A comprehensive characterization of blood group antigen variants in the Middle Eastern population genomes - Insights into genetic epidemiology Mercy Rophina^{1,2}, Kavita Pandhare^{1,2}, Vinod Scaria^{1,2}\$ ¹CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mathura Road, Delhi 110025, INDIA ²Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, INDIA ³Present address: Vishwanath Cancer Care Foundation (VCCF), Neelkanth Business Park, West Mumbai, 400086 India ## **Corresponding author Email:** Dr. Vinod Scaria - vinods@igib.in (Scaria V); Tel: 91-11-29879 109 # **Key points** - Large scale Middle Eastern population sequencing datasets including *The Greater Middle Eastern Variome, Genomes and exomes from Qatar and the Iranome* datasets were used in the study. - A total of 2828 exomes and 88 genomes were analyzed accounting for a total of 18717 unique human blood group related variants. - 2443 exonic variants were extracted which systematically included 1505 non-synonymous variants, 766 synonymous variants, 50 stopgain variants and 3 stop loss variants. - Blood group associated variants identified in the study are provided as a comprehensive online repository **alnasab**, Alleles and antigens in Arab and Persian populations associated with blood groups. The resource is accessible at https://clingen.igib.res.in/alnasab/ ^{\$}Address for correspondence ## **Abstract** ## Background The Middle Eastern population is characterized by increased prevalence of various Mendelian disorders owing to increased rates of consanguinity. Especially in disease conditions which require chronic transfusion support, it becomes important to know the blood group characteristics of potential donors to increase the likelihood of transfusion success. As there prevails a gap in knowledge about the population specific overall blood antigen profiles, this study seeks to utilize next generation sequencing datasets to unravel the comprehensive landscape of clinically significant minor blood group alleles in the middle eastern population. #### Methods This study utilizes the genetic variation data from a range of public datasets including the Greater Middle East Variome, the Qatar genome and exomes and the Iranome datasets to estimate the genotypic and phenotypic frequencies of blood group alleles in the Middle Easterners. The estimated frequencies were duly compared with major global populations to identify significant similarities or differences if any. ## Results A total of 77 unique ISBT approved blood group alleles were found commonly in all datasets. 8 variants (rs8176058, rs1058396, rs565898944, rs28362692, rs2071699, rs34783571, rs60322991 and rs57467915) belonging to KELL, KIDD, COLTON, H, JUNIOR and LANGEREIS blood groups were found clinically significant with previously reported evidence on transfusion complications. 730 variants were found to span exonic or splicing regions out of which 70 were predicted to be potentially deleterious by at least four computational tools. ## **Conclusions** This study serves first of its kind to extensively characterize the known and novel blood alleles in the Middle Easterners. A comprehensive user-friendly online resource named **alnasab** - **Alleles and antigens in Arab and Persian populations associated with blood groups** was also developed as a dependable reference for future transfusion research. The resource is accessible at https://clingen.igib.res.in/alnasab/ ## Introduction Blood group antigens are genetically encoded and currently encompass 44 blood group systems, encoding a total of 349 antigens mapping to 50 genes as recognized and approved by the International Society for Blood Transfusion (ISBT). Complications accompanying blood transfusion events are often induced by blood products which escape serological vigilance. Research over the past decade has widened the scope of genomics in immunohematology by highlighting the existence of geographical and ethnicity based differences in blood genotype and phenotype frequencies. (1), (2), (3). The Middle Eastern region situated between Africa, Europe and South Asia is the abode of a population which has been central to our understanding of human evolution, history and migration (4), (5), (6), (7). Encompassing about 17 countries with an estimated population of around 411 million, this region has often remained underrepresented in large global population scale genomic studies. However, with a recent spurt in interest, various population scale sequencing projects have been undertaken aimed at understanding the genomic diversity and architecture of the Arab populations.(8), (9), (10), (11), (12). Only a limited number of studies have investigated the prevalence of blood group antigens in Middle Eastern populations, primarily focusing on the ABO and RH systems along with few other clinically significant minor blood groups (13), (14), (15), (16), (17). However, these studies have been limited by their use of standard serological testing or medium throughput molecular typing techniques, and therefore there is a paucity of a comprehensive population-specific molecular blood group profile. It is well established that genetic disorders are a significant burden in the Middle East owing to their increased rates of consanguinity. This has resulted in high prevalence of various autosomal recessive disorders. In particular, genetic blood disorders including Sickle cell disease (SCD) and β -thalassemia, the most common hemoglobinopathies have been reported to substantially contribute to the disease burden of this population (18), (19). A review estimated that the overall incidence and prevalence of SCD in Middle Eastern countries ranged from approximately 0.004% - 2.1% respectively (20). Such inherited blood disorders owing to their chronic nature tend to impose