 183 Central Asian, 152 
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Middle Eastern, and 99 Finish individuals. We refined the reference panel by excluding palindromic 

SNPs (AT or TA or GC or CG). Additionally, SNPs within the reference panel underwent further 

filtering to exclude variants with a minor allele frequency (MAF) lower than 0.05, genotyping call 

rate less than 0.99, and Hardy-Weinberg equilibrium (HWE) p-value less than 1E-4. Variants that 

overlapped between the reference panel SNP set and the samples of interest were specifically 

extracted. In total, 39,302 variants were used for ancestry estimations. In cases where genotypes 

were missing, imputation was performed by utilizing the mean value of that variant from the 

reference panel. 

 

To assess the performance of the ancestry estimation, an 80/20 train/test split was applied to the 

reference panel samples. PCs were then calculated using the overlapping SNPs. Transforming the 

PCs through UMAP enabled the representation of global genetic population substructure and 

stochastic variation. Training a linear support vector classifier on the UMAP transformations of the 

PCs achieved consistent predictions with balanced accuracies exceeding 0.95, as determined by 

testing the classifier on the reference panel's test data through 5-fold cross-validation. These 

classifier models were subsequently applied to the GP2 data to generate ancestry estimates for all 

datasets. For detailed insights into the cloud-based and scalable pipeline used for genotype calling, 

QC, and ancestry estimation, please refer to the GenoTools GitHub repository 

(https://github.com/GP2code/GenoTools). Following ancestry estimation, we excluded duplicated 

or monozygotic twin samples (KING coefficient > 0.354), and those with second-degree or closer 

relatedness (KING coefficient > 0.0884). PCs that were used as covariates in the PRS analysis were 

calculated separately per ancestry after initial QC and ancestry prediction were complete. 

Percentage of ancestry was then calculated with the supervised functionality of ADMIXTURE 

(v1.3.0; https://dalexander.github.io/admixture/binaries/admixture_linux-1.3.0.tar.gz), which used 

the labeled reference panel data as training samples to estimate the ancestry proportions of the 

GP2 data.    

Imputation 

Variants with a minor allele frequency (MAF) of less than 0.005 and Hardy-Weinberg equilibrium 

(HWE) p-value less than 1E-5 were excluded before submission to the TOPMed Imputation server. 

The utilized TOPMed reference panel version, known as r2, encompasses genetic information from 

97,256 reference samples and over 300 million genetic variants across the 22 autosomes and the X 

chromosome. As of October 2022, the TOPMed panel includes approximately 180,000 participants, 

with 29% of African, 19% of Latino/Admixed American ancestry, 8% of Asian ancestry, and 40% of 

European ancestry (https://topmed.nhlbi.nih.gov/). Further details about the TOPMed Study 
23

, 

Imputation Server 
24

, and Minimac Imputation 
25

 can be accessed at 

https://imputation.biodatacatalyst.nhlbi.nih.gov. Following imputation, the resulting files 

underwent pruning based on a minor allele count (MAC) threshold of 10 and an imputation Rsq 

value of 0.3.  
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Base data 

Ancestry-specific summary statistics generation 

 

A comprehensive explanation of each step to generate 23andMe summary statistics can be found 

elsewhere 
6
. Briefly, the 23andMe data generation process could be summarized in the following 

steps. After genotyping of 23andMe participants was completed, an ancestry classifier algorithm 

was used to determine participant ancestries based on local ancestry and reference populations. 

Next, phasing was performed to reconstruct haplotypes using genotyping platform-specific panels 

followed by imputation of missing genotypes, expanding the variant dataset using two independent 

reference panels. Related individuals were then excluded using a segmental identity-by-descent 

estimation algorithm to ensure unrelated participants. Finally, a GWAS analysis adjusted by 

covariates age, sex, and principal components was conducted followed by GWAS QC measures to 

flag potential issues with SNPs, ensuring data integrity. 

