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Abstract 

Advancing health interoperability can significantly benefit health research, including 

phenotyping, clinical trial support, and public health surveillance. Federal agencies, 

including ONC, CDC, and CMS, have been collectively collaborating to promote 

interoperability by adopting Fast Healthcare Interoperability Resources (FHIR). However, 

the heterogeneous structures and formats of health data present challenges when 

transforming Electronic Health Record (EHR) data into FHIR resources. This challenge 

becomes more significant when critical health information is embedded in unstructured 

data rather than well-organized structured formats. Previous studies relied on multiple 

separate rule-based or deep learning-based NLP tools to complete the FHIR resource 

transformation, which demands substantial development costs, extensive training data, 

and meticulous integration of multiple individual NLP tools. In this study, we assessed the 

ability of large language models (LLMs) to transform clinical narratives into HL7 FHIR 

resources. We developed FHIR-GPT specifically for the transformation of clinical texts 

into FHIR medication statement resources. In our experiments using 3,671 snippets of 

clinical texts, FHIR-GPT demonstrated an exceptional exact match rate of over 90%, 

surpassing the performance of existing methods.. FHIR-GPT improved the exact match 

rates of existing NLP pipelines by 3% for routes, 12% for dose quantities, 35% for 

reasons, 42% for forms, and over 50% for timing schedules. Our findings provide the 

foundations for leveraging LLMs to enhance health data interoperability. Future studies 

will aim to build upon these successes by extending the generation to additional FHIR 

resources. 
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Introduction 

Interoperability enhances the ability of healthcare providers to deliver safe, effective, and 

patient-focused care. It also offers novel avenues for individuals and caregivers to access 

electronic health data for care coordination and management1. The promotion of 

interoperability has become an integral aspect of various health initiatives, spanning from 

ensuring health equity to responding to public health emergencies 2. Federal agencies, 

including the Office of the National Coordinator of Health IT (ONC)1, the Centers for 

Disease Control and Prevention (CDC)3, and the Centers for Medicare & Medicaid 

Services (CMS)4, collectively collaborate to promote interoperability through the adoption 

of Fast Healthcare Interoperability Resources (FHIR), which is a next-generation 

interoperability standard developed by the Health Level 7 (HL7®) standards development 

organization5. FHIR is specifically designed to facilitate the swift and efficient exchange 

of health data. FHIR has seen growing adoption in the modeling and integration of both 

structured and unstructured data for various health research purposes. Its applications 

range from developing computational phenotyping6-8 to supporting clinical trials9-12, 

building surveillance systems13,14, and much more. We refer to these two review 

papers15,16 for further insights into FHIR applications. 

Transforming health data into the FHIR format presents a challenge, as various health 

organizations have their unique infrastructure, standards, and formats for generating, 

storing, and organizing health data17. This challenge becomes more significant when 

critical health information is embedded in unstructured data other than well-organized 

structured formats. There are existing efforts for promoting the transformation of 

unstructured data into FHIR resources, offered by both academic and commercial 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.10.17.23297028doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297028
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

sectors. In academic research, Hong et al. 18 integrated clinical NLP tools, including 

cTAKES19, MedXN20, and MedTime20, to extract clinical entities from corresponding 

document sections and standardize them into FHIR resources. Wang et al. developed 

Opioid2FHIR21, a system that employs multiple deep learning-based natural language 

processing (NLP) techniques for opioid information extraction and normalization. In the 

commercial domain, Google Cloud has released the Healthcare Natural Language API22, 

capable of converting medical text input into FHIR resources. Amazon Medical 

Comprehend23 can extract and normalize medical concepts into clinical vocabulary, 

although it lacks the ability to map all extracted information to FHIR resources. Azure 

Health Data24 is proficient at converting semi-structured data into FHIR resources but 

does not handle free-text unstructured input. All the above FHIR transformation tools 

necessitate sequential collaboration with multiple NLP tools. These include a Named 

Entity Recognition (NER) tool for extracting medical concepts, a relation extraction tool 

for identifying relations related to a target concept, a normalization tool for standardizing 

the extracted concepts into vocabularies, and a reconciliation tool for integrating the 

normalized concepts into a valid FHIR format. The development and training of each NLP 

tool is resource-intensive and demands a significant amount of time and data. Creating a 

pipeline that integrates multiple NLP tools requires substantial computational resources, 

annotated data, and human effort. Furthermore, as the transformation progresses along 

the pipeline, the accuracy of the conversion also decreases.  

