
SJPedPanel: A pan-cancer gene panel for childhood malignancies 

 

Pandurang Kolekar1*, Vidya Balagopal2*, Li Dong1*, Yanling Liu1, Scott Foy1, Quang 

Tran1, Heather Mulder1, Anna LW Huskey2, Emily Plyler1, Zhikai Liang1, Jingqun 

Ma2, Joy Nakitandwe3, Jiali Gu2, Jamie Maciaszek2, Debbie Payne-Turner2, Saradhi 

Mallampati2, Lu Wang2, Elizabeth Stewart4, John Easton1#, Jeffery M. Klco2#, Xiaotu 

Ma1# 

 
1: Department of Computational Biology, St. Jude Children’s Research Hospital, 

Memphis, TN, USA 
2: Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, 

USA 
3: Department of Laboratory Medicine, Pathology and Laboratory Medicine Institute, 

Cleveland Clinic, OH, USA 
4: Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, 

USA 

 

*: Contributed equally 

 
#: correspondence authors  

XM (Xiaotu.Ma@stjude.org); JMK (Jeffery.Klco@stjude.org); JE 

(John.Easton@stjude.org) 

 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299068doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Xiaotu.Ma@stjude.org
mailto:Jeffery.Klco@stjude.org
https://doi.org/10.1101/2023.11.27.23299068


Abstract 
 

Background 
 

Extensive efforts in the past decade have revolutionized our understanding of the 

genetic underpinnings of childhood malignancies and identified numerous driver 

alterations that can provide potential targets for novel therapy and are excellent 

biomarkers for disease monitoring. For these purposes, a whole genome or exome 

sequencing approach can be resource prohibitive. Numerous gene panels are 

developed for adult cancers to address these challenges. Due to the dramatic 

differences in driver gene landscapes between pediatric and adult cancers, a gene 

panel for childhood cancers is needed. 

 

Results 
 

Here, we have developed a gene panel dedicated to childhood cancers. This panel 

(2.82 Mbp) covers 5275 coding exons of 357 driver genes, 297 introns frequently 

involved in rearrangements that generate fusion oncoproteins, commonly deleted 

regions, such as CDKN2A and PAX5 (for B-/T-ALL) and SMARCB1 (for ATRT), and 

7,590 polymorphism sites to detect copy number alterations for interrogating tumors 

with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain 

neuroblastoma. We used driver alterations reported from an established real-time 

clinical genomics cohort (n=253) to investigate the effectiveness of this gene panel. 

Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). 

For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 

events (82%). We re-sequenced 113 previously characterized clinical specimens at 

an average depth of 2,500X using SJPedPanel and recovered 355 (90%) of the 396 

reported pathogenic variants. Among the 30 unique genes of the 41 missed 

alterations, 29 genes are mutated in pediatric cancers with a low frequency (<0.21%) 

and hence not covered in the panel. We then investigated the power of this panel in 

detecting mutations from specimens with low tumor content (as low as 0.1%) using 

cell line-based dilution experiments and discovered that this gene panel enabled us 

to detect ~80% variants with allele fraction of 0.2%, while the detection rate 

decreases to ~50% when the allele fraction is 0.1%. We finally demonstrate its utility 
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in disease monitoring on clinical specimens collected from AML patients in 

morphologic remission. 

 

Conclusions 
 

Overall, our gene panel enables the detection of clinically relevant genetic alterations 

including rearrangements responsible for subtype-defining fusions for childhood 

cancers by targeted sequencing of ~0.15% of human genome. Our panel will 

significantly enhance the analysis of specimens with low tumor burdens for cancer 

monitoring and early detection.   
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Background 
 

With the rapid progress in next generation sequencing technology, extensive insights 

on the genetic underpinnings (i.e., driver alterations) of childhood cancers 1-3 have 

been uncovered in the past decade. To date, diagnostic sequencing has become 

part of clinical service in some institutions4-6. However, significant cost is associated 

with whole genome and whole exome sequencing. Most importantly, the broad 

coverage of whole genome and whole exome sequencing renders it challenging to 

achieve ultra-deep sequencing that is essential for the analysis of specimen with low 

tumor burden such as for detecting minimal residual disease and for disease 

monitoring. Gene panel-based sequencing holds the promise to address these 

challenges.  

 

Although there have been multiple gene panels designed for adult cancers, such as 

MSK-IMPACT6, currently there is no comprehensive gene panel for pediatric 

cancers. This is important considering the recent pan-cancer study of 1,699 

childhood cancers has indicated a dramatic difference between adult and childhood 

cancers, where 55% of the 142 driver genes in pediatric cancers are not found in 

adult pan-cancer studies 3. In this study, 62% of driver alterations in childhood 

cancers are copy number alterations (CNVs) or structural variations (SVs) whose 

boundaries typically do not fall in protein coding regions. Indeed, our recent study of 

oncogenic fusions7 indicated that 55.7%, 22.5%, and 18.5% of pediatric leukemia, 

brain, and solid tumors have subtypes defined by oncogenic fusions, for which the 

DNA breakpoints typically fall into intronic regions. These facts render base pair level 

ascertainment of driver alterations in childhood cancers challenging by using 

conventional capture sequencing kits such as exome sequencing and call for a 

dedicated gene panel for pediatric cancers.  

 

Here, we highlight the prominent features of our recently designed pan-cancer gene 

panel, SJPedPanel, for childhood cancers by comparison with five existing cancer 

gene panels. We validate its superior coverage of genes relevant to childhood 

cancers using a well-described real-time clinical cohort via in silico analysis, followed 

by re-sequencing a subset of these cases for experimental validation. We also 

demonstrate the power of our gene panel in detecting rare variants using ultra-deep 
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sequencing via serial dilution experiments, as well as disease monitoring in 

remission samples from acute myeloid leukemia (AML) patients. 

