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Abstract  

 

Molecular neuroimaging techniques, like PET and SPECT, offer invaluable insights into 

the brain's in-vivo biology and its dysfunction in neuropsychiatric patients. However, the 

transition of molecular neuroimaging into diagnostics and precision medicine has been 

limited to a few clinical applications, hindered by issues like practical feasibility and high 

costs. In this study, we explore the use of normative modelling (NM) for molecular 

neuroimaging to identify individual patient deviations from a reference cohort of subjects. 

NM potentially addresses challenges such as small sample sizes and diverse acquisition 

protocols that are typical of molecular neuroimaging studies. We applied NM to two PET 

radiotracers targeting the dopaminergic system ([11C]-(+)-PHNO and [18F]FDOPA) to 

create a normative model to reference groups of controls. The models were subsequently 

utilized on various independent cohorts of patients experiencing psychosis. These 

cohorts were characterized by differing disease stages, treatment responses, and the 

presence or absence of matched controls. Our results showed that patients exhibited a 

higher degree of extreme deviations (~3-fold increase) than controls, although this 

pattern was heterogeneous, with minimal overlap in extreme deviations topology (max 

20%). We also confirmed the value of striatal [18F]FDOPA signal to predict treatment 

response (striatal AUC ROC: 0.77-0.83). Methodologically, we highlighted the 

importance of data harmonization before data aggregation. In conclusion, normative 

modelling can be effectively applied to molecular neuroimaging after proper 

harmonization, enabling insights into disease mechanisms and advancing precision 

medicine. The method is valuable in understanding the heterogeneity of patient 

populations and can contribute to maximising cost efficiency in studies aimed at 

comparing cases and controls. 
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Introduction (1500 words) 

 

Psychosis is a debilitating mental health condition characterised by a loss of contact with 

reality, abnormal thoughts, perceptions, and behaviour. While psychosis is a hallmark of 

schizophrenia, psychotic symptoms can also be present in other psychiatric disorders 

including bipolar disorder, and severe depression. Psychosis has been the subject of 

extensive neuroimaging research aimed at unravelling its underlying neurobiological 

mechanisms. Consistent findings from structural magnetic resonance imaging (MRI) 

studies have systematically shown brain structure abnormalities, such as reduced grey 

matter volume and compromised white matter integrity1. Similarly, functional MRI (fMRI) 

studies have identified abnormal connectivity and atypical brain activation patterns during 

cognitive tasks, suggesting dysfunction in cortical and subcortical regions associated with 

attention, memory, and emotion regulation2. Molecular neuroimaging, such as Positron 

Emission Tomography (PET), has also provided valuable insights into the molecular 

alterations associated with psychosis, highlighting the involvement of multiple 

neuroreceptor systems, metabolism3 and neuroinflammation4. 

 

Abnormalities in dopamine neurotransmission have emerged as a consistent finding in 

psychosis5. The dopamine hypothesis posits dysregulation within the dopaminergic 

system as a key factor in the development of psychosis6. PET studies have consistently 

shown elevated dopamine synthesis capacity in specific brain regions, particularly the 

striatum, in individuals with psychosis7. Specifically, this hyperactivity of the striatal 

dopaminergic system is believed to contribute to positive symptoms such as 

hallucinations and delusions8–10. The glutamate hypothesis has also gained significant 

attention in psychosis research. This hypothesis suggests dysfunction in the 

glutamatergic system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, 

as a contributing factor for psychosis11,12. [18F]FDOPA PET studies have also provided 

evidence of altered dopamine-glutamate interactions, highlighting the intricate 

relationship between these neurotransmitter systems5. 

 

While offering unique insights into the brain mechanisms underlying psychosis, most of 

the neuroimaging literature has primarily focused on attempting to identify single unifying 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

pathophysiological processes shared across patients. This has been achieved using 

‘standard’ cross-sectional statistics based on group averages, often treating individual 

differences merely as noise. However, there is a growing awareness that these 

conventional approaches fall short of fully capturing the multifaceted characteristics of 

complex mental health disorders like psychosis. To develop imaging-based biomarkers 

with true clinical utility, interindividual variability cannot be simply dismissed as noise or 

assumed to be part of measurement variability. This awareness has been fostered, in 

part, by the parallel tendency of collecting large archives of neuroimaging data, which has 

triggered a gradual shift in neuroimaging towards employing advanced analytical 

modelling methods to model subjects’ characteristics13. By providing statistical inferences 

at the individual level with respect to an expected pattern, these methods offer the 

opportunity to parse heterogeneity across cohorts and identify the unique characteristics 

of each individual. Furthermore, by focusing on personalized perspective and 

acknowledging the potential to serve as fundamental keys in the creation of neuroimaging 

biomarkers for furthering understanding of the neurobiological basis of psychiatric 

disorders and potentially predicting treatment outcomes14,15. 

 

One of these advanced modelling methods that has gained widespread traction in 

neuroimaging research is normative modelling (NM). This statistical framework is based 

on the concept of paediatric growth charts16, which utilise a series of percentile curves to 

illustrate the normal distribution of children’s body measurements, such as weight, height, 

and head circumference, as a function of their age. When applied to neuroimaging 

data14,17,18, this approach enables the identification of a relationship between quantitative 

neuroimaging biomarkers, such as regional brain volume or thickness measured with 

MRI, and relevant factors like specific clinical, demographic, or behavioural measures of 

interest17.  

 

The rationale for employing normative modelling in neuroimaging is twofold. Firstly, this 

approach allows us to use neuroimaging data from healthy individuals to establish the 

normal range for a specific brain characteristic. By describing a portion of the between-

subject variability of the given neuroimaging measure through demographic factors (e.g., 

age, sex19,20, BMI) or abilities (e.g., IQ21), normative modelling defines what can be 
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considered typical or within the range of expected variation. Secondly, it allows for the 

quantification of regional deviations from normality at the individual level. This aspect aims 

to identify disease-specific patterns of alterations and dissect disease heterogeneity 

across patients. By comparing an individual's neuroimaging data to the established 

normal range, it is possible to pinpoint aberrations that may indicate the presence of 

certain conditions and contribute significantly to the understanding and characterization 

of brain disorders14,22.  

 

Up to now, normative modelling has found extensive application in the identification of 

consistent disease-specific patterns of brain structural alterations, as demonstrated in 

schizophrenia19,20,23, bipolar disorder19,20, ADHD24, and Parkinson’s disease25, using 

structural MRI data (i.e., T1-weighted MRI19 and diffusion-weighted imaging26), However, 

this methodology has yet to be applied to the molecular underpinnings of human brain 

function. The primary challenge in applying normative modelling to PET/SPECT brain 

imaging lies in the necessity of pooling large datasets to establish reliable parameters for 

the normative models. To estimate normative models of MRI-based brain measures, 

hundreds19,24,27 or even thousands28 of scans are typically included in the reference 

cohort. However, these numbers cannot be feasibly achieved in single molecular 

neuroimaging studies due to the substantial costs of PET and SPECT scans (up to 10 

times higher than MRI scans) and ethical issues related to the use of radioactive tracers 

for research purposes. Nevertheless, recent developments in the molecular 

neuroimaging community, including a greater willingness to share data29,30 and the 

establishment of international consortia (e.g., ENIGMA31), along with the development of 

effective harmonisation techniques for neuroimaging data32–35, have paved the way for the 

use of normative modelling in molecular neuroimaging. 

 

In this work, our primary objective is to demonstrate the feasibility of employing normative 

modelling to molecular neuroimaging in the context of psychosis studies. Despite the 

challenges posed by small sample sizes and diverse experimental designs, we 

hypothesise that normative modelling can be effectively applied to this type of data, 

providing valuable insights into molecular brain functions in healthy individuals and those 

experiencing psychosis. Furthermore, we hypothesise that normative modelling can serve 
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as a powerful tool to identify both the magnitude and the spatial distribution of molecular 

alterations at the individual patient level by 1) extending analysis of dopamine alterations 

in the striatum to the whole brain, 2) identifying common patterns of dopamine 

dysfunction across multiple and independent datasets of patients with psychosis, and 3) 

linking inter-individual deviation from normalities to clinical symptoms and response to 

treatment. 