For a detailed description of the methods used to generate East Asian summary statistics, refer to 

the study by Foo et al. 
2
 Similarly, detailed information of the Latino/Admixed American summary 

statistics can be found in Loesch et al. 
3
. The GWAS meta-analysis of each population was carried 

out using fixed effects based on beta and SE values for the 90 risk variants. This meta-analysis was 

conducted utilizing the METAL package, which is accessible at 

https://genome.sph.umich.edu/wiki/METAL_Documentation. 

 

Polygenic risk score calculation 

For PRS calculations, we extracted the 90 risk predictors previously linked to PD risk in European 

populations 
1
 from GP2 individual level data (https://gp2.org/) 

18
.  The risk predictors were 

weighted by summary statistics magnitude of effects, giving greater weight to alleles with higher 

risk estimates (Figure 1).  Logistic or linear regression analysis was employed to predict PD status 

and age of onset, respectively. To assess the predictive ability of the PRS across different 

populations, three distinct analyses were conducted. First, PRS analyses were performed adjusting 

by gender and age. Then, an additional approach was conducted adjusting by age, gender and PCs 

to account for population substructure. Finally, a third and novel approach was applied adjusting by 

age, gender and percentage of ancestry admixture. These three approaches were performed across 

each of the seven GP2 ancestry populations (target datasets) using the four different population-

specific summary statistics individually (base datasets), totaling 84 PRS models predicting disease 

risk and 7 PRS models predicting age at disease onset (Figure 1). The results were visualized 

through heatmaps for ancestry comparisons, density plots for disease probabilities, forest plots for 

magnitude of effects comparison, area under the curve (AUC) and receiver operating characteristic 

curve (ROC) assessments for sensitivity and specificity of the models. Finally,  UpSet visualizations 

were used to display heterogeneity estimated across known loci and multiple ancestries. 
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RESULTS 

 

Risk estimates show expected high levels of heterogeneity in predicting disease status across 

diverse ancestry populations 

We used individual-level data from seven ancestry populations (target data) to examine risk allele 

patterns across the 90 risk variants (Figure 2, Supplementary Table 2). We found significant 

heterogeneity among these predictors when standardizing the effect allele for each estimate. 

When we looked at the risk patterns across different populations, we observed differences in 

directionality, frequency and magnitude of effect (Figure 2, Supplementary Table 3). These findings 

confirmed that our current understanding of PD risk is biased toward Europeans, as the 90 risk 

alleles assessed in the present work were originally discovered in European GWAS, leaving much 

genetic variability to be uncovered. For example, the GBA1 risk variants (GBA1-E326K and GBA1-

N370S) were absent when exploring the GBA1 locus in African and African admixed ancestries due 

to allele frequencies and population-specific risk. African and African admixed populations rarely 

harbor GBA1-E326K and GBA1-N370S mutations 
4
. We envisage that GBA1 is not the only example 

where differences in the genetic architecture at the locus level exist. 

Polygenic risk scores do not show higher performance in predicting disease status when using 

similar base and target data across multiple ancestries. 

To evaluate the utility of PRS to predict disease status, we applied three regression analysis models; 

1) Baseline PRS analysis (which is only adjusted by gender and age), 2) PRS adjusted by gender, age, 

and PCs, and 3) PRS adjusted by gender, age and percentage of admixture (Tables 2a, b, c & 3, 

Figure 1). PRS models built using European summary statistics (base data) showed the largest 

number of risk predictors retrieved across the seven studied ancestries (ranging from 83-90 SNPs) 

(Supplementary Table 2, Figure 2). Nevertheless, when using East Asian base data (Foo et al., 2020 

- 23andMe GWAS meta-analysis), our PRS models showed limited coverage with the least number 

of retrieved risk predictors (ranging from 60-64) (Supplementary Table 2, Figure 2). The genetic 

structure across populations is different and thus so are variant imputation and allele frequencies.  