 

Results 
 

Panel design 
 

We designed our panel, which we termed as SJPedPanel, by integrating findings 

from 44 published tumor-normal paired genomics studies of childhood cancers that 

spans leukemia, brain, and solid tumor 2-4,8-48. SJPedPanel includes 1.069 million 

exonic base pairs from 5,275 coding exons for detecting protein coding mutations in 

357 known driver genes for childhood cancers [Fig. 1a; see Additional file 1: Table 
ST1 and Additional file 2]. To account for the structural variations (SVs) that result in 

subtype-defining oncogenic fusions for which DNA breakpoints typically fall in 

intronic regions 7, 1.438 million base pairs from 297 introns of 94 genes (Additional 

file 1: Table ST1) were included. Moreover, 0.209 million bases from promoter 

regions were targeted for detecting promoter/enhancer alterations including 

rearrangements and point mutations (Fig. 1b). Several highly recurrent tumor 

suppressor genes, such as CDKN2A, PAX5, and SMARCB1, were targeted by 

probes tiling the entire gene region for detecting CNVs. To account for losses of 

these genes due to structural alterations beyond the gene regions, we extended the 

target regions to frequent DNA breakpoints by using patient data from ProteinPaint 49 

and GenomePaint 50. Collectively, 2.82 million base pairs were designed for potential 

SNV, Indel, SV and CNV/LOH driver alterations. Notably, a few known childhood 

cancer drivers are intentionally excluded due to genomic space considerations. For 

example, MECOM 51 and GFI1B 52 are known to be involved in promoter-hijacking 

alterations and were excluded due to the large space needed to cover the many 

possible breakpoints.  

 

In addition, 7,590 SNPs were selected for detecting copy number variations and loss 

of heterozygosity (CNV/LOH) across the genome [see Additional file 1: Table ST2]. 

The median distance between these SNPs is 332 Kb, with 25th and 75th quantile 
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being 60 Kb and 593 Kb, respectively [see Additional file 3: Fig. S1a]. Notably, >80% 

of these SNPs have population frequency between 40% and 60% [see Additional file  

 

 
 

Fig. 1. Design of pediatric cancer gene panel. (a) Study outline, including panel 

content, investigation of ultra-sensitive detection, capture performance, analytical validity, 

and clinical applications. (b) A Sankey diagram showing spectrum of childhood cancers 

(Heme: hematological malignancies; ST: solid tumors; Brain: brain tumors), cancer 

subtypes, genes, variant types, and genomic features targeted by SJPedPanel. Stacked bar 
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plot at the right end shows space distribution of different genomic features covered by 

SJPedPanel. 

 
3: Fig. S1b], which ensures that that nearly 50% of patients are heterozygous at 

each SNP site. Therefore, around 3,000 (=7590×0.5×0.8) heterozygous SNPs are 

expected for each patient, which leads to a theoretical resolution of ~1 Mb for 

CNV/LOH detection. The number of SNPs chosen per chromosome is roughly 

proportional to the lengths of chromosomes [see Additional file 3: Fig. S1c & 

Additional file 4]. Considering the read length and the insert length (for target capture 

and sequencing), these 7,590 SNPs actually occupy ~250*7590=1.8975 million base 

pairs. Thus, our panel consisted of ~4.7 million base pairs, or ~0.15% of the human 

genome. The compact size of our panel enables us to reach 30,000X at the cost of a 

standard WGS (~30X) per sample, thus enabling cost-effective cancer monitoring 

and/or early detection (Fig. 1a). The gene panel was manufactured by Twist 

Bioscience. 

 
Comparison of gene content with other panels 
 
We first compared the gene content between our panel and five other commonly 

used commercial panels for childhood cancers, including FoundationOne Heme, 

FoundationOne CDx 53,54, MSK-IMPACT 6,55, OncoKids 5, and Oncomine 

Comprehensive assay v3 (OCAv3) 56 (Additional file 1: Supplementary tables ST3a 

and ST3b). We used the list of 183 driver genes reported in two recent childhood 

pan-cancer studies 2,3 involving 2,578 cases. As seen in Table 1, SJPedPanel 

covers 159 (87%) genes whereas all other panels covered <60% of the reported 

pediatric cancer driver genes (Fig. 2a and Additional file 1: Supplementary table 

ST4).  

 

A comparison of gene names among the panels indicated that SJPedPanel has 

unique coverage of 110 genes (Fig. 2b, Additional file 1: Table ST3b) when 

compared to the other panels combined, such as DGCR8 and SIX1 for Wilms tumor 
57, SHH for  medulloblastoma 58, ZFTA for ependymoma 22,59, UBTF-TD 60 and 

PICALM 60,61 for AML. On the other hand, among the 459 genes specific to other 

panels, only three genes were reported in two recent pediatric pan-cancer studies 

with low patient frequencies (ZNF217: 0.59%, PCBP1: 0.31%, and CARD11: 0.21%) 
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2,3. Collectively, our data indicated that SJPedPanel is a unique resource dedicated 

to childhood cancers.  

 
Table 1. Overview of the panels selected for comparison. 

Panel name Focus 
area 

No. of 
genes 

Genes screened for 
SNPs 

%Pediatric cancer 
driver genes 

covered out of 
reported 183 genes† 

Publication Coding 
exons 

Selected 
introns 

Promoter 
regions 

SJPedPanel Pediatric 
cancers 357 357 94 10 7590 87% This study 

FoundationOne® Heme 
Adult 
blood 

cancers 
418 408 31   57% He et al., 

2016 

MSK-IMPACT® Adult solid 
tumors 468¶ 468 13 1 862 52% Cheng et al., 

2015 

OncoKids® Pediatric 
cancers 181 137 44 1  49% Hiemenz et 

al., 2018 

FoundationOne® CDx Adult solid 
tumors 324 309 34 1  44% Whitepaper 

by Company§ 

OncomineTM 
Comprehensive Assay v3 

Adult 
cancers 161 146 15 1  29% Hovelson et 

al., 2015 
†: 183 pediatric cancer genes are reported in two recent pediatric pan-cancer studies, Ma et al., 2018 
3 and Grobner et al., 2018 2 
¶: MSK-IMPACT panel has been reported to consist of 468 genes considering 2 different transcript 
isoforms for CDKN2A gene, however based on unique gene names MSK-IMPACT panel consists of 
467 genes. 
§: Sources of content for all the panels are available in Additional file 1: Supplementary Table ST3a 
 

Among the panels compared, the MSK-IMPACT panel has the maximum number of 

genes (467), of which 137 are exclusive from other panels. Most of these genes are 

relevant to adult cancers with the highest concentration in adult solid tumors 6,55. 

Similarly, FoundationOne Heme panel consists of 418 genes with a focus on adult 

hematological malignancies 53,62. OncoKids is the only other pediatric cancer panel 

under comparison and covers 30 genes that are not included in our panel (see Fig. 
2b and Additional file 1: Table ST3b). MECOM is excluded due to large space 

needed for the diverse promoter hijacking events 51. CALR, RARA and SS18 were 

not included due to lack of pediatric genomics cohort involving these genes. 