Therefore, we propose harnessing pre-trained large language models (LLMs) to 

streamline the existing approach which relies on a pipeline of multiple NLP tools, to 
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facilitate the transformation of free-text input into FHIR resources. Our contributions can 

be summarized as follows: 

- We manually annotated a dataset containing 3,671 snippets extracted from 

discharge summaries, along with their corresponding transformed 

MedicationStatement resources. To the best of our knowledge, this represents the 

largest and neatest human-annotated dataset of free-text to FHIR resource 

transformation pairs. 

- We demonstrated that LLMs, especially FHIR-GPT, are able to outperform the 

existing NLP methods in transforming FHIR resources when evaluated by the 

exact match rate. 
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Figure 1. a. A snippet of the discharge summary will be used to generate the FHIR 
resource. b. The i2b2 expert annotates word spans related to medications in the 
discharge summary. c. An example of the transformed FHIR MedicationStatement 
resource based on our annotations. The same color shading from panel b is used. These 
results represent the ground truth transformation. d. An example of the prompt used to 
instruct large language models in generating FHIR resources. e. The workflow details 
how we annotate the dataset and compare the performance of Large Language Models 
and existing NLP pipelines in transforming free-text inputs into associated FHIR 
resources. 

Discharge Summary:
Discharge Medications:
…

[7. senna 8.6 mg Tablet Sig: 

One (1) Tablet PO BID P.R.N 

Constipation]

…

Patient was discharged to 
long-term care facility.

a.   Discharge Summary
Medication senna

Reason Constipation

Route PO

Timing BID 

Dose One (1)

Form Tablet

Strength 8.6 mg

asNeeded P.R.N

b.   Entity Annotations c.   FHIR MedicationStatement
{'resourceType': 'MedicationStatement',
 'id': '100035T133',
 'subject': {'reference': 'hadm_id100035'},
 'medication': {'reference': {'reference': '#med100035T133'}},
 'reason': [
     {'concept': {'text': 'Constipation’,
 'coding': [{'system': 'http://snomed.info/sct’,
 'code': '14760008’,
 'display': 'Constipation'}]}}],
 'dosage': [
     {'route': {'text': 'PO’, 
                   'coding': [{'system': 'http://snomed.info/sct’, 
                   'code': '26643006’, 
                   'display': 'Oral route'}]},
      'timing': {'repeat': {'frequency': 2, 'period': 1.0, 'periodUnit': 'd'},
                     'code': {'coding': [{'system': 'http://terminology.hl7.org/’, 
                                'code': 'BID’,
           'display': 'BID'}]}},
      'asNeeded': True,
      'doseAndRate': [{'doseQuantity': {'value': 1.0}}]}],
 'contained': [
     {'resourceType': 'Medication',
      'id': 'med100035T133',
      'code': {'coding’: [
 {'system': 'National Drug Code’, 
 'code': '00904516561’, 
 'display': 'sennosides, USP 8.6 MG Oral Tablet’},
 {'system': 'RxNorm’, 
 'code': '312935’, 
 'display': 'sennosides, USP 8.6 MG Oral Tablet'}], 
                   'text': 'senna 8.6 mg Tablet'},
      'doseForm': {'text': 'Tablet’, 
 'coding': [{'system': 'http://snomed.info/sct’, 
 'code': '385055001’, 
 'display': 'Tablet'}]},
      'ingredient': [{'item': {'concept': {'text': 'senna'}}, 
 'strengthQuantity’: 
       {'value': 8.6, 'unit': 'milligram’, 
        'system': 'http://unitsofmeasure.org’, 
        'code': 'mg'}}]}]}

[INSTRUCTIONS]
You are a helpful assistant that can help with medication data extraction. 
User will paste a short narrative that describes the administration of a drug.
Please extract the drug route (How drug should enter body), e.g. PO, IV.
< Collapsed for more instructions >