 

This study is hence organised into two main parts. In the first section, we used two 

datasets36,37 of [11C]-(+)-PHNO PET imaging data measuring D2/3 dopamine receptor 

density, acquired with two scanners, to compare the effects of two image harmonisation 

methods on the distribution of the deviation scores of the NM and evaluated which one is 

the most effective at reducing the scanner effects. We then applied the so-identified 

optimal harmonisation method to studies of dopamine synthesis capacity using 

[18F]FDOPA PET imaging in healthy controls (HC), acquired with five different scanners, 

and assessed if the [11C]-(+)-PHNO results were generalizable to a different radiotracer 

and a greater number of scanners.  

In the second section, we used the estimated [18F]FDOPA PET model to calculate the 

deviations from normality in four datasets38–47 acquired in patients with psychosis, one of 

which did not include any matched HC. Here, we investigated the presence of shared 

spatial patterns of deviation in psychosis, but also differences between patients with first-

episode psychosis and chronic schizophrenia. In addition, we tested the feasibility of 

using independent datasets of patients with no matched HCs when a big enough 

reference cohort is already available. Here, we assessed the replicability of the findings 

from the previous comparisons and investigated the clinical value of extreme deviations 

by looking at relationships between patient-specific extreme deviations from normality 

and clinical symptoms. Lastly, since [18F]FDOPA PET imaging has been recently proposed 

as a potential biomarker for treatment stratification in psychosis38, we built a classifier to 

assess the value of [18F]FDOPA PET NM for predicting treatment response, and 

compared its performances to the reference standard analytics, to evaluate if these would 

be comparable or outperforming. 
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Methods  

 

Box 1: Normative Modelling Theory 

The general framework to derive normative models from neuroimaging data is explained 

in detail elsewhere14,17,22. In brief, it comprises several steps (Figure B1). Firstly, a 

reference cohort of healthy controls (HC) is chosen. Next, a specific brain measure, such 

as a given summary measure at the whole-brain level, region-of-interest (ROI)-based 

derivatives or voxel-wise brain data from structural MRI scans (e.g., volume and cortical 

thickness), is selected. Additionally, a set of variables (i.e., predictors) is chosen to explain 

the brain measure. Statistical models are then constructed for each summary measure, 

establishing a connection between the neuroimaging data and the selected predictors. 

The primary outcome of the NM is a measure of deviation, typically expressed as a z-

score. This z-score indicates the extent to which the specific brain measure deviates from 

the normative distribution, providing valuable information about its deviation from the 

reference group. Following the model’s estimation, its ability to link individual covariates 

to neuroimaging data needs to be further evaluated both in-sample (e.g., using k-fold 

cross-validation) and out-of-sample (e.g., using an independent cohort of HC)22. Once 

the model is validated, it can be used to estimate the deviations of a target cohort 

(generally corresponding to patients), which can then be analysed by investigating the 

magnitude and spatial pattern of the so-called “extreme deviations”. These extreme 

values represent brain areas deviating more than two standard deviations from the 

reference mean.  
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Steps of normative modelling. Main steps for the generation and application of normative 

modelling to neuroimaging data. In brief, the main steps include (1) the assembly of a reference 

cohort (usually HC) and the selection of covariates of interest (e.g., demographics or cognitive). 

(2) Model estimation, at desired level of granularity (i.e., voxel- or ROI-level). (3) Model validation, 

if possible, out-of-sample, or using cross-validation. (4) Application to target cohort, usually 

patients, and estimation of deviation scores (Z-scores). 

 

 

Study datasets 

 

[11C]-(+)-PHNO Datasets 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Data from 77 HC (Table 1) from two previous studies36,37, acquired with [11C]-(+)-PHNO, 

were used to assess and select the best image harmonisation method. The scans were 

acquired with two different scanners (PET/CT, Siemens Hi-Rez Biograph 6, N=54; and 

PET/MR, Siemens Biograph mMR, N=23) in the same imaging site (Invicro, London).  

Experimental designs and imaging protocols were consistent between the two studies. 

Further details on data acquisition, image processing, and data analysis are reported in 

the original publications36,37. In short, dopamine D2/3 receptor density was measured 

using non-displaceable binding potential (BPND
48) as the parameter of interest. For both 

scanners, parametric BPND images were obtained using the same MATLAB-based 

pipeline with a simplified reference tissue model with cerebellar grey matter used as the 

reference region. Final maps were all normalised to MNI152 standard space before image 

harmonisation and NM. 

 

[18F]FDOPA Datasets 

 

6-[18F]-fluoro-L-DOPA (FDOPA) data from 142 HC and 109 patients with psychosis from 

previous studies38–47 were used for estimating the NM of dopamine synthesis capacity and 

exploration of its alterations in psychosis (Table 1). The datasets consisted of two 

datasets of HC only (FDOPA_HC01 and FDOPA_HC02), three case-control datasets 

(FDOPA_01, FDOPA_02, and FDOPA_03) and one dataset of patients only (FDOPA_04). 

Data were acquired with five different scanners (Siemens Hi-Rez Biograph 6, Siemens 

Biograph 40 TruePoint, Siemens TruePoint 6, ECAT HR+ 962, and ECAT EXACT 3D) in 

three different imaging sites (MRC Cyclotron Unit, London; Invicro, London and Bundang 

Hospital, South Korea). The acquisition protocol was consistent across sites. All FDOPA 

PET imaging sessions were acquired with a continuous dynamic acquisition (no blood 

sampling), with scanning beginning with the tracer injection and lasting for ~90 minutes. 

All participants received carbidopa (150 mg) and entacapone (400 mg) orally 1 hour 

before imaging to increase the brain tracer uptake and reduce the peripheral formation 

of radiolabelled metabolite, respectively. The FDOPA tracer (injected dose ranging from 

86.4 to 414.4 MBq,) was administered by intravenous bolus injection after the acquisition 

of a brain CT or MRI for attenuation correction, depending on the scanner availability at 

each imaging site. PET data reconstruction varied across imaging sites and scanner 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

types, but all included correction for random noise, scatter, and tissue attenuation. 

Dopamine synthesis capacity indicated by the parameter Ki
cer (sometimes indicated as Ki, 

min-1) was quantified with the Gjedde-Patlak graphical method using the cerebellum as 

the reference region. Data were normalised to MNI152 standard space using the same 

in-house pipeline49, removing data with poor quality and excess of motion. 

 

Patients consisted of individuals experiencing either a first episode of psychosis (FEP) or 

diagnosed with a chronic psychotic disorder (Table 1). In brief, FDOPA_01 patients were 

recruited if they met structured clinical interview for DSM-IV axis I disorder criteria for 

schizophrenia (mean Total PANSS [SD]: 72.94 [16.46]), had at least one current or 

previous psychotic episode (duration of illness, median [IQR]: 24 [24] months), and were 

antipsychotic medication naïve (no current or previous treatment) or free (not taking 

medication at scanning time with at least 6 months washout for oral medication or 6 

months for depot medication)39. FDOPA_02 patients were composed of patients with 

chronic illness (duration of illness, mean [SD]: 128 [112.24] months ) and were recruited 

if they met the following criteria: they met the DSM-IV criteria for schizophrenia, had a 

total score  80 in the PANSS Total scale (mean Total PANSS [SD]: 50.0 [9.64]), had 

received first-line antipsychotic drugs (including risperidone, olanzapine, and 

paliperidone) or clozapine for at least 12 weeks43. Patients in the FDOPA_03 cohort were 

also patients with chronic illness who met the DSM-IV criteria for schizophrenia (duration 

of illness, mean [SD]: 193.8 [367.08] months), received at least two sequential 

antipsychotic trials (of at least 4 weeks duration), had a Total PANSS score  75, and 

were not taking clozapine at time of scanning8. Lastly, FDOPA_04 patients were included 

if they met the DSM-V criteria for schizophrenia or schizophreniform disorders, and were 

not medicated with clozapine in the previous 3 months to scanning44. Full information on 

the recruitment criteria and clinical characteristics of the patient population is reported in 

the original papers38–47. 