Furthermore, among all the panels, SJPedPanel provides the largest intronic space 

(297 introns from 94 genes) responsible for rearrangements that generate fusion 

oncoproteins. Collectively, SJPedPanel offers by far the most comprehensive 

coverage of genetic alterations for the study of childhood malignancies. Given the 

significantly lower coverage of pediatric cancer driver genes in other panels and 

exclusive coverage of 110 genes in SJPedPanel, a comprehensive benchmarking of 

SJPedPanel with other panels was not possible. 
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Fig. 2. Comparison of gene content between SJPedPanel with other panels. (a) 
Pediatric cancer relevance of 6 panels based on coverage of 183 driver genes from 

childhood pan-cancer studies 2,3. The horizontal bars at the bottom indicate numbers of 

genes designed in each panel coded by corresponding color. (b) Analysis of common and 

unique genes among 6 panels using UpSet plot 63. Venn diagrams indicate intersection of 

SJPedPanel genes with OncoKids, and other fiver panels combined. 
 

Capture performance of the panel 
 

A critical consideration in genomic sequencing, especially in panel sequencing, is the 

coverage uniformity. To study this question, we sequenced four targeted sequencing 

libraries (C1- C4) prepared using COLO829BL (ATCC #CRL-1980), a non-cancer 

cell line that has been extensively used in literature for clinical proficiency testing or 

benchmarking 64,65. To ensure reproducibility, technical replicates were generated to 

achieve high (C1, C2) and low depth (C3, C4) of sequencing. Libraries in each set 

were sequenced with either the Illumina NovaSeq 6000 (C1, C3, higher throughput, 

for research sequencing) or NextSeq 500 (C2, C4, medium throughput, for real-time 

clinical sequencing).  

 

As expected, the average depth was highly correlated (r2: 0.98) with the number of 

raw reads sequenced (Additional file 3: Supplementary Fig. S2a). With this data, we 
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investigated the capture uniformity at base pair level (Fig. 3a-b) and at region level 

(Fig. 3c-d). Because highly uniform capture data would enable most bases/regions 

to have similar depth, and therefore a histogram with very small standard deviation, 

we choose to use coefficient of variation (CV), defined by σ / μ of the histogram, to 

measure sequencing uniformity. Here σ and μ are the estimate of standard deviation 

and mean, respectively, by trimming 2.5% of extreme values from both ends of the 

histograms (Fig. 3). At base pair level, we observed that CV is close to 0.35 for 

libraries sequenced by NovaSeq, and to be between 0.37 and 0.38 for libraries 

sequenced by NextSeq. At region level, NovaSeq data has CV close to 0.25, while 

NextSeq data has Cv range from 0.22 to 0.28.  

 

 
Fig. 3. Capture uniformity per base (a, b) and per region (c, d) of the panel. Uniformity 

of coverage across ~2.82 million base pairs in the SJPedPanel for high depth samples 

sequenced on Illumina NovaSeq 6000 (C1) and NextSeq 500 (C2) respectively; and low 

depth samples sequenced on Illumina NovaSeq 6000 (C3) and NextSeq 500 (C4) 

respectively. The histograms are made at base pair level (a, b) and region level (c, d). The 

vertical dotted lines indicate (μ -2σ) of the respective distributions. The statistical parameters 

(μ: average depth, σ: standard deviation, Cv: coefficient of variance) were calculated by 

trimming observations in upper and lower 2.5 percentiles. All the sample and region level 

QC parameters are available in the Additional file 1: Supplementary tables ST5 and ST6. 

 
Overall, the standard deviation is less than or around 1/3 of the mean, which ensures 

that most of the target bases/regions are sufficiently covered. Using the two-sigma 

rule (that approximates the 95% confidence interval), we also measured the 

percentage of bases/regions with depth higher than (μ - 2σ). We found that 97% and 
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95% of bases have depth higher than this threshold for NovaSeq data and NextSeq 

data, respectively (Additional file 1: Table ST5 and Additional file 3: Fig. S2b). Similar 

trends were observed from the region level analyses (Figs. 3c-d and Additional file 

1: Table ST6). These data indicated that SJPedPanel has reproducible capture 

efficiency over different sequencing platforms. 

 
We next analyzed regions that are consistently poorly covered (i.e., less than μ - 3σ) 

in the COLO829 data. We identified such 27 regions (26 regions are small exons), of 

which 10 regions consistently showed no coverage across all the four samples [see 

column “Remark” in Additional file 1: Supplementary table ST6]. These 27 regions 

occupy 8091 bp (~0.3%) of the panel and more than half of these bases (4972 bp) 

belong to only two regions, NUTM2A (3152 bp including intron 1 with 2050 bp) and 

DUX4 (1820 bp including exon 1) (see Additional file 1: Supplementary table ST7 

and Additional file 3: Supplementary Fig. S3). For STAG2, which is well implicated in 

the pediatric cancers, the coverage is slightly below the pre-defined cut-offs for 3 

regions (351 bp) (e.g. ~ 500X for C1 sample, Supplementary table ST7). While 

looking for the potential reasons for poor coverage of these reasons, we observed 

that flanking regions (+/- 50 bp) of most of these poorly covered regions comprise 

either high GC content, such as exon 1 of MLLT1 (94% GC), or homopolymeric runs, 

such as T-runs around three regions of STAG2 gene (see Additional file 1: 

Supplementary table ST7), which can be informative for future optimization.  

 

Out of the five panels compared, the MSK-IMPACT® panel also reported to have 31 

consistently poorly covered regions 55. Interestingly, SJPedPanel demonstrated 

sufficient depth of coverage (> (μ - 2σ) of respective COLO829BL sample level cut-

offs) for 29 out of the 31 regions (Additional file 1: Supplementary table ST8). The 

remaining two regions, exon 2 of NOTCH2 and exon 15 of PMS2, were consistently 

found to show poor coverage as in MSK-IMPACT panel and were also part of the 27 

poorly covered regions of SJPedPanel discussed in previous section (Additional file 

1: Supplementary table ST7). 

 

Similarly, we analyzed the depth of coverage at designed SNPs. Notably, 99.5% of 

all the 7590 SNPs have depth more than (μ - 2σ) of the respective sample level cut-
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offs (Additional file 1: Supplementary Table ST9; see Additional file 3: 

Supplementary Fig. S4a for median and minimum depth of coverages for SNPs). As 

expected, the minor allele frequencies (MAF) of all the SNPs in control COLO829BL 

samples were clustered around either 0, 0.5 or 1 (Additional file 3: Supplementary 

Fig. S4b). A total of 3300 heterozygous SNPs (0.3 £ MAF £ 0.66) are observed in 

COLO829BL, supporting the informativeness of our designed SNPs as mentioned 

above. 