[TEMPLATE]
{"text": "<string>", // the originial text mention of drug route
 "coding": [ //optional, but MUST lookup from the table below
    {"system": "http://snomed.info/sct",
      "code": "<code>", # SNOMED code
      "display": "<display>" # the display of the code}]}

[EXAMPLES]
For example, the narrative 
"Oxycodone-Acetaminophen 5-325 mg Tablet 
Sig: 1-2 Tablets PO\nQ4-6H (every 4 to 6 hours) as needed“
You should return a json format:
 {'text': 'PO', 'coding': [{'system': 'http://snomed.info/sct', 'code’: 
'26643006','display': 'Oral route'}]}
< Collapsed for 4 more examples >

[TERMINOLOGIES]
Code Display
6064005 Topical route
10547007 Otic route
<Collapsed for 143 more SNOMED CT Codes>

d.   Prompts for LLMs

e.   Workflow

Free-text input

Prompts

Entity Annotations

NLP2FHIR

Google HNL API

Existing NLP Pipelines

OpenAI GPT-4

LLaMa-2-70B

Falcon-180B

Large Language Models

Existing i2b2 Annotation 

FHIR Resources

Our Annotation

TransformationInput

Generation
Input
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Results 

The annotation results are presented in Table 1. In summary, we annotated a total of 

3,671 pairs of free-text to FHIR MedicationStatement resources transformations. The 

free-text input was derived from discharge summaries for 280 admissions. The character 

lengths of the input data exhibit an average of approximately 66 characters, with a 

relatively high standard deviation of 65. The annotated resources encompass 625 distinct 

medications in 26 different forms and are associated with 354 different reasons, as well 

as 16 administration routes. These elements display varying levels of availability, ranging 

from approximately 30% for reasons to 65% for timing schedules. SNOMED CT is the 

most commonly used terminology system, which was applied to medication, form, route, 

and reason, while HL7’s own code set was used for timing schedules. The annotated 

resources in the .JSON structure have an average number of objects of 58.2 (standard 

deviation = 16.2) and an average depth of 6.7 (standard deviation = 0.5).  

 

The transformation results are presented in Table 2. In summary, transformation with 

GPT-4, namely FHIR-GPT,  achieved an exceptional exact match rate of over 0.90 for all 

elements, outperforming both baseline models and all other LLMs. Specifically, when 

compared to existing NLP pipelines, FHIR-GPT improved the exact match rate by 3% for 

routes, 12% for dose quantities, 35% for reasons, 42% for forms, and over 50% for timing 

schedules. Among all LLMs, we observed a trend of increasing accuracy as the 

parameter size increased. GPT-4, with approximately 1.7 trillion parameters, surpassed 

the 180 billion parameter Falcon models and further improved upon the 70 billion 

parameter Llama-2 models. Within all elements, the most challenging ones for LLMs and 
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existing methods are timing schedules and reasons. Timing schedules, consisting of 10 

objects, require calculations and inferences (e.g., inferring the duration based on 

frequency and distribution), while reasons involve relationship extraction and handling 

cardinality, as a medication can be taken for more than one reason. 
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Table 1. Descriptions,  examples, and statistics of human annotation for the FHIR medicationstatement resource. 

Medication 
Statement 
Elements 

Type Card. Example Description CodeSystem N (%) N, 
Uniq. 
Entries  

N,  
Uniq. 
Codes 

identifier String 1..1 100035T133 External identifier MIMIC+i2b2 3671 (100%) 3,671 3,671 
subject Codeable

Reference 
1..1 {'reference': 'hadm_id164366'} Who is/was taking the 

medication 
MIMIC 3671 (100%) 280 280 

medication 
 

1..1 
 

What medication   
   

 
medication-
Code 

Codeable
Concept 

0..1 {'coding':  
[{'system': 'NDC', 'code': '51079088120', 
'display': 'clonazepam 0.5 MG Oral Tablet'}, 
{'system': 'RxNORM', 'code': '197527'','display': 
'Clonazepam 500 microgram oral tablet'}, 
{'system': 'SNOMED', 'code': '322897008', 
'display': 'Clonazepam 500 microgram oral 
tablet'}], 
'text': 'clonazepam 0.5 mg Tablet'} 