For a subset of patients of the cohorts FDOPA_01 and FDOPA_04, symptom severity 

measures (i.e., Positive and Negative Symptoms Scale – PANSS50) were also available.  

 

Data harmonisation strategies 
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To harmonise the [11C]-(+)-PHNO scans we employed two methods widely used in the 

literature: Gaussian kernel smoothing34 and Combat harmonisation32,33. 

 

Gaussian kernel smoothing (hereafter referred to as “smoothing”): This method involves 

applying a 3D convolution filter with a Full Width Half Maximum (FWMH) of 2.35, where 

σ represents the kernel size. For this step, we used FSL maths51–53 setting a kernel size of 

3mm, determined through iterative analysis to achieve the best match between the 

reference and the target data to be harmonised (i.e., PET/CT and PET/MR, respectively). 

 

Combat harmonisation: Combat is a Bayesian harmonisation method derived from the 

field of genomics54, which assumes site-specific scale- and shift-factors to be estimated 

between different batches (e.g., scanners or sites). Unlike smoothing, Combat allows to 

estimate and preserve the effect of certain covariates defined a priori on the data 

variability. In our specific case, we employed the NeuroCombat python library 

(v.0.2.10+)32,33 and preselected the same covariates subsequently used for NM (i.e., age, 

sex for both tracers and BMI for [11C]-(+)-PHNO).  

 

To assess the best harmonisation method, we evaluated the effects of harmonisation on 

the NM results, particularly focusing on the Z-score distributions and the variance 

explained by the model (see section ‘Comparison of the harmonisation methods’ below). 

 

NM implementation 

 

After data harmonisation, Bayesian Linear Regression (BLR) was used to estimate voxel-

wise NMs (i.e., one model per voxel) of dopamine receptor density and dopamine 

synthesis capacity from [11C]-(+)-PHNO and [18F]FDOPA data of the HC samples. BLR is 

a probabilistic approach to linearly model the relationship between a dependent variable 

and a set of independent variables. In this case, the selected independent variables were 

sex, age, and BMI for [11C]-(+)-PHNO, and age and sex for [18F]FDOPA. Of note, these 
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covariates were used in previous in-house analyses after assessing them to be significant 

for the specific tracers49,55–57.  

NMs were estimated using the PCNToolkit (v.1.20.0) Python library, employing default 

non-informative priors for the parameters and the Powell optimizer for faster convergence 

of model fitting14. Consistently with the PET signal distribution, NM was restricted to the 

grey matter voxels by thresholding and binarizing a standard probabilistic map of the grey 

matter at 30% probability. Thresholding for GM is not typically applied for FDOPA brain 

PET imaging49, but this threshold was used as a trade-off between brain coverage and 

the computational cost of NM quantification. As a result, only voxels with at least 30% 

probability of being grey matter were included in the mask, yielding a total of 199,715 

voxels (and hence models) for each tracer. Importantly, for the [11C]-(+)-PHNO data we 

estimated three different NMs, i.e., one for the unharmonized data and one for each 

harmonisation strategy (smoothing and Combat) to identify the strategy that best 

minimises residual scanner-related differences for PET data. Based on the outcome of 

this analysis of performance, we then used the identified method to harmonise the 

[18F]FDOPA datasets before the NM step. 

The estimated NMs were then used to estimate the voxel-wise maps of deviation from 

normality for each individual. These maps, expressed in terms of Z-scores, measure the 

distance of a given data point in relation to the average and standard deviation of the 

posterior probability, weighted for the subject-specific covariates. These values were 

estimated using k-fold cross-validation (k=5) for the HC, or the full [18F]FDOPA NM for 

patients with psychosis. Furthermore, we identified voxels with an extreme deviation from 

normality (i.e., voxels with PET signal intensity significantly different from the reference 

distribution). Such extreme deviations were defined using a thresholding approach: Z>2 

for extreme positive deviations, Z<-2 for extreme negative deviations, and |Z|>2 for total 

extreme deviations. As the deviation scores follow a normal distribution, it is essential to 

note that there is an expected percentage of extremely deviating voxels. This consists of 

2.5% residual density on each tail of the distribution (i.e., Z>2 or Z<2), totalling 5% for the 

absolute value (i.e., |Z|>2). Conversely, we anticipate a higher percentage of extremely 

deviating voxels, either positive or negative, in subjects deviating from normality. 
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Identification of the optimal harmonisation strategy based on [11C]-

(+)-PHNO data  

 

For each harmonisation strategy (no harmonisation, harmonisation with smoothing and 

harmonisation with combat), we compared the average and standard deviation of the 

individual Z-score distributions between the two scanners (i.e., PET/CT and PET/MR) to 

identify any residual differences between datasets. These comparisons were performed 

using Welch’s two-sample t-tests, implemented with the rstatix package58 in R (version 

4.2.1). Furthermore, using the brain parcellation defined by the Hammersmith atlas59, for 

each harmonisation strategy we estimated the regional percentage of extreme positive 

and negative deviations across subjects of each dataset (i.e., PET/CT and PET/MR data). 

We then calculated the regional differences between the two datasets and employed 

Wilcoxon’s one-sample rank-tests implemented with the rstatix package58 in R 4.2.1 to 

identify any significant scanner-related differences.  

 

Validation of the optimal harmonisation strategy on [18F]FDOPA data  

 

We validated the harmonization method identified as optimal for the [11C]-(+)-PHNO data 

on the [18F]FDOPA data, to see if it would yield consistent results in terms of removing 

any scanner-related differences across datasets.  

 

First, we harmonised the [18F]FDOPA HC data with the optimal harmonisation strategy 

identified using the [11C]-(+)-PHNO data. Then, in order to include in the analysis only 

those voxels for which the NMs were able to describe the between-subject variability 

based on the variables used to estimate the model (i.e., age and sex for the [18F]FDOPA 

data), we discarded the grey matter voxels where NMs were not able to converge to a 

solution, i.e., those reporting an explained variance (EXPV) lower than 0. Furthermore, 

since a positive yet very small EXPV does not necessarily mean that the model is able to 

meaningfully describe the data, we decided to restrict the subsequent analyses to voxels 

with EXPV > 3% (i.e., voxels where NM reached statistical significance of puncorr <0.05). 

For completeness, we repeated the analyses on the data including voxels with EXPV > 0, 
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and using a conservative threshold of EXPV  10%, corresponding to the optimal point 

from the L-curve distribution of EXPV.  

 

Finally, to validate the optimal harmonisation strategy on [18F]FDOPA HC data, we 

calculated the mean and standard deviation of the individual distributions of HC Z-score 

deviations and compared them by means of one-way ANOVAs using the rstatix58 library 

in R 4.2.1. 

 

 

NM of [18F]FDOPA PET in psychosis 

 

After calculating the z-score deviations of the three clinical cohorts using the NMs 

estimated from the HC data, we grouped the Z-score distributions for HC and patients 

separately and compared them. We also calculated the Risk-Ratios (RR)60 by counting 

the number of voxels whose Z-scores showed extreme deviations from normality, using 

the epitools library in R 4.2.1. In this case, the RR indicates the likelihood of a new 

individual of belonging to the clinical cohort as compared to the group of HCs.  

 

We then tested the hypothesis that patients would show a greater overlap of 

extreme deviations than HC, indicating spatial consistency in the manifestation of the 

disorder, by investigating the spatial patterns of extreme deviations in HC and patients. 

This was done by counting, for each voxel and group, the number of subjects showing an 

extreme deviation in that voxel. This was assessed both on the positive and negative 

extreme deviations separately and on the total extreme deviations. 