 
In silico comparison of SJPedPanel and WES in a real-time clinical genomics 
cohort 
 

As stated above (section “Comparison of gene content with other panels”), the 

comprehensive benchmarking of SJPedPanel with other panels was not possible, so 

we compared the coverage of reported pediatric cancer alterations using whole 

exome sequencing (WES). Because whole exome sequencing (WES) is effectively a 

capture-sequencing kit that targets coding exons of all genes rather than a panel of 

genes (thus an upper bound of all potential gene panels), we first asked whether our 

panel could offer comparable coverage of driver alterations (with a focus of coding 

SNVs and Indels) in pediatric cancers to WES. The recently published “Genome for 

Kids” (G4K) study66 reported pathogenic and likely pathogenic (P/LP) variants (called 

driver alterations hereafter) using three platform sequencing (WGS, WES and 

RNAseq) from 253 pediatric cases that encompassed 20 cancer subtypes in a real-

time clinical genomics setting, thus enabling us to assess the potential of 

SJPedPanel to cover driver alterations from diverse childhood cancer types. Here we 

performed in silico analysis of regions targeted by SJPedPanel and WES using the 

curated positions of 485 driver alterations (including SNV/Indel/SV/ITD; Additional 

file 3: Supplementary Fig. S5a) from the G4K study (see Additional file 1: 

Supplementary table ST10). SJPedPanel covered 86% of the 485 reported driver 

alterations as compared to 76% by WES (Fig. 4a, last pair of bars for “All” variants 

with gray background). Because WES is designed for protein coding exons, we next 

classified the variants into SNV, Indel, Fusion/SV (structural rearrangements that 

result in fusion oncoproteins), Other SV (structural rearrangements that do not result 

in fusion oncoproteins but affect cancer driver genes such as disrupting tumor 

suppressor genes), and ITD, by using the class labels in the G4K study 66. As 
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expected, WES missed 88% of the Fusions/SV that are enriched in intronic regions, 

while SJPedPanel covered 82% of these events. On the other hand, while WES was 

able to detect all the reported driver SNVs and Indels, SJPedPanel missed 7% and 

5% of SNVs and Indels, respectively. Interestingly, a re-examination of these SNVs 

and Indels indicated that their corresponding genes are rarely mutated in childhood 

cancers (Fig. 4a, see Additional file 1: Supplementary table ST10, “Comment” 

column). Of note, SJPedPanel covered 100% of the ITDs, while WES has missed 

13% of these. In fact, the ITDs missed by WES have DNA breakpoints that fall in 

introns and resulted in duplication of involved exons, such as tandem duplications in 

PAX5 67 and KMT2A 68, for which selected intronic regions were designed in 

SJPedPanel. In particular our panel is able to capture the recently described UBTF 

exonic tandem duplications60 (see the following section on “Analytical validity of 

SJPedPanel in Real-Time Clinical Genomics samples”). 

 

 
Fig. 4. Coverage comparison with WES and analytical sensitivity of SJPedPanel. (a) In 

silico comparison between SJPedPanel and WES using percent coverage of variants 

(SNVs, Indels, Fusion, SV and ITDs) reported in the “Genomes for Kids” study. The last pair 

of bars with gray background for “All” variants show combined percent coverage over all 485 

variants. (b) Analytical validity of SJPedPanel by sequencing of previously reported 113 

cases. Y-axis shows percentage of covered and detected variants by SJPedPanel over each 

variant type. The last pair of bars with gray background for “All” variants show combined 

detection rate. Numbers of reported driver alterations are indicated for corresponding variant 

types. 
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We also asked what percentage of patients could benefit from SJPedPanel vs WES 

sequencing. As it turned out, at least one variant per case would have been covered 

by SJPedPanel in 93% of 210 cases with a driver SNV/Indel/SV/ITD (median: 1, 

range: 1 to 13), in contrast to 75% of the cases using WES (median: 2, range: 1 to 

13) (Additional file 3: Supplementary Fig. S5b). Most of this gain is due to the 

capture of intronic breakpoints that result in oncogenic fusions (Fig. 4a). This data 

clearly demonstrated that SJPedPanel has superior potential for detection and 

reporting of driver alterations in pediatric tumors than WES.  

 

Analytical sensitivity of SJPedPanel in Real-Time Clinical Genomics samples 
 

To validate above in silico findings, we re-sequenced 113 clinical cases with 

available specimen from previous clinical studies 4,66 using SJPedPanel. These 

samples reflect the broad tumor types and subtypes common in childhood cancer, 

including 27 hematological malignancies, 43 solid tumors and 43 brain tumors (see 

Additional file 1: Supplementary table ST11 for cohort description).  Common 

subtypes, such as AML (n=14), ALL (n=10), rhabdomyosarcoma (n=5), 

neuroblastoma (n=5), osteosarcoma (n=3), Wilms tumor (n=3), high-grade glioma 

(n=8) and medulloblastoma (n=14) are represented in addition to rare entities, such 

as melanoma (n=1) and desmoplastic small round cell tumor (n=2) (see Additional 

file 3: Fig. S6). Among these cases, 396 driver alterations are reported via three-

platform (WGS, WES, RNAseq) sequencing. These include 106 SNVs, 41 Indels, 55 

SVs, 184 CNV/LOHs and 10 ITDs (Additional file 1: supplementary tables ST12-

ST16).  Of these, 362 (91.4%) variants were targeted by the panel, including 95 

SNVs (89.6%), 38 Indels (92.7%), 36 Fusion/SVs (76.59%), 3 other SVs (37.5%), 

180 CNV/LOHs (97.82%), and 10 ITDs (100%) (Fig. 4b, Additional file 1, Table 

ST17). Of the 34 P/LP variants not covered by our panel (Additional file 1, Table 

ST17), 11 were SNVs, 3 were Indels, 11 were Fusion/SVs (not designed), 5 were 

other SVs and 4 were focal CNVs. The uncovered variants belonged to 30 genes, 

which are not mutated in published pediatric pan-cancer cohorts 2,3 except for 

COL1A1 that has a low mutation frequency of 0.2% (see Supplementary Table ST4, 

Additional file 3: Supplementary Fig. S7 and Additional file 1, Supplementary Table 