Generally, PRS models across the seven target ancestries performed better when built based on 

European population base data as compared to other population-specific summary statistics based 

PRS models (Figure 3, Table 2a, Supplementary Table 2).  PRS effect sizes are summarized as 

follows when using European base data on; European target data (positive control);(Beta=0.52, SE 

=0.02), African admixed target data; (Beta=0.67, SE=0.08), Ashkenazi Jewish target data;(Beta=0.58, 

SE=0.08), and Latino/Admixed American target data;(Beta=0.55, SE =0.11), which all harbor certain 

levels of European ancestry (Supplementary Figures 4a, c, d). PRS performed poorly in the African 

(Beta=0.24, SE= 0.10) and Central Asian (Beta=0.06, SE=0.11) target datasets; likely reflecting the 

genetic heterogeneity between African and European ancestries (Supplementary Figures 4b & e, 
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Supplementary Figure 1, Supplementary Table 2) and also the limited sample size in the Central 

Asian population.  

PRS models built using African admixed and Latino/Admixed American base data performed poorly 

in all studied ancestries, even when using the corresponding ancestry target data: African admixed 

base data on African ancestry target data; (Beta=0.15, SE=0.1), and Latino/Admixed American base 

data on Latino/Admixed American ancestry target data; (Beta=0.35, SE=0.10) (Figure 3, Table 2a). 

This indicates that PRS models based on similar base and target data do not necessarily perform 

better on the specific target population; an observation that could be explained first by the limited 

sample size from both population-specific base and target data, and second by the distinct genetic 

architecture of PD risk across populations that could limit the efficiency of our PRS models built on 

90 predictors nominated from European based GWASes (Table 1, Supplementary Table 1, 

Supplementary Table 2a).   

Polygenic risk score performance across multiple ancestries shows limited clinical utility.  

Next we assessed the clinical utility of our PRS model (sensitivity and specificity in predicting PD 

risk) in a multi-ancestry context by estimating the ROC curve of a PRS and then calculating the AUC. 

Generally, the European, Ashkenazi Jewish, African admixed, and Latino/Admixed American 

populations produced better defined curves indicating better model performance compared to 

other ancestries (Supplementary Figures 3a and 3b, Table 4). The worst specificity and sensitivity 

values were found for the Central Asian population followed by the African population 

(Supplementary Figures 3a and 3b, Table 4). Overall, the clinical utility of our model in individually 

predicting PD risk is limited in concordance with the estimates observed in European populations. 

However, in line with previous reports in European populations, we envisage that integrating other 

variables, e.g. clinical, demographics and omics data, would markedly improve model’s sensitivity 

and specificity across multiple ancestries 
12

. 

Percentage of admixture adjusted polygenic risk score models outperform conventional principal 

component adjusted models in highly admixed populations. 

Similar to the baseline approach, PRS models adjusted by gender, age and PCs built from European 

base data performed better in all the studied target data ancestries. In contrast, PRS models built 

from African admixed and Latino/Admixed American base data were less promising even on the 

same target population after adjusting by PCs (Tables 2a, b, Figure 3). In addition, we report limited 

variation in performance of the PRS model adjusted by gender, age and percentage of admixture in 

comparison with the PRS model adjusted by gender, age and PCs across marginally admixed 

populations. This novel approach only performed better than the conventional PRS model adjusted 

by gender, age and per specific-ancestry PCs in the African admixed and Latino/Admixed American 

populations (Tables 2b, c, Figure 3). Such enhancement in model performance attributed to the 

adjustment against population admixture improves the outcome in highly admixed populations as 
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previously reported 
26

. This indicates that the genetic diversity within a population -represented by 

PCs- is well-captured in those cohorts with marginal levels of admixture. However, conventional 

PRS models adjusted by PCs do not optimally account for genetic substructure in highly admixed 

cohorts such as the African admixed and Latino/Admixed populations.  