 

 We then analyzed the differences between HC and patients in terms of the 

magnitude of deviation from normality by performing both a voxel-wise analysis on the 

thresholded Z-score maps, and on summary measures of deviations. The voxel-wise 

analysis allows spatial localisation of the significant differences between the two groups, 

whereas summary measures determine whether it is possible to collapse meaningful 

information into a few scores per subject which might be useful for clinical applications. 

The four summary scores analysed were the mean z-score, corresponding to the mean 
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z-score across voxels for each subject, and three measures of extreme deviations from 

normality, estimated by counting the percentage of voxels with Z-score > 2 (i.e., positive 

deviations), Z-score < -2 (i.e., negative deviations) or |Z-score| > 2 (i.e., total deviations). 

Since the clinical datasets included subjects with FEP and chronic psychosis, we ran two-

way ANOVAs testing the main effects of cohort (HC, FEP and chronic psychosis) and 

dataset (FDOPA_01, FDOPA_02, FDOPA_03), and their interaction. The voxel-wise tests 

were performed using FSL randomise61, with 5,000 permutations and considering a 

cluster significant if pFWE < 0.0562,63, corrected for multiple comparisons using the 

threshold-free cluster enhancement62 (TFCE) option. For the significant contrasts, we 

extracted the mean z-score values from the significant clusters and performed post-hoc 

tests using the rstatix58 library in R 4.2.1. For the tests on the summary metrics, we used 

the rstatix58 library in R 4.2.1. 

 

 Lastly, we investigated which biological pathways were driving the spatial pattern 

of extreme deviations identified in the voxel-wise two-way ANOVA. This was done by 

running imaging-transcriptomics with the imaging-transcriptomics toolbox64–66 on the F-

stat map reporting the main effect of the group, and by running GSEA on molecular 

function, as defined by the GO Molecular Function67,68.   

 

Extending normative model validity to an independent patient cohort 

 

To demonstrate the value of NM analysis when using a clinical cohort without its own 

group of matched HCs and test the replicability of the results from the previous analyses, 

we applied the [18F]FDOPA PET NM on an independent dataset of patients with psychosis 

(FDOPA_04). Of note, although this clinical cohort was independent, its scanner effect 

was modelled in the estimated NM since this dataset was acquired at the same site and 

using the same scanner as the FDOPA_01 dataset. We estimated the four summary 

measures (mean Z-score and positive, negative, and total extreme deviations) in this 

cohort and compared them with the summary measures of the HC of the other datasets 

(FDOPA 01, 02 and 03). For this analysis, we performed Welch two-sample t-tests using 

the rstatix58 library (R 4.2.1). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Relationships between deviation scores and clinical symptoms 

 

In datasets where clinical data were available, specifically FDOPA_01 (comprising FEP 

patients) and FDOPA_04 (comprising a combination of chronic and FEP patients), we 

tested the hypothesis that NM deviation scores would be associated with symptom 

severity, as measured using PANSS scores50 using voxel-wise comparisons and summary 

measures. Voxel-wise covariance analysis was conducted utilizing FSL randomise52,53,61 

(independent variables: PANSS scores; dependent variable: Z-score), while Spearman 

correlations between whole brain summary measures and PANSS scores were computed 

using rstatix58 (R 4.2.1). For the cohort of patients without matched controls (FDOPA_04), 

we additionally performed a correlation analysis between the individual PANSS scores 

and the average Z-scores of the statistically significant clusters, identified from the voxel-

wise cross-sectional analysis (Spearman correlation, rstatix58 library, R 4.2.1).  

 

Prediction of Treatment Response in Patients 

 

To determine whether the predictive power of FDOPA summary measures outperformed 

reference analysis (i.e., striatal Ki), in predicting antipsychotic treatment response for 

each clinical cohort we constructed ROC curves for all summary measures of the 

deviation scores (average Z-score, positive, negative, and total extreme deviations) 

across the whole brain and striatum and ROC curves for the original striatal Ki measures. 

ROC curves were compared using the DeLong test. All analyses were performed using 

the pROC library69 R 4.2.1. 

 

Results 

 

Estimation of NM for [11C]-(+)-PHNO PET and assessment of the 

optimal harmonisation strategy 
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As shown in Figure 1A, the Z-score distributions of the non-harmonised [11C]-(+)-PHNO 

PET data present two distinct scanner-related patterns, which are attenuated after 

harmonisation with both harmonisation strategies. When comparing the averages of the 

distributions between scanner types, we found statistically significant differences between 

the PET/CT and PET/MR scanners both in the unharmonized data (t=2.46, p<0.01) and 

in the data harmonised with smoothing (t=2.85, p<0.01), while there were no scanner-

related differences in the data harmonised with Combat (t=0.71, p=n.s.). In terms of 

standard deviation, we found significant differences between scanner types in the non-

harmonised data (t=-14.59, p<0.001) and residual differences in the data harmonised 

with Combat (t=-2.47, p<0.01), while no differences between scanner types were found 

in the data harmonised with smoothing (t=-0.40, p=n.s.). 
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Figure 1. Harmonisation results of [11C]-(+)-PHNO PET normative modelling. (A) Single-subject, 

whole-brain distributions of Z-scores estimated in the data before harmonisation (original data, on 

the left) and after spatial smoothing (in the centre) and Combat (on the right) harmonisation 

methods. This dataset combines scans of healthy controls acquired with either PET/CT (N=54) or 

PET/MR (N=23) scanners. (B) Welch two-sample t-tests comparing the first statistical moments 

(mean and standard deviation of the single-subject Z-score distributions between scanner types 

for each harmonisation modality (no harmonisation, harmonisation with spatial smoothing and 

harmonisation with Combat). Orange violin plots refer to PET/CT scans while blue violin plots refer 
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to PET/MR scans. Asterisks indicates significance. * indicates p<0.05, ** indicates p<0.01 and 

**** indicates p<<0.001. 

 

When analysing between-scanner differences at the regional level (Supplementary figure 

1), all harmonisation methods showed significant differences in the number of extreme 

deviations between scanner types (p<0.01), except Combat for the negative extreme 

deviations. Overall, Combat returned the smallest deltas, hence better harmonisation 

performances, for both positive extreme deviations (No harmonisation: MR-CT = 

4.30±2.21%; Smoothing: MR-CT = -1.03±1.39%; Combat: MR-CT = 0.44±1.04) and 

negative extreme deviations (Original: MR-CT = 6.02±2.30%; Smoothing: MR-CT = 

2.06±2.10%; Combat: MR-CT=0.06±0.97%) (Supplementary Figure 1). 

 

Validation of the optimal harmonisation strategy on [18F]FDOPA data  

 

After harmonising [18F]FDOPA data with Combat, we estimated the voxel specific NMs, 

which explained up to 15% of the data variability although they do not converge to a 

solution for approximately 56% of the grey matter voxels (i.e., EXPV < 0; Supplementary 

Figure 2). All subsequent results will refer to NM data thresholded with the 3% variance 

mask, although the same analyses were repeated for the other masks (Supplementary 

Tables 1-12). 

 

No clear scanner effects were apparent from the individual distributions of Z-scores in HC 

(Supplementary Figure 3). Similar to [11C]-(+)-PHNO PET NM, for FDOPA no significant 

scanner-related effect was found in terms of mean z-score distribution (F=0.12, p=n.s.), 

while a significant residual effect was found for the standard deviation (F=3.38, p<0.05). 

Indicating that the harmonisation strategy was effectively applied to FDOPA. 

 

NM application to [18F]FDOPA PET in psychosis 

 

Grouped distributions of HC and patients showed small differences in the mean (|HC-PAT| 

= 0.14), and a greater difference in terms of the standard deviation (|HC-PAT| = 0.28), 
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consistently higher for patients in both measures. The number of extremely deviating 

voxels (in percentage to the total voxels in the analysis mask), above the level of chance, 

shows increased RR for patients with all extreme deviation scores (RRpos=2.19, 

RRneg=1.92 and RRtot=2.60 for positive-, negative-, and total-extreme deviations 

respectively) (Supplementary Figure 2). 