ST17) therefore these genes are not included in our panel design.  
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We achieved a mean depth of ~2500X for all the samples tested (Additional file: 

ST18), which ensures 95% confidence of detection of variants with ≥1% allele 

fraction (AF) 69. By using a “rotation control” method 70 coupled with a recently 

developed Indel/SV genotyping tool (Method), we detected 98% (355 of the 362 

covered variants; Additional file 1: ST17) of reported driver alterations. SNVs, Indels, 

ITDs showed detection rate of 100% (Fig. 4b). The Fusion/SVs showed an overall 

recall rate of 97% (35 out of 36) of the covered alterations. We noticed that only one 

fusion/SV marker (RUNX1::RUNX1T1 from the case SJCBF100) that was included 

in the panel design with single breakpoint in RUNX1 was missed due to insufficient 

depth (21X) of coverage (Supplementary Tables ST13 and ST18), therefore poor 

capture efficiency in certain genomic regions warrants a future study. By contrast, we 

could detect 38% (3 out of 8) of Other SVs, as rest of the missed SVs had their 

breakpoints either in intergenic or non-covered regions, which is consistent with a 

much larger genomic space for breakpoints in tumor suppressor genes. On the other 

hand, SJPedPanel detected 94.56% of the reported CNV/LOHs (Supplementary 

Table ST17). Collectively, SJPedPanel detected 90% of the 396 reported driver 

alterations from these 113 cases (Fig. 4b, pair of last bars with gray background). Of 

note, at least one variant was detected for 96.5% cases (n=113), with a median of 3 

variants per case (Range = 0-16; Additional file 1: Table ST19). Consistent with the 

in-silico analysis (Fig. 4a), a comparison of SNV, Indel, SV and ITD variants (n=212 

out of 396) discovered using WES indicated that SJPedPanel covers 86% of these 

variants whereas WES covered 78% (Additional file 3: Supplementary Fig. S8). 

These data confirm the superior performance achieved using SJPedPanel for 

childhood cancers with a panel size approximately 10% the size of WES. 

 

We also highlight the successes and challenges in panel designing by using 

structural variants as examples. First, due to the large genomic size of intronic 

regions that can be involved in oncogenic fusions, inclusion/exclusion of intronic 

regions involves a difficult balance between panel size and effective coverage of 

patient population. In our 2023 study of fusion gene pairs involved in 5,190 childhood 

cancers 7, 72 representative genes are selected for 274 fusion gene pairs and 

SJPedPanel included 53 of these 72 genes. The maximum mutation frequency of the 

19 genes not included (Supplementary Table ST3c) in our panel is 0.1% 7. 

Furthermore, inclusion of all relevant introns of all genes involved in oncogenic 
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fusions would need ~8 Mbp (described in Source data file of Fig, 2k-l mentioned in 

Liu et al., 2023 7). With the observation that some genes can have multiple fusion 

partners (e.g., 40 of the 53 included representative genes have between 2 to 32 

partner genes), in our design we intentionally left out some partner genes by relying 

on common representative genes, which reduced the space from ~8 Mbp (280 

introns) to ~1Mbp (156 introns). For example, including only the intronic regions of 

KMT2A allowed us to detect KMT2A::MLLT1 fusion in pediatric T-ALL patient 

(SJMLL002) although we did not include MLLT1 in the panel content (Additional file 

3: Fig. S9). Similar examples include the detection of RUNX1::RUNX1T1 despite the 

inclusion of RUNX1 but not RUNX1T1 introns (~100K base pairs needed) in 

SJCBF100. Despite this success, structural variants can be challenging to detect 

when the involved regions are not included, such as an inversion involving RB1 gene 

in case SJRB0051 (Additional file 3: Fig. S10) that was missed because the DNA 

breakpoints fall into an intronic region of RB1 and none of RB1 introns are covered 

(~180 kb are needed to cover all RB1 introns).  

 

Apart from SV/Fusions, SJPedPanel covers well known ITDs such as FLT3, 

NOTCH1, BRAF etc. (Supplementary Table ST16). SJPedPanel also provides 

exclusive coverage of UBTF gene that was recently described in pediatric AML 60, 

although in literature UBTF ITDs are typically mistakenly detected as small Indels 
3,60,71,72. For example, our panel successfully detected UBTF TDs in two pediatric 

AML cases (SJAML015373 and SJAML016569; see Additional file 3: Supplementary 

Fig. S11) 60.  

 

Determining limit of detection 
 

One of the important applications of panel sequencing is disease monitoring, where 

the tumor burden is typically less than 1% and thus variants are rare and challenging 

to detect. To investigate the applicability of our panel, we first performed dilution 

experiments (with 7 concentration ladders 0.1%, 0.2%, 0.5%, 1%, 2.5%, 5%, 10%, 

and pure normal of 0% and pure cancer of 100%) using 6 pediatric cancer cell lines 

(697, EW-8, K562, ME-1, MOLM-13, and Rh30) and 1 non-cancer cell line 

(GM12878) as normal control. These 6 lines collectively contain 26 unique P/LP 

variants (14 SNVs, 4 Indels, and 8 SVs) 73,74 (Additional file 1: Supplementary Table 
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ST20) and the lack of shared driver alterations allowed for pooled dilutions to reduce 

the experimental complexity while keeping the diversity of mutation types. For 

example, at ladder of 0.5%, we mixed 5:5:5:5:5:5:970 cell equivalents from the 6 

cancer lines and the normal line, respectively. To ensure sufficient power of 

detecting variants with low allele fractions, we achieved an average depth of 5,000X 

for 0.5%, >7,000X for 0.2% and 0.1% dilution concentrations (Method, Additional file 

1: Table ST21). 

 

 

 
Fig. 5. Determining the limit of detection with SJPedPanel. The observed allele fractions 

of 26 driver alterations are shown on Y-axis as a function of corresponding dilution 

concentration shown in X-axis. The detection rate for each dilution concentration is shown 

on top as magenta text. The observed allele fractions of variants from normal and pure 

tumor cell lines are also shown using green and black points, respectively. The variants 

detected with statistically significant Q-values (Q < 0.05) are shown in blue, whereas those 

with insignificant Q-values are shown in red. Shown are results from replicate A (a) and 

replicate B (b).  