Polygenic risk scores predicting age at onset with limited statistical power  

Most of our PRS models of PD age of onset returned statistically insignificant- except for the 

Ashkenazi Jewish and European populations’ scores (Table 3). This was expected considering the 

large sample size needed to achieve desired power in this analysis as described above (see sample 

size calculation section of the Methods). In terms of directionality, we would expect PRS to be 

inversely correlated with age of onset in concordance with Nalls, 2015 
9,27

. Accordingly, PRS is likely 

overall inversely correlated with PD age of onset, i.e. patients with higher genetic risk burden likely 

develop PD at earlier age, although statistical significance has not been achieved in most of the 

studied populations and further studies are needed to investigate this correlation in a multi-

ancestry fashion. 
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DISCUSSION 

 

To our knowledge, this study represents the first comprehensive assessment of PRS in predicting 

PD risk and age at onset in a multi-ancestry context. While previous research has primarily focused 

on populations of European ancestry 
1,27,28

, our study expands on previous knowledge by 

comparing the performance of PRS across seven ancestry populations, including European, African 

admixed, African, Ashkenazi Jewish, Latino/Admixed American, Central Asian, and East Asian 

populations. 

 

Our findings highlight the existing bias in our understanding of PD risk, which predominantly relies 

on European populations. By examining the 90 risk variants from the latest and largest European 

GWAS meta-analysis in PD across seven ancestries, we observed differences in the directionalities 

of these predictors in different ancestries. This indicates that risk alleles vary across populations 

and leaves significant genetic variability unexplored and unaccounted for. When adjusting by 

percentage of admixture, PRS models outperform conventional principal component adjusted 

models in highly admixed populations like the African admixed and Latino/Admixed American 

populations. The genetic heterogeneity of PD across populations highlights the need to identify 

additional population-specific risk variation, such as the novel intronic GBA1 variant in the African 

population 
4
, SV2C and WBSCR17 in East Asians, and HEATR6 in the Chinese population 

29
 in 

addition to the 12 potentially novel risk loci from a recent multi-ancestry GWAS meta-analysis on 

PD risk 
6
. 

 

In terms of overall performance across the seven ancestries, the best performance of PRS models -

using the four summary statistics (base data) – was on our positive control, the European 

population. This is expected considering that we are applying a PRS model based on European 

GWAS nominated risk. Following the European population, Ashkenazi Jewish, African admixed, and 

Latino/Admixed American populations showed the largest effect sizes respectively. Not 

surprisingly, the models perform relatively well in these populations, which harbor certain levels of 

European admixture. Our results are in line with a recent study in the African admixed general 

population, that showed a positive correlation between PRS and percentage of European ancestry 

when using the 90 risk variants reported in Nalls et al., 2019 
1,30

.  

 

When using the same base and target specific ancestry population data, the highest PRS predictive 

accuracy was observed in  the Latino/Admixed American population, aligning with estimations 

based on ancestry prediction models (Supplementary Figure 1). This is supported by the only 

GWAS conducted on the Latin American population, demonstrating a significant genetic 

resemblance to Europeans despite sample size limitations 
3
. These genetic similarities raise 

intriguing questions about the historical relationship between Latin Americans and Europeans, 
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potentially stemming from shared ancestry preceding Christopher Columbus' time. Interactions and 

migrations between continents may have contributed to gene flow and admixture between Latin 

Americans and Western Europeans, influencing the genetic landscape 
31

 

 

However, PRS performance was more limited for African and Central Asian populations. The lower 

performance in Central Asian populations can be attributed to small sample sizes. The lower 

performance in African populations can be explained by the greater genetic diversity between 

African and European populations, as evidenced by the ancestry prediction models. A recent GWAS 

conducted on African and African admixed populations has also indicated that there is limited 

overlap between both genetic architectures of disease 
4
. Similar findings have been reported in 

prostate cancer 
32

 and breast cancer 
33

 when comparing PRS performance in Europeans vs African 

populations.  