 

We hypothesised that the HC group would exhibit a relatively low percentage of 

individuals with extreme deviations, while conversely, patients would demonstrate a 

higher overlap in the percentage of individuals with extreme deviations from normality in 

specific brain regions. While HC reported very low percentages of individuals with 

overlapping extreme deviations (Figure 2), which aligns with the NM hypothesis for the 

reference cohort, patients exhibited distinct spatial patterns of extreme deviations, 

primarily in the cortex. These deviations were prominently present in the precentral and 

frontal gyri. However, it is important to emphasise that this pattern of extreme deviations 

also showed substantial sample heterogeneity, as the highest percentage of patients with 

comparable extreme deviations did not exceed 20%.  
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Figure 2. Overlap maps of extreme deviations in HC and patients. Each map reports for each 

voxel the percentage of subjects with co-localised positive (top row), negative (middle row) and 

total (bottom row) extreme deviations. Controls (left) and psychosis patients (right) are reported 

separately. The figure is set at a threshold above the level of chance (2.5% for positive and 

negative deviations and 5% for total deviations). All overlap maps are superimposed on a 

standard MNI152 structural template. 

 

 

The voxel-wise two-way ANOVA performed on the non-thresholded Z-score maps 

revealed significant interactions between group and dataset (Fpeak=21.71, ppeak<0.001 

FWE corrected). This interaction spanned the temporal lobe, the medial- and superior-

orbitofrontal, and the frontal lobe. The post hoc tests to evaluate between-group 

differences within each dataset highlighted greater positive deviations in the FEP as 

compared to the HC (FDOPA_01, t =4.92, p<<0.001) and lower negative deviations in 

chronic patients as compared to HC in both FDOPA_02 (t =2.22, p <0.05) and 

FDOPA_03 (t =4.62, p <0.001). 
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We also found a group effect in the two-way ANOVA performed on the total extreme 

deviation maps (Fpeak=34.36, p<0.001 FWE corrected) (Figure 3), exhibiting an increase 

in patients. This effect was localised in the left frontal orbital cortex, frontal pole, and 

inferior temporal cortex. Of note, only clusters including more than 50 voxels are reported.  

 

 

Figure 3. Voxel-wise ANOVA analysis of deviation scores, expressed as mean Z-score and total 

extreme deviations, for the [18F]FDOPA Normative Model. (A) Mean Z-score significant clusters (left) 
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and post-hoc analyses, grouped by dataset, (right) between healthy controls and patients. (B) Total 

extreme deviations significant clusters (left) and post-hoc analyses, grouped by dataset, (right) 

between healthy controls and patients. * indicates p<0.05, *** indicates p<0.001 and **** indicates 

p<<0.001. 

 

The two-way ANOVAs conducted on the summary measures of the mean z-score and 

extreme positive, negative, and total deviations revealed a significant interaction between 

group and dataset for the mean Z-score (F = 8.43, p<0.001; Figure 4A), extreme positive 

deviations (F=5.90, p<0.01; Figure 4B) and extreme negative deviations (F=5.89, p<0.01, 

Figure 4C). Post hoc analyses showed an increase, in average Z-score in FEP (t =3.08, 

p<0.01), and a decrease in chronic patients (t =-3.05, p<0.01) compared to HCs 

(Supplementary Table 5). Similarly, FEP was associated with an increase in extreme 

positive deviations compared to HCs (t =3.23, p<0.01, Supplementary Table 6), whereas 

there was an increase of extreme negative deviations in chronic patients compared to 

HCs  (FDOPA_02, t= 2.67, p<0.05; FDOPA_03, t =3.36, p<0.01; Supplementary Table 

7). The total extreme deviations, which combine positive and negative extreme values, 

did not exhibit a significant interaction between the group and dataset, although it did 

indicate a significant effect of the group (F=37.52, p<<0.001, Figure 4D, Supplementary 

Table 8), showing an increase in patients compared to HC.  
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Figure 4. ANOVA analysis of individual deviation scores, expressed as mean Z-score and positive, 

negative, and total extreme deviations, for the [18F]FDOPA Normative Model. (A) Mean Z-score 

differences between healthy controls and patients grouped by dataset. (B) Difference of extreme 

positive deviations between healthy controls and patients grouped by dataset (C) Difference of 

extreme negative deviations between healthy controls and patients grouped by dataset. (D) Difference 

of total extreme deviations between group. Patients are composed of a mixture of first episode 

(FDOPA_01) and chronic psychosis (FDOPA_02, FDOPA_03), depending on the dataset. Asterisks 

indicates significance, * indicates p<0.05, ** indicates p<0.01 and **** indicates p<<0.001. 

 

The imaging transcriptomic analysis conducted on the F-stat maps resulting from the 

significant group effect on the total extreme deviations, tested with two-way ANOVA 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

testing and representing abnormalities in patients regardless of the duration of psychosis, 

revealed several notable enriched gene sets. These included “structural constituent of 

ribosome” (NES=2.49, pFDR<0.05), “neurotransmitter receptor activity” (NES=2.18, 

pFDR<0.05) and “glutamate receptor activity” (NES=2.04, pFDR<0.05), as determined by 

the GO molecular function67,68.  

 

Extending normative model validity to an independent patient cohort 

 

When visually compared with the HC of the independent datasets in terms of the 

percentage of individuals with extreme deviations (positive, negative, and total) within the 

group, the pattern of extreme deviations of the FDOPA_04 dataset is consistent with that 

of the datasets of patients in FDOPA_01, FDOPA_02 and FDOPA_03 (Supplementary 

Figures 5-7). 

 

In terms of differences in the summary measures (mean z-score, and positive, negative, 

and total extreme deviations) between FDOPA_04 patients and HC, we found significant 

increases in patients in terms of mean Z-score (t=-3.65, p<0.001), extreme positive 

deviation (t=-5.52, p<0.001) and total extreme deviations (t=-5.93, p<0.001). No 

significant differences were found in terms of negative extreme deviations (t=-1.14, 

p=n.s.).  

 

Correlation between imaging-based deviations from normality and 

clinical symptoms 

 

We tested the hypothesis that there would be an association between the significant 

clusters from the voxel-wise two-way ANOVA performed on the extreme deviation maps 

and PANSS scores in both the FDOPA_01 (FEP) and FDOPA_04 (chronic schizophrenia) 

datasets. There were no significant correlations in the FDOPA_01 dataset.  In the 

FDOPA_04 dataset, the mean Z-scores and total extreme deviations were significantly 

correlated with clinical scores (Table 2). Three individual clusters in FDOPA_04 (with 
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nvoxels50) survived correction for multiple comparisons, showing significant correlations 

with total PANSS scores (Table 3). 

 

 

 

 PANSS Positive PANSS Negative PANSS General PANSS Total 

 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 

Average Z-

score 0.38 0.36* 0.38 0.38* -0.06 0.41* 0.36 0.43** 

Extreme 

total 

deviations 

0.32 0.36* 0.31 0.34* -0.09 0.42* 0.25 0.44** 

 

Table 2. Correlations between significant voxel-wise clusters and PANSS scores. The table shows 

Spearman correlation’s rho and relative p-value for significant clusters resulting from voxel-wise 

two-way ANOVA (average Z-score, and |Z|>2). Correlations are separated for FDOPA_01 (FEP 

patients, N=25) and FDOPA_04 (chronic and FEP patients, N=36). * indicates p<0.05, ** 

indicates p<0.01 

 

Spearman correlation with PANSS Total scores 

 Correlation Cluster size Cluster Location 

Cluster 1 0.41* 505 
Frontal Orbital 

Cortex, Frontal Pole 

Cluster 2 0.36* 421 

Frontal Orbital 

Cortex, Frontal Pole, 

Inferior Frontal 

Gyrus 

Cluster 3 0.43* 50 
Middle Temporal 

Gyrus 

 

Table 3. Correlation analysis of PANSS total scores and individual voxel-wise clusters. Table 

shows Spearman correlation’s rho and relative p-value for significant clusters between total 

extreme deviations and PANSS Total Scores in FDOPA_04 (chronic patients), resulting from 

voxel-wise two-way ANOVA (|Z|>2). Cluster locations were obtained using FSL atlasquery from 

the Harvard-Oxford Cortical Atlas. * indicates p<0.05. 
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Correlation of the summary deviations and PANSS scores revealed a significant 

correlation between total extreme deviations and PANSS negative in FEP patients (i.e., 

FDOPA_01). The analysis of FDOPA_04 reveals significant correlations between extreme 

positive deviations and PANSS general scores and between total extreme deviations and 

all PANSS scores (Table 3).  