heavy medical, emotional and financial burden. Although the overall burden of such illnesses encompassing various medical aspects of the disease largely remain uncharacterized in Middle Eastern countries, conditions like thalassemia major (TM) and SCD demand long term transfusion therapy. In recent years, there have been systematic efforts to determine the blood group phenotypes of regular blood donors visiting donation centers in the United Arab Emirates. Advancements in next generation sequencing techniques would undoubtedly enable the large population scale deployment of such efforts in the region. The availability of numerous public Middle Eastern genomic datasets encouraged us to computationally decipher the blood antigen profiles of Middle Easterners as previously described by Schoeman et al in 2019. In this study we aim to compile a comprehensive collation of blood alleles prevailing in the middle eastern population along with a systematic comparison with other major population datasets including the 1000 Genomes Project and gnomAD. In addition, we developed a user-friendly online resource alnasab - Alleles and antigens in Arab and Persian populations associated with blood groups which is a comprehensive catalog of genetic variants associated with human blood group systems identified in Middle Easterners. The resource is accessible online at https://clingen.igib.res.in/alnasab/ ## **Materials and methods** ## Population scale genomic datasets Whole genome and whole exome sequencing datasets generated by population specific studies in the Greater Middle Eastern region were compiled and used for the analysis. This includes data from the Greater Middle East Variome (21), The Qatar genome and exomes (10) and the Iranome (9) genome projects. These accounted for a total of 2828 high quality exomes and 88 genomes (GME: 1111 exomes; Qatar: 88 genomes and 917 exomes; Iranome: 800 exomes), encompassing 689299, 20159694 and 1575702 total genetic variants respectively. The population scale data is a collation of major ethnic groups of the middle eastern region including North Western Africa (NWA), North East Africa (NEA), Arabian Peninsula (AP), Turkish Peninsula (TP), Persia and Pakistan (PP), Syrian Desert (SD), Qatari subgroups and Iranian Arabs, Azeris, Baluchs, Kurds, Lurs, Turkmen and Persians. All the datasets correspond to human genome 19 (GRCh37/hg19) assembly. Genetic variations were retrieved from the variant call format (VCF) files and were used for further analyses. ## Human blood group related alleles and variations Clinically approved genomic coordinates of 50 genes associated with 43 human blood group systems and 2 erythroid specific transcription factors were fetched from Locus Genomic Reference (LRG) (22) and were used for analysis as described previously (23). There exists a handful of public resources that provide comprehensive collection of human blood alleles and antigens including the International Society of Blood Transfusion (ISBT) (24), The Blood Group Antigen Gene Mutation Database (dbRBC) (25), Erythrogene (26) RhesusBase (27), Blood Antigens (28,29) and BGvar (30). A comprehensive list of approved and predicted human blood group alleles were retrieved in a pre-formatted template (30) and was used as the reference data for further allele matching procedures. ## Data processing and variant annotations Primary analysis involved the filtering of all genetic variations spanning the LRG approved genomic coordinates of blood group genes and erythroid specific transcription factors. Subsequently, the filtered variants were systematically annotated for their functional consequences from a range of computational tools including SIFT (31), Polyphen (32), LRT, MutationTaster, Mutation Assessor (33), FATHMM (34), PROVEAN (35), CADD (36), GERP (37), PhyloP (38) and PhastCons using ANNOVAR (v. 2018-04-06) (39). #### Known and novel
blood group alleles/variants identification Secondary stages of variant analyses involved the filtering and identification of well known and novel blood group alleles. Reference dataset was used to match all the variants which already had a known associated blood phenotype and reference genome nomenclature was conferred to those blood group systems with no blood group associated variants. In addition, potentially novel and rare blood group variants were also filtered and analyzed. A variant was deemed potentially novel if it lacked previous literature reports and SNP identification number (dbSNP ID). Variants with minor allele frequencies (MAF) < 5% were also filtered and checked for their association with blood group related phenotypes. A complete schematic representation of the workflow is shown in **Figure 1.** #### Prediction of blood phenotypes in Qatari subpopulations The publicly available genomic data of 1005 Qatari individuals comprising 5 major subpopulations were analyzed in the study to decipher the pattern of distribution of blood phenotypes among the Qatari subpopulations. The variant call file was systematically subsetted into each subpopulation using VCFTOOLS (40). Bespoke scripts were used to generate the number of samples with homozygous and heterozygous genotypes. Similarities and distinct differences in blood alleles and phenotype frequencies were studied. Minor allele frequencies were compared among the subpopulations and statistical significance was observed using Fisher's exact test with a p-value < 0.05. ## Estimation and systematic comparison of blood allele frequencies Blood group associated variants filtered from all the datasets were systematically compiled in variant call or annotated formats along with their genotype information. Allele frequencies were estimated using PLINK {ref}. In addition, allele frequencies of the variants were fetched from major global