 

Several limitations should be acknowledged. Due to limited information on heritability, disease 

prevalence, and risk predictors for non-European ancestries, sample size power calculations were 

performed using current estimates from the European population as a reference. Consequently, 

this may result in a biased estimate regarding the sample size required to predict disease status 

across diverse ancestries. Additionally, the estimates of our models are influenced by the number 

of available SNPs in each dataset, which introduces bias. This bias arises from variations in the 

quality and completeness of SNP imputation across different populations, where some of them 

may have a larger number of imputed variants (e.g., 90 for Ashkenazi Jewish or 87 for 

Latino/Admixed American) compared to others (e.g., 80 for African Admixed or 83 for African). This 

is due to differences in variant frequencies in which common risk variation contributing to disease 

in Europeans is rare when assessed in a multi-ancestry context. An additional important limitation 

is the absence of individual-level replication datasets per ancestry. The lack of replication data 

hampers the robustness and generalizability of our findings across different ancestral populations. 

Furthermore, the scalability of our framework is hindered by the absence of accurate and well-

powered ancestry-specific summary statistics for each population in our study. This is particularly 

challenging due to the linkage disequilibrium between SNPs from multiple ancestries, making it 

difficult to accurately assess specific genetic architectures of disease. 

 

To overcome the limitations of our study, future research should prioritize larger sample sizes, 

replication datasets per ancestry, and improved availability of well-powered ancestry-specific 

summary statistics. Moreover, incorporating local ancestry information, that is the inference of the 

genetic ancestry of each region of each chromosome in an admixed individual 
34

. The inclusion of 

local ancestry can improve PRS accuracy, especially in multi-ancestry cohorts, because it allows us 

to use summary statistics from the ancestry PRS panel that matches with that specific region of the 

chromosome of the individual that we are inferring the risk, avoiding inflation/deflation because of 
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ancestry specific risk alleles. Studying biomarker-defined PD cohorts, as opposed to those 

diagnosed based on clinical diagnostic criteria, is also important, as at least 5% of individuals 

diagnosed with PD do not demonstrate neuronal alpha-synuclein, which is required for definitive 

diagnosis 
35

. Additionally, applying a multi-modality machine learning approach 
12

 that combines 

adjusted transcriptomics, genetics, and clinical data into a predictive model, we could provide a 

more comprehensive understanding of PD risk and improve prediction accuracy across diverse 

ancestries. By utilizing machine learning algorithms such as deep learning, complex patterns and 

interactions that may not be evident when using individual data modalities alone can have the 

potential to enhance the precision and applicability of PD risk assessment models. This would lead 

to improved risk prediction and personalized strategies for prevention, diagnosis, and treatment 

for all.  

 

In conclusion, our study contributes to a novel exploration of multi-ancestry PRS in PD. Our findings 

highlight the importance of larger sample sizes, replication datasets per ancestry, well-powered 

ancestry-specific summary statistics, and the incorporation of local ancestry information to 

enhance the accuracy and predictive power of multi-ancestry PRS. Furthermore, by integrating 

clinical and genetic data 
9
 and adopting recently published multi-modality machine learning 

techniques 
12

, we might uncover complex patterns and interactions not evident with conventional 

approaches. As more data becomes available, leveraging tools like Tractor 
36

 and PRSice 
37

 can 

improve scalability and determine the optimal p-value threshold for common genetic variations 

predisposing to PD risk in a cumulative manner. Additionally, future studies may benefit from 

conducting composite PRS analysis to identify optimized SNP sets across multiple ancestries with a 

cumulative genetic effect for more effective risk prediction. These advancements have the 

potential to enhance the precision and applicability of PRS analysis in PD research, leading to 

personalized strategies for prevention, diagnosis, and treatment.  
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Data and Code Availability: 

Data were obtained from the Global Parkinson’s Genetics Program (GP2) and is accessible through 

a partnership with the Accelerating Medicines Partnership in Parkinson's Disease (AMP-PD) and can 

be requested via the website's application process (https://www.amp-pd.org/). GWAS summary 

statistics from GP2's release 5 are available for all datasets (release 5; 

doi:10.5281/zenodo.7904832). 23andMe summary statistics is available upon application through 

their website (https://research.23andme.com/dataset-access/). GenoTools (version 10; 

https://github.com/GP2code/GenoTools) was used for genotyping, imputation, quality control, 

ancestry prediction, and data processing. A secured workspace on the Terra platform was created 

to conduct genetic analyses using GP2 release 5 data and summary statistics 

(https://app.terra.bio/). Additionally, all scripts used for this study can be found in the public 

domain on GitHub (https://github.com/GP2code/GP2-Multiancestry-PRS; 

doi:10.5281/zenodo.10211779). 
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TABLES LEGENDS 

 

Table 1 Demographic and clinical characteristics of the cohorts under study. 