 

 PANSS Positive PANSS Negative PANSS General PANSS Total 

 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 

Average Z-

score 
0.28 0.25 0.30 0.16 -0.11 0.24 0.17 0.22 

Extreme 

positive 

deviation 

0.33 0.29 0.36 0.17 -0.12 0.33* 0.24 0.31 

Extreme 

negative 

deviations 

-0.07 -0.12 0.14 0.06 0.19 -0.01 0.11 0.03 

Extreme 

total 

deviations 

0.36 0.33* 0.47* 0.39** -0.01 0.44** 0.30 0.46** 

 

Table 4. Correlation analysis of PANSS scores and summary measures. Table shows Spearman 

correlation’s rho and relative p-value for whole brain summary measures (average Z-score, Z>2, 

Z<-2, |Z|>2). Correlations are separated for FDOPA_01 (FEP patients, N=25) and FDOPA_04 

(chronic and FEP patients, N=36). * indicates p<0.05, ** indicates p<0.01 

 

 

Treatment Response in Patients 

 

The analysis on the summary mean Z-score to evaluate patients’ response to standard 

neuroleptics replicated the performance of the reference analysis (i.e., K i
cer) and showed 

no significant difference between the two methods (as measured by the DeLong test) 

when focusing on the striatum only (Figure 5A). Here we obtained acceptable 

performances for FDOPA_02 (AUCstr=0.77, AUCKi=0.79)70, and excellent performances 

for FDOPA_01 (AUCstr=0.83, AUCKi=0.83) and FDOPA_03 (AUCstr=0.83, AUCKi=0.74)70. 
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However, when extending the analysis to the summary measures estimated at the whole 

brain, we did not reach acceptable classifications except for FDOPA_02 (AUC=0.70, 

Figure 5A). Classification of treatment response measured with whole-brain deviation 

scores pointed at acceptable70 performances only for FDOPA_02 in terms of negative 

extreme deviations (AUC=0.72, Figure 5C).  

  

 

 

 

 

Figure 5. Clinical [18F]FDOPA Normative Model Treatment Response. ROC curves for the 

classification of treatment response (Responders vs Non-Responders/Resistant) using whole brain 

(solid lines) or striatal (dashed lines) individual average Z-score (A), whole brain positive extreme 
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deviations (B), negative extreme deviations (C) and total extreme deviations (D) for the different clinical 

datasets. Dashed diagonal indicates the level of chance in all plots. All scores refer to [18F]FDOPA 

patient data after Combat harmonization. 
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Discussion 

 

This study applied normative modelling (NM) in PET imaging of the dopamine system in 

psychosis using several existing datasets. Two dopaminergic radiotracers ([11C]-(+)-

PHNO for D2/3 receptor and [18F]FDOPA for dopamine synthesis) were used to construct 

normative models from reference healthy controls and applied to patients with psychosis. 

We demonstrate that NM is capable of explaining dopamine function variability arising 

from demographic factors and show that psychosis is associated with a differential 

pattern of extreme deviations. [18F]FDOPA PET showed a high degree of patient 

heterogeneity, particularly in extra-striatal brain areas. In the striatum, deviation scores 

were able to classify treatment response, although with similar performance to standard 

kinetic modelling analysis. Overall, NM provides novel quantitative insights into the brain 

dopamine system in healthy individuals and people with psychosis, taking advantage of 

existing normative data built from multiple neuroimaging studies. 

 

Considerations on NM applied to molecular neuroimaging 

 

In our study, we first confirmed the necessity of data harmonisation to compile multi-

centre, multi-scanner PET datasets with the required sample size for constructing a 

normative model of healthy cohorts. Our results indicated that Combat was the best 

harmonisation method to remove scanner and site effects. This finding aligns with the 

neuroimaging literature, where model-based harmonization methods are the preferred 

choices in PET71 and other modalities32,33.  It's worth noting that Combat assumes linearity 

in the scanner's effect, which may not hold true for tomographs with different geometries, 

axial fields of view, and gamma detectors. Recently, non-linear versions of Combat 

methods (e.g., Combat-GAM72) have been introduced, but they would require further 

testing with PET tracers exhibiting different kinetic properties. Regardless of the type of 

harmonization statistics used, our proposed approach relies on the existence of a group 

of healthy controls (HC) for scanner calibration. This results in a non-generalizable model 

without HC data. One solution, proposed in other neuroimaging modalities27,28,28,73, could 

be to incorporate the scanner directly into the normative model as a random effect using 

hierarchical modelling. While appealing for modelling flexibility, this methodology is 
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burdened by extreme computational times (reported to be up to ~24 hours per model27), 

making it unfeasible for our application (i.e., ~130K voxel-wise models). 

 

Our normative model was able to explain a substantial amount of dopamine function 

variability (~30% in D2/3 receptor density, as measured by PHNO, and ~15% in dopamine 

synthesis capacity, as measured by FDOPA) using simple demographic factors from the 

population. This level of variance is lower than that reported in other modalities (40% for 

sMRI35, 29% for diffusion MRI74), which may relate to measurement of brain functional 

processes rather than structure. To allow generalizability, the covariates we selected 

were limited to general demographic factors (age and sex for [18F]FDOPA; age, sex, and 

BMI for [11C]-(+)-PHNO) were not specific to psychosis.  Although the addition of more 

diagnosis-specific covariates and/or additional experimental factors (e.g., genetic traits), 

may have improved the normative model's performance, the use of ancillary measures 

(e.g., genetic tests or clinical assessments) might limit its potential clinical utility due to 

the necessity of having a PET scan and additional testing. Our model is therefore disease-

agnostic.  

 

 

Considerations on NM applied to FDOPA PET imaging and patients with 

psychosis 

 

The application of an FDOPA NM to data acquired patients with psychosis provided 

several novel pathophysiological insights. Firstly, we observed that patients exhibit a 

higher percentage of extreme deviations than HCs. This observation is further supported 

by the elevated risk ratio (RR) for both positive and negative extreme deviations in patients 

compared to controls. Surprisingly, summary Z-score measures (calculated as individual 

whole-brain summary scores) exhibit a differential pattern consistent with the chronicity 

of the disease (i.e., first-episode psychosis – FEP, or chronic patients).  

We observed that while there is a substantial overall difference due to the disease (as 

indicated by the ANOVA analysis of total extreme deviations), the pattern of positive and 

negative extreme deviations varies in different stages of the disease. For example, FEP 

patients show a higher number of positive extreme deviations than healthy controls and 
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chronic patients, while the latter show a higher number of negative extreme deviations 

than controls and FEP patients. This pattern is also evident in the average distribution 

scores and is confirmed by significant voxel-wise analyses (average Z-score and total 

extreme deviations).  

Plausible explanations for this differential pattern are the effect of medications acting on 

the dopaminergic system, particularly D2/3 receptors, or grey matter reductions in chronic 

patients when compared to FEP75. Long-term antipsychotic treatment may up-regulate 

D2/3 receptors, which could potentially impact presynaptic dopamine synthesis capacity 

also through pre-synaptic autoregulatory mechanisms.  