 

We used SequencErr 75 and a newly developed Indel/SV genotyper (manuscript 

submitted; GitHub: https://github.com/stjude/SVIndelGenotyper) to perform allele 

counting followed by variant calling using binomial models with false discovery rate 

control (Method), where the pure normal of 0% was used to estimate background 
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error rates as no cancer-driving somatic alterations are expected in non-cancer cell 

line GM12878. As seen in Fig. 5, the observed allele fractions closely represent 

corresponding dilution ladders, with R-squared values of 0.7 and 0.72, for biological 

replicates A and B, respectively (Additional file 1: Supplementary table ST22). 

Notably, although we achieved >90% detection rate when the dilution concentration 

is above 0.5%, it diminishes quickly at lower dilutions. At a dilution concentration of 

0.1%, recall rate was 69% and 42% in replicates A and B, respectively.  

 

To further investigate the effect of sequencing depth on detection rate, we performed 

in silico down-sampling experiment (Method; Additional file 1: Supplementary table 

ST23). For all the dilutions with concentrations ³ 1%, which were initially sequenced 

at 5000X and 2500X (Additional file 3: Fig. S12a and S12b), recall rate is found to be 

close to 100% even after down sampling their depths to 1000X. However, recall rate 

declined with down sampled depths for dilution concentrations < 1%. For samples 

with dilution concentration of 0.5% (Additional file 3: Fig. S12b top panel), recall rate 

dropped from 97% at 3000X to 75% at 1000X. Thus, recall of markers with allele 

fraction of 0.5% can be achieved at 2500X~3000X, which is concordant with our 

theoretical binomial calculation of 2,100X (Method, Fig. 5). However, for markers 

with allele fraction of 0.2% and 0.1% the detection rate was <50% even at initial 

10,000X data (Additional file 3: Fig. S12c). This finding suggests that the current LoD 

is between 0.1% and 0.5% and is consistent with a recent report using cfDNA data 
76.  
 

The above data suggests a depth of 2,100x will ensures 95% chance of detecting 

>=5 mutant reads if the true allele fraction is >0.5%, However, considering the 

sequencing uniformity parameter, where 95% of targeted regions are covered at μ-

2σ = 0.33μ, we would recommend 3 × 2,100 = 6,300X so that >95% of targeted 

regions will be covered >2,100X and ensure the 95% chance of detecting variants 

with allele fraction of 0.5%. Since the total space of this panel is ~0.15% of a human 

genome, 6,300X corresponds to a 9X whole genome sequencing. 
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Case study: Real time tracking of relapsed AML using deep sequencing 
 

To test the suitability of the panel for disease monitoring in a real-world setting, we 

chose two AML cases (SJAML016582 and SJAML016551) that had remission 

samples with low tumor content available. These cases have multiple pathogenic 

and likely pathogenic variants (P/LP) reported by clinical sequencing of diagnosis 

and relapse samples (Additional file 1: Table ST24) and are ideal for panel 

sequencing. The remission samples were sequenced to an average depth of 5,000X 

using SJPedPanel per above power calculations.  

 

 

 
Fig. 6. Real time tumor tracking in case SJAML016582. The estimated cellular fractions 

of subclones at four timepoints from diagnosis (day 0) to relapse (day 314) are shown as a 

river-plot. Subclones with very low cellularity (e.g., NRAS Q61R (SNV) at diagnosis) were 

adjusted for visualization purposes. Actual values are available in the Additional file 1: 

ST24a. 

 

In case SJAML016582, apart from subtype defining NUP98::NSD1 fusion, 4 

pathogenic variants were detected at diagnosis (day 0) and 6 pathogenic variants 

were detected at relapse (day 315), with 2 variants shared between diagnosis and 

relapse. With the ultra-deep panel sequencing data, we recovered all variants initially 

detected by whole genome sequencing, including 4 at diagnosis and 6 at relapse. 

Interestingly, panel sequencing detected the SNV that encodes NRAS Q61R at 

diagnosis with allelic fraction (AF) 0.12%, and the MNV that encodes NRAS Q61R at 
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relapse with AF 0.07%, both of which are beyond the detection power of whole 

genome sequencing (Additional file 1: Table ST24a; Fig. 6). Further, in the day 26 

remission data, we detected a high tumor burden (6.56%, Method). Notably, the 

tumor burden continued to decrease down to AF of 2.88% at day 97 as reflected by 

the SV responsible for NUP98::NSD1 fusion.  

 

In addition to disease monitoring, we also applied ultra-deep sequencing for 

detecting measurable residual disease (MRD) as a measure of patient response to 

chemotherapy. Generally flow cytometry is a method of choice for such applications 
77 in addition to real time PCR 78 and droplet digital PCR 79. However, these 

approaches are not as scalable as ultra-deep sequencing. In order to evaluate the 

efficacy of SJPedPanel to detect MRD, we sequenced three samples from diagnosis 

(day 0), MRD (day 23) and relapse (day 344) for AML patient SJAML016551. Here 

the relapse sample is used to definitively define genetic alterations that are present 

in the MRD sample. For this case, five pathogenic variants, including a 

KMT2A::MLLT10 structural variant, were identified to be shared between diagnosis 

and relapse and are expected to be detected in MRD sample. Although flow-based 

MRD detection was negative for this case, our deep sequencing detected all 5 

pathogenic variants with allele fraction range between 0.7-1% (Additional file 1: 

Table ST24b; Additional file 3: Supplementary Fig. S13). Together, our data 

demonstrate the potential ability of SJPedPanel in measuring MRD and monitoring 

disease progression that could aid in early detection of relapse. 

 

Discussion 
 

We developed SJPedPanel, a hybridization capture-based assay targeting 357 

pediatric specific oncogenes and tumor suppressors implicated in over 44 [see panel 

design section] pediatric cancer genomic studies2-4,7,26,33,35,57,66, many through the 

extensive efforts of the Pediatric Cancer Genome Project 1 and NCI TARGET project 
3, as well as real-time clinical sequencing efforts at St. Jude Children’s Research 

Hospital employing WGS, WES and RNA-Seq platforms 4,66.  Considering the rich 

dataset of WGS and the clear recognition that fusion oncoproteins are common 

molecular drivers of pediatric cancers, SJPedPanel includes 297 introns that contain 
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structural variants in 94 genes, accounting for 1.438 Mbp of genomic space, as well 

as 0.209 Mbp for detecting promoter-hijacking SVs. Furthermore, 7590 common 

SNPs are covered, allowing for the detection of copy number changes and loss of 

heterozygosity (LOH) at a resolution of ~1Mb.  Taking into account the clear 

differences in the genomic landscape of cancers in children and adults, SJPedPanel 

has unique coverage of 110 genes frequently implicated in pediatric cancers when 

compared to other commonly used panels (FoundationOne Heme, FoundationOne 

CDx, MSK-IMPACT, OncoKids and Oncomine Comprehensive Assay v3).  