Table 2.a: Baseline analysis: Polygenic risk scores  vs. PD status adjusted by age and sex across 

multiple ancestry populations. 

Table 2.b:   Polygenic risk scores vs. PD status adjusted by age, sex, and PCs across multiple 

ancestry populations. 

Table 2.c: Polygenic risk scores vs. PD status adjusted by age, sex, and percentage of ancestry 

across multiple ancestry populations. 

Table 3:  Polygenic risk scores vs. age of onset 

Table 4: Receiver operating characteristic estimates for specificity and sensitivity 
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Supplementary Table 2. Valid predictors retrieved in each target population 

Supplementary Table 3. Risk estimates of the 90 risk variants across multiple ancestries 
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FIGURE LEGENDS 

 

Figure 1: Multi-ancestry Parkinson’s disease Polygenic Risk Score (PRS) schematic workflow 

Figure 2: Upset plot showing risk heterogeneity across multiple ancestries 

Figure 3: PRS performance for predicting disease status 

Supplementary Figure 1: Ancestry prediction model for GP2 individual level data 

Supplementary Figure 2: Magnitude of the polygenic risk score analyses across ancestries 

Supplementary Figure 3A-B:  Polygenic risk score model performance evaluation 

Supplementary Figure 4A-G: Disease probabilities in each ancestry individual level data 
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Summary for Social Media 

Authors’ Twitter Handles: 

@ Summary: 

In the Parkinson’s disease (PD) genetics field, polygenic risk assessments have traditionally been 

conducted on European ancestry populations, and very little is known about its applicability across 

diverse ancestry populations. This study aims to provide insights into the multi-ancestry 

performance of predictive polygenic risk score models using the 90 loci linked to PD risk in the 

European population. Our results show that using ancestry-specific summary statistics on the same 

target population does not necessarily equate to the best performance, and that PRS adjusted by 

percentage of population admixture is not any more effective than the conventional PRS model 

(baseline). Given the heterogeneity and distinct genetic architecture of PD risk across populations 

as well as the sample size limitation on their predictive statistical power, PRS models created from 

European known risk are only of limited applicability in individuals of different ancestries. 
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Evaluating the performance of polygenic risk 
profiling across diverse ancestry populations in 

Parkinson's disease

Figures
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Figure 1: Multi-ancestry Parkinson’s disease Polygenic Risk Score (PRS) schematic workflow
The figure illustrates a summarized workflow, depicting the datasets utilized, consisting of target data from seven distinct ancestry populations: African Admixed (AAC), African (AFR),
Ashkenazi Jewish (AJ), Latino/Admixed American (AMR), Central Asian (CAS), East Asian (EAS), and European (EUR). The base data comprised summary statistics from four ancestries.
To construct a total of 84 PRS models for PD risk and 7 PRS models for age at onset, three different approaches were implemented. The obtained results were visually presented
using various plots; heatmap for ancestry comparison, density plots for disease probability, forest plots for magnitude of effect and ROC plots for sensitivity and specificity.
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Figure 2: Upset plot showing risk heterogeneity across multiple ancestries.
The 90 risk variants are represented in this plot in a granular way. The Y axis represents each ancestry populations and the X axis the 90 risk variants. The color bar shows the magnitude of
effects as log of the odd ratio (beta value) and directionality, with red color denoting negative directionality, and purple and blue colors denoting positive directionality.
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Figure 3: PRS performance for predicting disease status
The Y axis represents individual level data, and the X axis represents the three different PRS approaches per population-specific summary
statistics. The color bar indicate the magnitude of effect as log of the odds ratio (beta value). The darker the color is the larger the magnitude of
effect. The asterisks indicate statistical significance of P value.
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