Codes that identify this 
medication 

NDC / RxNorm /  
SNOMED CT 
Medication 

3671 (100%) 1762 NDC: 
625, 

 
RxNorm: 

520, 
 

SNOMED
: 210  

doseForm Codeable
Concept 

0..1 {'text': 'Tablet','coding': [{'system': 'SNOMED', 
'code': '385055001','display': 'Tablet'}]} 

powder | tablets | 
capsule + 

SNOMED CT 
Dose Form 

1478 (40.3%) 176 26 
 
ingredient. 
Strength 

Quantity 0..1 {'value': 0.5, 'unit': 'milligram', 
'system': 'http://unitsofmeasure.org', 
'code': 'mg'} 

Quantity of ingredient 
presents 

unitsofmeasure. 
org 

2383 (64.9%) 188 16 

reason Codeable
Concept 

0..* [{'concept': {'text': 'headache', 
'coding': [{'system': 'SNOMED', 'code': 
'25064002','display': 'Headache'}]}}] 

Reason for why the 
medication is 
being/was taken 

SNOMED CT 
Finding 

1106 (30.1%) 619 354 

dosage 
 

0..* 
  

 
   

 
asNeeded Boolean 0..1 True Take "as needed"  3671 (100%) 2 

 
 

route Codeable
Concept 

 
{'text': 'PO', 'coding': [{'system': 'SNOMED', 
'code': '26643006', 'display': 'Oral route'}]} 

How medication enters 
the body 

SNOMED CT 
Route of Admin. 

2011 (54.8%) 64 15 
 
timing. 
repeat 

Element 0..1 {'frequency': 1, 'period': 4.0, 'periodMax': 6.0, 
'periodUnit': 'h', 'duration': 3.0, 'durationUnit':'d'} 

Timing schedule hl7.org/fhir/ 2393 (65.2%) 177 6 
 
timing. 
code 

Codeable
Concept 

0..1 {'coding': [{'system': 'HL7','code': 'Q4H', 
'display': 'Q4H'}]}} 

Code for timing 
schedule, e.g. 'BID' 

hl7.org/fhir/ 2287 (62.3%) 17 17 
 
dose- 
Range 

Quantity 0..1 {"doseQuantity": {"value": 5.0, "unit": "ML"}}  
Amount or range of 
medication per dose 

 1378 (37.5%) 53 
 

 
dose- 
Quantity 

Range 0..1 {"doseRange": { 
"low": { "value": 1.0},"high": { "value": 3.0}}} 

 11 (0.30%) 7 
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Table 2. Comparison of LLMs and existing NLP pipelines for transforming free-
text input into FHIR MedicationStatement resources. Performance is evaluated 
using the exact match rate, which requires that the resources generated by the models 
precisely match human annotations in all aspects, including structure, codes, and 
cardinality. Due to version and implementation differences, the existing NLP pipelines 
cannot generate all the elements included in our annotations. The best-performing 
model for each element is indicated in bold, while the second-place model is underlined. 

Elements of 
medicationstatement Large Language Models Existing NLP 

Pipelines 
 

GPT-432 Falcon-
180B33 

Llama-2-
70B34 NLP2FHIR18 

Google 
Healthcare 
NL API22 

 

medication     
 

  medicationCode 0.968 0.899 0.859 0.862 0.963 
 

doseForm 0.976 0.890 0.633 0.556 - 
 

ingredient.Strength 0.980 0.921 0.792 - - 
 

reason 0.902 0.593 0.169 0.645 - 
 

dosage           
 

 
route 0.902 0.457 0.516 - 0.871 

 
 

timing.repeat 0.947 0.268 0.221 0.403 - 
 

 
timing.code 0.952 0.818 0.600 0.424 - 

 

  doseQuantity/Range 0.973 0.864 0.823 0.724 0.854 
 

 

Methods 

In this section, we delve into the technical details employed in data annotation, LLMs 

usage, and the evaluation process. For an illustrative visual representation of the 

workflow, please refer to Figure 1. 