 

We used in silico and experimental strategies to evaluate the performance of 

SJPedPanel for detecting clinically relevant somatic mutations. Using the previously 

published G4K study, SJPedPanel was found to cover 86% of the reported somatic 

markers, including SNV, Indel and SV. Similar findings were obtained by using real-

time clinical sequencing samples 4,66 in which 355 (89.6%) of the 396 reported 

clinically relevant variants were detected in 113 cases, including all SNVs, Indels and 

ITDs. At patient level, at least one variant was detected in 109 out of 113 cases 

(median 3).  These findings establish and confirm the ability of SJPedPanel to detect 

clinically relevant somatic mutations in a wide range of samples from a real-time 

clinical genomics setting for childhood cancers.  

 

While tumor-normal paired whole genome sequencing remains the gold standard for 

cancer diagnostics, the overall cost and required bioinformatic pipelines and 

infrastructure currently limits its broad application. On the other hand, gene-panel 

based genomics testing can enable many centers to perform NGS-based cancer 

diagnostics due to the overall lower cost and faster turn-around time. The content 

and design of SJPedPanel allows for more comprehensive detection of the 

alterations common in pediatric cancer compared to both WES and other standard 

panels. An inherent limitation of DNA sequencing panels is the lack of coverage at all 

critical loci or newly discovered recurrent alterations; however, panel content can 

readily be updated. For example, the current version of SJPedPanel lacks sufficient 

coverage to identify the recurrent ASPSCR1::TFE3 fusion characteristic of alveolar 

soft part sarcoma or SSX1/SSX2::SS18 in synovial sarcoma. Such genes will be 

incorporated in future versions of SJPedPanel. To maximize the utility of this panel, 
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the targeted genomic locations are included in Supplementary Tables ST1 and ST2 

(Additional file 1) and future updates will be readily available upon request.  

 

As a proof-of-principle, we demonstrate the application of using SJPedPanel for 

minimal residual disease (MRD) detection and post-treatment disease monitoring. It 

would be interesting to see the clinical value of this application using large patient 

cohorts in future. Because this is a pan-cancer gene panel for childhood 

malignancies, it will be relatively easy to develop sub panels dedicated to certain 

cancer subtypes to further reduce the size of the panel, and in turn enabling much 

higher depth with a similar cost. We expect many potential impacts on the 

management of childhood cancers using SJPedPanel.  

Conclusions 

Overall, SJPedPanel enables the detection of clinically relevant genetic alterations 

including rearrangements responsible for subtype-defining fusions for childhood 

cancers by targeted sequencing of ~0.15% of human genome. Our panel will 

significantly enhance the analysis of specimens with low tumor burdens for cancer 

monitoring and early detection.   

 

Material and Methods 
 
Panel design  
Based on extensive research and literature review of pan cancer genome profiling 

studies a list of exonic and/or intronic regions (n=5009 regions, 2.82 Mbp) from 357 

genes that were frequently implicated in pediatric cancers was compiled to detect 

single nucleotide variants (SNVs), small insertions & deletions (Indels), gene fusions, 

structural variants (SVs), and internal tandem duplications (ITDs). We also curated a 

list of 7590 single nucleotide polymorphic markers (SNPs) evenly spread across 

human chromosomes to detect large genomic structural rearrangements such as 

copy number variations (CNVs) and loss of heterozygosity (LOH). The details of all 

the genomics regions and SNPs used to assemble the pediatric pan cancer, termed 

as SJPedPanel, are available in Additional file 1: Supplementary Tables ST1 and 

ST2.  
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Capture efficiency of the SJPedPanel 
The high and low depth targeted enriched NGS libraries, two each, were prepared 

with probes designed for regions in the SJPedPanel using COLO829 BL cell line 

samples. Each combination of high and low depth libraries was sequenced on 

Illumina NovaSeq and NextSeq platforms. The data generated was used to evaluate 

the capture performance of the probes and uniformity of coverage across regions 

and loci of the SJPedPanel. 

 

Dilution experiment 
A dilution experiment using 6 cancer cell lines (ME-1, 697, Rh30, EW-8, K562, 

Molm13) and a non-cancer cell line (GM12878) was designed to achieve seven 

tumor concentrations with two replicates each. The seven dilutions were divided in 

three groups a) ultra-low (0.1%, 0.2%), b) low (0.5%, 1%), and c) medium (2.5%, 5% 

and 10%), which were sequenced at depths of 10,000X, 5000X and 2500X 

respectively. The cell lines were also sequenced independently in undiluted forms at 

25,000X to estimate the original allele fractions of 26 cell line specific markers (14 

SNVs, 4 Indels, 8 SVs) given in Additional file 1: Table ST20. Recall rate of these 

known markers across different dilutions was used to assess the limit of detection of 

the SJPedPanel.  

 

The limit of detection (LoD) is determined by two critical factors: 1) the sequencing 

depth (also known as power) and 2) the noise level. For example, if the true allele 

fraction is 1%, a sequencing depth of 913× will ensure 95% chance of detecting this 

variant with >=5 mutant alleles 69. In consideration of the high range of dilution 

concentrations, we aimed for 2500× depth for dilution ladders >1%, 5000× for 

ladders 0.5% and 1%, and 10000× for ladders 0.1% and 0.2%. On the other hand, 

the noise level is typically regarded as background error rate. Mutations with higher 

background error rates are more difficult to detect because the true signal can be 

overwhelmed by the background noises. We previously developed computational 

error suppression methods to achieve error rate of ~10-6-10-4 for substitutions 80 and 

similar methods and results have been achieved for Indels and SVs (companion 

manuscript) 

A “rotation control” method 70 was used to obtain the background count of the 

variants and Q-values were used to assess the statistical significance of detection 
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based on binomial testing. All the statistical analyses were performed using R v4.0.3 

(https://www.r-project.org/). 