With the data available to our study, we cannot establish whether this differential pattern 

between FEP and chronic patients is attributed to variances in disease duration or is 

linked to medication effects.  It is worth noting that each patient's experience with the 

disease is unique, and ideally, they should not be grouped with other patients for analytical 

purposes but rather considered as individual "clusters"76. Nevertheless, by employing NM, 

it would be feasible (provided the requisite data is available) to compare individual 

patients with consideration to their clinical and disease history. 

 

Another interesting finding from our analyses is the substantial heterogeneity among 

patients, even though there is a consistent effect in all patients. This heterogeneity is 

particularly noticeable in analysis of the overlap of extreme deviations, where at most, 

20% of patients co-localize in the same voxels. The co-localization of extreme deviations 

is more pronounced in patients compared to healthy controls (with a maximum expected 

overlap of 5%), indicating a common alteration of [18F]FDOPA PET signal in psychosis. 

These areas of extreme deviations are consistent with previous findings on NM applied to 

structural MRI, showing a maximum degree of overlap of 5-10%19,20. Future studies should 

explore of interlinks between structural and molecular changes at the individual level. 

Interestingly, [18F]FDOPA PET co-localizations of extreme deviations in psychosis occur 

in extra-striatal brain areas, contrary to the focus of most [18F]FDOPA studies on striatal 

areas38–47,49. Studies which have examined the cortical signal of [18F]FDOPA suggest 

elevations in dopamine synthesis capacity in cortical areas (e.g., posterior cingulate77, 

medial prefrontal cortex78) or correlations between dopamine synthesis capacity in 

cortical areas and clinical symptom severity (e.g., a positive correlation between PANSS 
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positive scores and Ki in the right temporal cortex79). These findings raise questions about 

alterations in aromatic L-amino acid decarboxylase (AADC) and whether patients have 

an unresponsive feedback mechanism of tyrosine hydroxylase, which may not down-

regulate as in normal populations77. Early animal studies suggest that the [18F]FDOPA 

signal combines metabolic activity related to dopamine synthesis, storage, and 

metabolism80. Our imaging-transcriptomics analysis partially confirms these findings 

pointing towards an association between genetic pathways related to metabolism and 

[18F]FDOPA deviations measured in psychosis. All these findings suggest that cortical 

signal of [18F]FDOPA might be associated with increased cellular transport and/or protein 

metabolism, supporting the application of this biomarker in neuro-oncology81. Further 

studies are required to fully characterise the nature of the [18F]FDOPA signal in the human 

cortex, establishing  the contributions of dopamine function (e.g., neuron density and 

changes in dopaminergic-mediated neuronal firing), metabolism and cellular transport to 

the overall signal. Lastly, there are genetic variants that are well-known to influence the 

dopamine system (e.g. 22q11.2 deletion/duplication40 and COMT Val158Met 

polymorphism82) or that have been associated with the [18F]FDOPA PET signal (e.g. 

AS3MT/BORCS7 genetic variant83). These factors could drive some of the functional 

differences observed between patients and HCs and increase the inter-individual 

explained variance if included in the NM. Further analyses in a larger sample with full 

genetic information are warranted. 

 

In our study, we explored the feasibility of investigating dopaminergic alterations of 

[18F]FDOPA without acquiring a matched set of healthy controls. With the analysis of the 

patient-only cohort (i.e., FDOPA_04) and its comparison to the whole normative 

reference (i.e., all HCs) we obtained similar results as those in the other clinical datasets 

which had matched HCs in the normative reference, including the spatial pattern of the 

extreme deviations. This finding is particularly relevant, as routine clinical applications 

typically do not acquire matched controls for patients. The NM approach circumvents this 

issue by using a normative reference, accounting for covariates for comparison. 

Furthermore, the deviation scores of FDOPA_04, especially total deviations, showed 

significant correlations with PANSS symptoms, both as whole-brain summary scores and 

significant cluster measures. 
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Interestingly, by analysing individual clusters within the cluster signal, we found that the 

clusters correlating with total PANSS symptoms were in the frontal and temporal gyri. 

However, no significant correlations were observed in the smaller FDOPA_01 dataset, 

which may relate to lower statistical power. This framework, along with automatic 

standardised frameworks for kinetic modelling of [18F]FDOPA49, represents a step forward 

in making PET parametric imaging a quantitative companion tool for clinical management 

of psychosis patients. 

 

Finally, we analysed the potential of using NM-derived scores for classifying treatment 

response in patients (i.e., those who will respond to treatment at follow-up based on 

baseline scores) and compared these findings to previously published results38. 

Interestingly, when focusing on striatum NM, we replicated the prediction performances 

of the reference standard38, while poor classification performances were obtained when 

extending the method to the whole brain. This outcome aligns with expectations, as the 

molecular target of action of both antipsychotic medications is striatal dopamine D2/3 

receptors84,85. In fact, the striatal average Z-scores (as defined by the Hammersmith atlas 

and where the model converges) were highly correlated with K i estimates in all patient 

datasets (0.93<R<0.97, p<0.001, Supplementary Figure 8), providing thus an alternative 

view of the same information. In line with this, the distributions of extreme positive and 

total extreme deviations in the striatal region revealed group differences, indicating an 

elevation in the dopamine signal (Supplementary Figure 9).  

 

Limitations 

 

This work is subject to several limitations. Firstly, the modelling process is influenced by 

the harmonization method and may not account for non-linearities within the system, 

either in harmonization or modelling. Despite our efforts to harmonize data from different 

clinical sites, residual differences still exist in the datasets when assessed with statistics 

of the second order or above (e.g., skewness, kurtosis). Secondly, applying NM at the 

voxel level can result in underperformance of the model due to high noise and poor signal. 

Consequently, there are a considerable number of voxels where the model fails to 

converge. This issue could potentially be addressed by adjusting the MCMC settings or 
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by incorporating a more extensive set of covariates to describe the neuroimaging target 

variable. While NM mapping provides a topological description of patient deviation, 

region-based modelling remains a valid compromise between spatial resolution and 

method performance. Additionally, the deviation scores might be sensitive to motion86, 

however when assessing for our data there were no significant correlations in HCs nor in 

patients (Supplementary Figure 10). Moreover, the heterogeneity of the clinical sample 

used in the analysis and the presence of missing clinical information for some individuals 

in the cohort are likely to have affected statistical power. Lastly, our result could be 

influenced by the choice of EXPV threshold used for masking, although similar results 

were obtained for the other threshold tested (Supplementary Tables 1-12).  

 

Conclusions 

 

In conclusion, the NM framework can be successfully applied to molecular neuroimaging 

(i.e., PET and SPECT) after proper harmonisation of scanner effects. Moreover, with the 

NM model, we can assess a differential pattern of deviations likely attributable to the 

chronicity of the disease and compare a patient-only cohort to the normative reference 

to gain mechanistic insights and advance toward a quantitative and biological 

understanding of psychosis. Additionally, we are able to replicate the findings of traditional 

cross-sectional studies and performances with standard analytical approaches. While the 

focus of this work was on the presynaptic dopaminergic system (as measured by 

[18F]FDOPA) and on the post-synaptic dopaminergic system (as measured by [11C]-(+)-

PHNO) in the context of psychosis, we believe that after selecting appropriate covariates, 

this methodology can be applied to any molecular target measured by PET or SPECT 

neuroimaging. 
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Table 1. Study datasets. 

[11C]-(+)-PHNO Datasets 

Group 

Age mean 

(SD) 

[years] 

Sex 

n (%) 

BMI mean 

(SD) 

[kg/m2] 

N. controls N. patients 
N. resp/non-resp 

(resistant) 
Patients 

Scanner (scanner 

type) 

Imaging 

Site 
Clinical Scores 

PET/CT 
26.52 

(7.87) 

22 F 

(41%)/ 32 

M (59%) 

23.26 

(2.78) 
54 n.a. n.a. n.a. 