Data Annotation 

The HAPI FHIR public test server25 hosts millions of examples of converted FHIR 

resources. However, we are unable to retrieve their source data before the conversion. 

To the best of our knowledge, there is no largely publicly available dataset in the FHIR 

standard that has been generated from the clinical notes. Therefore, we have decided to 

annotate a dataset that contains both free-text input and structured output in FHIR 
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resources. The latter will serve as the ground truth against which we can evaluate the 

performance of our LLMs in FHIR transformation. 

We manually annotated the medication-related clinical narratives to adhere to the 

MedicationStatement resource as per FHIR v6.0.0: R6 implementation guide26. According 

to the official FHIR definition, a MedicationStatement indicates that a patient may 

currently be taking a medication, has taken it in the past, or will take it in the future. This 

transformation holds particular significance because many medication-related details, 

such as the reasons for administration and dosage instructions, often remain absent in 

structured data. Clinical notes within the Electronic Health Record (EHR) system 

frequently represent the sole available source for retrieval and conversion into a 

standardized format. Clinical notes within the EHR system might be the sole source 

available for the retrieval and transformation of this information into a standardized format. 

The MedicationStatement encompasses various contents of medication, including 

dosage, schedule, reason, form, route, strength, and more. For detailed examples of the 

elements in the MedicationStatement resource, please refer to Table 1.  

The clinical text input is obtained from the discharge summaries in the MIMIC-III dataset27. 

The 2018 n2c2 medication extraction challenge28, essentially a named entity recognition 

task, provided mentions of medications and the word spans of the medications' 

associated entities (including drug routes, frequencies, durations, adverse effects, forms, 

strengths, dosages, and reasons) within the discharge summaries in the MIMIC-III 

dataset. All entities were manually annotated by clinical experts. We extracted text 

snippets, each containing mentions of one medication and all its associated entities, from 

the discharge summaries. We also included some buffer words from the original 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.10.17.23297028doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.17.23297028
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

discharges summaries before and after the extracted word spans to ensure that these 

snippets are complete sentences. These extracted snippets, each related to a specific 

medication, serve as input for both annotations and transformations. 

The human annotation for transformation to the FHIR standard consists of three key 

steps. The first step involved identifying the elements associated with each medication, 

and this task was effectively addressed by re-using expert annotations from the n2c2 

dataset, which accurately pinpointed the word spans of each element. The second step 

required standardizing the elements from free-text into clinical terminology coding 

systems. The elements were linked to different coding systems, and we have provided a 

detailed description of which code systems were used in Table 1. Notably, the medication 

name was encoded in three distinct coding systems. Initially, the medication name was 

mapped to the patient's prescription table in MIMIC-III, where NDC codes were provided. 

Input data, for which the medication name couldn't be mapped to the patient's prescription 

table, were excluded from the dataset. Subsequently, NDC codes were mapped to 

RxNorm codes and SNOMED CT Medication Codes using the APIs provided by the 

RxNav toolkit29. For all other elements, such as reasons, routes, and forms, the SNOMED 

CT coding system was primarily used, unless HL7.org provided its own code set. The 

transformation of these codes relied primarily on manual lookup. We looked up the display 

names, codes, and other SNOMED CT terminology details form the SNOMED CT 

Browser, International Edition 30. . The third step involved assembling the identifiers, 

codes, texts, extensions, and structures into a complete MedicationStatement resource. 

Throughout the study, we utilized the .json structure format. The converted FHIR 

medication statements undergo validation by the official FHIR validator31 to ensure 
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compliance with FHIR standards, including structure, datatypes, cardinalities code sets, 

display names, etc. 

The annotation tasks were conducted by Y. Li, and  H.W., who worked collectively to 

resolve ambiguities or uncertainties. We will make the annotated dataset available to the 

public for authorized use upon paper acceptance. 

Large Language Models 

The LLMs we experimented with include OpenAI GPT-432, Llama-2-70B33, and Falcon-

180B34. We accessed the GPT-4 APIs through the Azure OpenAI service, as 

recommended by the responsible use guideline of MIMIC data. The specific model we 

used is gpt-4-32k in its 2023-05-15 version. To enhance efficiency, we made multiple 

asynchronous API calls. For Llama-2-70B and Falcon-180B, we deployed them on our 

HIPAA-compliant firewalled local servers with multiple GPU backends. GPTQ 35 was used 

to accelerate the inference time for Llama-2-70B and Falcon-180B. 