 

In silico down sampling experiment 
We also performed in silico down sampling of data from a set of cancer cell line 

dilution samples to find out the trade-off between recall rate, down sampled depth of 

sequencing and associated cost estimates. The samples originally sequenced at 

2500X were further down sampled to simulate depths of sequencing at 1000X, 

1500X and 2000X, whereas the samples which were sequenced at 5000X and 

10000X were down sampled to simulate depths of sequencing at 1000X, 1500X, 

2000X, 3000X. For each of the desired down sized depth, 10 samples were 

simulated, each consisting of the randomly sampled reads at loci of 14 SNVs. The 

down sized samples were used to determine the trade-off between recall rate and 

depth of sequencing.  

 

Analytical sensitivity using clinical samples 
We selected 113 specimens from previously sequenced pediatric cancer cases 

treated at St. Jude Children’s Research Hospital to represent a wide range of cancer 

subtypes common in pediatrics. Samples were chosen primarily from the pilot study 

cohort (n=40) 4 and G4K studies (n=73) 66 and had previously reported clinically 

relevant markers identified by triple platform approach of whole genome, whole 

exome, and transcriptome sequencing. The recall rate of clinically relevant markers 

from these cases was used to establish the analytical validity of the SJPedPanel. A 

list of cases and their cancer subtypes used for these purposes is provided in the 

(Additional file 1: Table ST11). This study was approved by the institutional review 

board (IRB). All patient samples are de-identified using SJID. 

 

Library preparation, capture, and sequencing 
DNA samples were obtained and subjected to DNA-seq library preparation and 

target enrichment followed by sequencing in the Clinical genomics laboratory as 

described below. An input of 100ng of DNA was used to construct libraries using the 

Twist Library Preparation Enzymatic Fragmentation (EF) Kit 2.0 (Twist Biosciences, 

CA) following the manufacturer’s instructions.  Capture oligos were designed to 

detect putative SNVs, Indels, SVs, ITDs and CNVs in 357 genes of clinical interest. 
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SJPedPanel was synthesized at Twist Biosciences and is described in detail in the 

section on panel design. Eight libraries were pooled at a time and target enrichment 

for the SJPedPanel baits was carried out using Twist hybrid capture protocol 

following manufacturer’s instruction. Paired-end 150-cycle sequencing was 

performed on NovaSeq or NextSeq instruments (Illumina Inc, CA) as appropriate. 

Where necessary, additional sequencing was performed to ensure that a sequencing 

depth of at least 1000X was achieved in all cases. 

 

Early detection of relapsed AML cases 
To test the panel’s capability for disease monitoring, two cases of pediatric AML 

(SJAML016582 and SJAML016551) with material available at diagnosis, relapse, 

and remission timepoints were analyzed. Both samples provide multiple trackable 

somatic markers, including structural variants and SNVs. Samples were subjected to 

deeper sequencing depths of >5000X after targeted capture to ensure detection of 

low-level variants at <1%.  

Generally, tumor burden is estimated using number of somatic non-synonymous 

mutations per Mbp region. For the sake of simplicity, in these cases, we used 

average VAF% of somatic variants chosen for tracking of AML at respective 

timepoints. 

 

Coverage comparison between SJPedPanel and Whole exome sequencing  
The content of SJPedPanel was compared with that of whole exome sequencing 

(WES) manifest to highlight the differences in coverage of hg19 genomic regions. An 

Illumina Exome 2.0 Plus hg19 BED file (Available from 

https://support.illumina.com/downloads/Illumina-dna-prep-exome-20-bed-files.html; 

last date of access: June 22, 2023) padded with 10 bp was used for region 

intersection analyses. We utilized recently reported somatic variants from the 

Genomes for Kids (G4K), a prospective nontherapeutic three-platform sequencing 

study of 309 patients with pediatric cancer treated at St. Jude Children’s Research 

Hospital (Memphis, TN) 66 to assess the in silico coverage and case level 

concordance rates of reported variants using SJPedPanel and WES. 

 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.23299068doi: medRxiv preprint 

https://support.illumina.com/downloads/Illumina-dna-prep-exome-20-bed-files.html
https://doi.org/10.1101/2023.11.27.23299068


Comparison of SJPedPanel with other panels 
We also compared the content of the SJPedPanel with DNA content of five other 

commercially available panels such as FoundationOne®  Heme, FoundationOne® 

CDx 53,54 by Foundation Medicine Inc., MSK-IMPACT® 6,55 by Memorial Sloan 

Kettering Cancer Center, OncoKids® 5 by Children’s Hospital Los Angeles and 

OncomineTM Comprehensive Assay v3 by Thermo Fisher Scientific Inc. 56. These 

panels collectively represent breadth and diversity of clinical gene panels. Since 

most of the providers do not provide the exact coordinates of the regions in the 

panel, we compared the DNA content of these panels using standardized gene 

names with the help of official gene symbols and synonyms from the NCBI gene 

database (https://www.ncbi.nlm.nih.gov/gene, last accessed on March 10, 2023). 

 

Bioinformatics analyses 
The adapter trimmed paired end FASTQ files generated on the Illumina 

NovaSeq/NextSeq platforms were assessed for sequence quality using FastQC 

v0.11.9 and SequencErr v2.0.9 75. The reads were mapped against GRCh37 build 

using BWA mem 0.7.12-r1039 81. The utility commands in SAMtools v1.7 and 

bedtools v2.25.0 were used perform simple operations using BAM and BED files. 

The count files obtained from BAM files using SequencErr were further passed as an 

input to DeepSeqCoverageQC v0.3.1 (Available from GitHub: 

https://github.com/pandurang-kolekar/DeepSeqCoverageQC) to compute depth of 

coverage QC metrics of the sequenced samples over loci/regions of the 

SJPedPanel. The genotyping of SVs and Indels to compute the allele fractions was 

carried out using in-house scripts (https://github.com/stjude/SVIndelGenotyper). The 

CNVs were detected using CNVkit v0.9.10 82. The BAM files of 30 germline samples 

were used to create a pooled reference of per-bin copy number estimates. The 

segment & bin-level call files along with CNV diagrams generated by CNVkit batch 

command were used to review the CNV calls in tumor samples. To determine the 

LOH in sequenced samples, the minor allele frequencies of 7590 SNPs were 

computed using count files generated by SequencErr and subsequently used to 

generate allelic imbalance plots over chromosomes. The output files and diagrams 

generated by CNVkit v0.9.10 and the allelic imbalance figures used to review CNV 

and LOH events are available from GitHub repository at 

https://github.com/XMaLab/SJPedPanel_Supplementary_Data  
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