Hi-Rez Biograph 

6 (PET/CT) 
Invicro n.a. 

PET/MR 
24.39 

(4.90) 

12 F 

(52%)/ 11 

M (48%) 

22.47 

(2.84) 
23 n.a. n.a. n.a. 

Biograph mMR 

(PET/MR) 
Invicro n.a. 

[18F]FDOPA Datasets 

Group 

Age mean 

(SD) 

[years] 

Sex 

n (%) 

BMI mean 

(SD) 

[kg/m2] 

N. controls N. patients 
N. resp/non-resp 

(or resistant) 
Patients 

Scanner (scanner 

type) 

Imaging 

Site 
Clinical Scores 

FDOPA_01 
26.25 

(5.18) 

32 F 

(36.7%)/ 

55 M 

(63.21%) 

n.a. 61 25 13/12 
First Episode Patients 

(FEP) 

Hi-Rez Biograph 

6 (PET/CT) 
Invicro Yes 

FDOPA_02 
29.00 

(8.70) 

17 F 

(34.0%)/ 

33 M 

(66.0%) 

n.a. 26 24 12/12 Chronic 

Biograph 40 

TruePoint 

(PET/CT) 

South 

Korea 
No 

FDOPA_03 
44.52 

(9.97) 

21 F 

(58.88%)/ 
n.a. 12 24 12/12 Chronic 

ECAT HR+ 962 

(PET/CT) 

MRC 

Cyclotron 

Unit 

No 
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13 M 

(36.22%) 

FDOPA_04 
30.63 

(10.91) 

8 F 

(22.22%)/ 

28 M 

(77.77%) 

n.a. n.a. 36 20/16 
Mixed (FEPs + 

chronic) 

Hi-Rez Biograph 

6 (PET/CT) 
Invicro Yes 

FDOPA_05 
29.42 

(6.09) 

14 F 

(38.89%)/ 

22 M 

(61.11%) 

n.a. 36 n.a. n.a. n.a. 

Biograph 

TruePoint 6 

(PET/CT) 

Invicro n.a. 

FDOPA_06 
24.43 

(4.65) 

1 F 

(14.3%)/ 

6 M 

(85.7%) 

n.a. 7 n.a. n.a. n.a. 
ECAT EXACT 3D 

(PET/CT) 

MRC 

Cyclotron 

Unit 

n.a. 

 

*n.a. indicates where the data are not available. First Episode Patients (FEP) indicates patients scanned shortly after the first psychosis episode, while chronic patients are patients who have undergone 

several rounds of standard line antipsychotics treatment but have not responded to treatment.  
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 PANSS Positive PANSS Negative PANSS General PANSS Total 

 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 

Average Z-

score 0.38 0.36* 0.38 0.38* -0.06 0.41* 0.36 0.43** 

Extreme 

total 

deviations 

0.32 0.36* 0.31 0.34* -0.09 0.42* 0.25 0.44** 

 

Table 2. Correlation analysis of PANSS scores and significant voxel-wise clusters. Table shows 

Spearman correlation’s rho and relative p-value for significant clusters resulting from voxel-wise 

two-way ANOVA (average Z-score, and |Z|>2). Correlations are separated for FDOPA_01 (FEP 

patients, N=25) and FDOPA_04 (chronic and FEP patients, N=36). * indicates p<0.05, ** 

indicates p<0.01 

 

Spearman correlation with PANSS Total scores 

 Correlation Cluster size 

Cluster 1 0.41* 505 

Cluster 2 0.36* 421 

Cluster 3 0.43* 50 

 

Table 3. Correlation analysis of PANSS total scores and individual voxel-wise clusters. Table 

shows Spearman correlation’s rho and relative p-value for significant clusters resulting from voxel-

wise two-way ANOVA (|Z|>2). * indicates p<0.05. 

 

 

 PANSS Positive PANSS Negative PANSS General PANSS Total 

 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 FDOPA_01 FDOPA_04 

Average Z-

score 
0.28 0.25 0.30 0.16 -0.11 0.24 0.17 0.22 

Extreme 

positive 

deviation 

0.33 0.29 0.36 0.17 -0.12 0.33* 0.24 0.31 

Extreme 

negative 

deviations 

-0.07 -0.12 0.14 0.06 0.19 -0.01 0.11 0.03 
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Extreme 

total 

deviations 

0.36 0.33* 0.47* 0.39** -0.01 0.44** 0.30 0.46** 

 

Table 4. Correlation analysis of PANSS scores and summary measures. Table shows Spearman 

correlation’s rho and relative p-value for whole brain summary measures (average Z-score, Z>2, 

Z<-2, |Z|>2). Correlations are separated for FDOPA_01 (FEP patients, N=25) and FDOPA_04 

(chronic and FEP patients, N=36). * indicates p<0.05, ** indicates p<0.01 

 
 

 

Figure 2. Harmonisation results of [11C]-(+)-PHNO PET normative modelling. (A) Single-subject, 

whole-brain distributions of Z-scores estimated in the data before harmonisation (original data, on 

the left) and after spatial smoothing (in the centre) and Combat (on the right) harmonisation 

methods. This dataset combines scans of healthy controls acquired with either PET/CT (N=54) or 

PET/MR (N=23) scanners. (B) Welch two-sample t-tests comparing the first statistical moments 

(mean and standard deviation of the single-subject Z-score distributions between scanner types 

for each harmonisation modality (no harmonisation, harmonisation with spatial smoothing and 

harmonisation with Combat). Orange violin plots refer to PET/CT scans while blue violin plots refer 

to PET/MR scans. Asterisks indicates significance. * indicates p<0.05, ** indicates p<0.01 and 

**** indicates p<<0.001. 

Figure 2. Overlap maps of extreme deviations in HC and patients. Each map reports for each 

voxel the percentage of subjects with co-localise positive (top row), negative (middle row) and 

total (bottom row) extreme deviations. Controls (left) and psychosis patients (right) are reported 

separately. The figure is thresholded above the level of chance (2.5% for positive and negative 

deviations and 5% for total deviations). All overlap maps are superimposed on a standard MNI152 

structural template. 

 

Figure 3. Voxel-wise ANOVA analysis of deviation scores, expressed as mean Z-score and total 

extreme deviations, for the [18F]FDOPA Normative Model. (A) Mean Z-score significant clusters 

(left) and post-hoc analyses, grouped by dataset, (right) between healthy controls and patients. 

(B) Total extreme deviations significant clusters (left) and post-hoc analyses, grouped by dataset, 

(right) between healthy controls and patients. * indicates p<0.05, *** indicates p<0.001 and **** 

indicates p<<0.001. 
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Figure 4. ANOVA analysis of individual deviation scores, expressed as mean Z-score and positive, 

negative, and total extreme deviations, for the [18F]FDOPA Normative Model. (A) Mean Z-score 

differences between healthy controls and patients grouped by dataset. (B) Difference of extreme 

positive deviations between healthy controls and patients grouped by dataset (C) Difference of 

extreme negative deviations between healthy controls and patients grouped by dataset. (D) Difference 

of total extreme deviations between group. Patients are composed of a mixture of first episode 

(FDOPA_01) and chronic psychosis (FDOPA_02, FDOPA_03), depending on the dataset. Asterisks 

indicates significance, * indicates p<0.05, ** indicates p<0.01 and **** indicates p<<0.001. 

 

Figure 5. Clinical [18F]FDOPA Normative Model Treatment Response. ROC curves for the 

classification of treatment response (Responders vs Non-Responders/Resistant) using whole brain 

(solid lines) or striatal (dashed lines) individual average Z-score (A), whole brain positive extreme 

deviations (B), negative extreme deviations (C) and total extreme deviations (D) for the different clinical 

datasets. Dashed diagonal indicates the level of chance in all plots. All scores refer to [18F]FDOPA 

patient data after Combat harmonization. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23299051doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299051
http://creativecommons.org/licenses/by-nc-nd/4.0/