We required these Language Models (LLMs) to transform the free-text entries into 

MedicationStatements conforming to the FHIR standard, employing the few-shot prompt 

settings. Each clinical snippet was individually input into the LLMs to generate the 

MedicationStatement resource. We used five separate prompts to instruct the LLM to 

transform the free-text input into the elements of a MedicationStatement resource, 

including medication details (such as drug name, strength, and form), route, timing, 

dosage, and reason, respectively. All few-shot prompts adhered to a template with the 

following order: task instructions, expected output FHIR templates in .JSON format, 4-5 

examples of transformations, a comprehensive list of codes from which the model could 

make selections, and the input text to be transformed. As there was no fine-tuning or 
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domain-specific adaptation in our experiments, we initially had the LLM generate the 

FHIR format for a small subset of the dataset (N=~100). Then, we manually reviewed the 

discrepancies between the LLM-generated FHIR output and our human annotations. 

Common mistakes were identified and used to refine the prompts. There were slight 

differences in the prompts for each LLM, as different LLMs may be sensitive to different 

prompts. It's important to note that we did not have access to comprehensive lists of NDC, 

RxNorm, and SNOMED Medication codes for all medication names, as well as SNOMED 

Finding codes for reasons. We did not instruct the LLMs to look up the SNOMED codes 

for the 'medication' and 'reason' elements, as the complete list of SNOMED CT 

Medication and Finding codes, numbering in the thousands or more, exceeds the token 

limits of LLMs. Instead, our instructions were for them to identify the contexts mentioned 

in the input text and convert them into the appropriate JSON format. For instance, the 

expected output is {"reason": [{"concept": {"text": "Headach"}}]} rather than the more 

detailed {"reason":[{'concept': {'text': 'headache', 'coding': [{'system': 'SNOMED', 'code': 

'25064002','display': 'Headache'}]}}]}.. For other code sets, such as SNOMED CT Form 

codes, numbering in the hundreds, we allowed LLMs to directly code them. Please see 

the appendix for prompts. 

Evaluation 

We compared the transformed resources with the outputs from two existing approaches: 

NLP2FHIR 18 and Google Healthcare Natural Language (NL) API 22. The transformation 

results from both approaches lacked some elements covered by our human annotation 

and LLMs generation. NLP2FHIR was built based on a previous version of the FHIR 

implement guide, and the Google Healthcare NL API primarily standardized concepts to 
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UMLS CUIs, rather than SNOMED CT codes, which are used in our annotations and 

LLMs' transformations. We made adaptations and conversion to ensure a fair 

comparison. We deployed the NLP2FHIR pipeline on our HIPAA-compliant firewalled 

local servers. We accessed the Google Healthcare NL API through the Google Cloud 

Healthcare API, which is also compliant with HIPAA regulations. 

When evaluating the FHIR resources generated by the LLMs, our initial step was to verify 

that the output was in valid JSON format. Once the JSON format check was successfully 

passed, our primary criterion for evaluation was the exact match rate. This criterion 

required that the resources generated by the LLMs exactly matched the human 

annotations in all aspects, including structures, codes, and cardinality. Unlike previous 

studies that reported word scan F1, precision, and recall scores, which considered the 

transformation as a NER (Named Entity Recognition) task, we did not use these metrics. 

This decision was made because those metrics may overlook the essential aspects of 

inferring and standardizing the content based on contexts. Exact identification of the word 

span does not guarantee the correct corresponding codes can be identified and that the 

accurate FHIR schema can be derived.  

Conclusion 

In this study, we provided the foundations of leveraging LLMs to enhance health data 

interoperability by transforming free-text input into the FHIR resources. The FHIR-GPT 

model is not only training-free but also improves transformation accuracy. Future studies 

will aim to build upon these successes by extending the generation to additional FHIR 

resources and comparing the performance of more LLM models.
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