population datasets including 1000 Genomes project {ref}, Exome Aggregation Consortium (ExAC v.0.3) {ref} and Genome Aggregation Database (gnomAD) {ref} and were used for comparison. Frequency of the filtered alleles among the subpopulations were also calculated. ## Identification of clinically significant and actionable blood group alleles Variants with known blood group associated phenotypes filtered from the datasets were further checked for their clinical relevance in transfusion procedures and in pregnancy settings. Literature databases and public resources like Pubmed and Google scholar were systematically queried to retrieve relevant clinically significant evidence of alleles. Compendium of Greater Middle East blood group variants - Database architecture The filtered variants were compiled into a preformatted mastersheet and annotations were duly mapped. The variant data and corresponding annotations were transformed to JavaScript Object Notation format and ported onto MongoDB 3.4.1. The user-friendly web interface for querying the database was coded in PHP 7.0, AngularJS, HTML, Bootstrap 4 and CSS. The web server was configured in Apache HTTP server. ## Results ## Overview of blood group alleles in Greater Middle East We retrieved a total 18717 unique variants mapping to 50 human blood group genes, out of which 1697, 15140 and 3496 variants were from the Greater Middle East Variome, The Qatar genome and the Iranome datasets respectively. **Supplementary Table 1** provides a comprehensive summary of all the variant counts in blood group genes fetched from the above mentioned datasets. Of the variants, 2428 and 15 variants were found across exonic and splicing regions respectively. Of these, there were 1505 non synonymous SNVs, 766 synonymous SNVs, 50 stop gain and 3 stop loss variants. Variant summary and functional classifications across the datasets are schematically represented in **Figure 2**. # Characterization of genetic variations in human blood group genes Of the variants which mapped to the 50 blood group genes, a total of 147, 110 and 112 variants were previously shown to be associated with blood group related phenotypes in GME, Qatar and Iranome datasets respectively. Of these variants, a total of 77 unique variants belonging to 20 blood group systems were overlapping in all three datasets used in this study. The details of the variants along with their frequencies are tabulated in **Table 1**. **Figure 3** illustrates the distribution of these variants and their corresponding allele frequencies in various datasets. Forty-six (46) of the total 77 variants were SNVs mapping back to 16 blood groups and the rest were combination mutations for which blood phenotypes could not be predicted. Phenotypes were reported the same as that of the reference genome (hg19) nomenclature for the rest blood group systems as previously described (41), (23). **Table 2** summarizes the phenotypes of the variants and their corresponding zygosity information across the datasets. Phenotype frequencies of blood group systems with known blood group associated variants and those with reference genome nomenclature are detailed in **Supplementary Table 2**. ## Overview of potentially novel and rare blood group variants Variants were systematically classified based on the dbSNP identifiers and were deemed as potentially novel if they lacked one. This analysis revealed a total of 1727 potentially novel unique variants across the datasets, of which 730 were found to span the exonic and splicing regions. Seventy (70) exonic variants which were not reported previously in global population frequencies including 1000 Genomes, gnomAD and EXAC were predicted to be deleterious by at least three or more computational tools. Distribution of these novel variants across different blood group genes along with their corresponding frequencies in the Middle Eastern datasets are summarized in **Supplementary Table 3.** A missense H blood group variant (p. Arg220Leu, chr19:49253880C>A) which was computationally predicted as deleterious, has a couple of alternate variants reported at the same position associated with weak H+ phenotype (p.Arg220Cys - FUT*01W.09 and p.Arg220His - FUT*01W.10). Yet another missense variant predicted from the same blood group (p. Try154Asp, chr19:49254079A>C) possess reported variants at the same amino acid position associated with weak and null H phenotypes (p.Tyr154Cys - FUT*01N.02, p.Tyr154His - FUT*01W.05.01 and p.Tyr154Ter - FUT*01N.03). Two missense variants belonging to JUNIOR blood group predicted as deleterious (p.Gly262Glu, chr4:89039317C>T and p.Arg246Leu, chr4:89039365C>A) were found to occur at the same amino acid sites which were reported to be associated with Jr(a-) phenotypes (p.Gly262X - ABCG2*01N.05 and p.Arg246X - ABCG2*01N.03 respectively). ## Distribution of null and partial/weak antigens Weak or partial expression of RBC antigens carries increased risk of hemolytic transfusion reactions as they are often mistyped as antigen-negative. Of the total variants analysed, our study reports 19 variants responsible for weak/partial or null blood group phenotypes. The RHD*weak D type 4.0 allele (rs1053355) was observed in 10 individuals in a homozygous state. This allele, responsible for the weak expression of D antigen, was found to be often mistyped as D- in serological tests (42). In addition, one of the rare low frequency antigens of the RH blood group system, C* (Rh8 - rs138268848) was found in about 0.17% of Middle Eastern populations (0.13% in Iranome and 0.36% in GME). This antigen has been reported to have serious transfusion implications including hemolytic disease of the newborn when mismatched (43). A weak JK*A allele (JK*01W.01 - rs2298720) of the KIDD blood group system, associated with weakened expression of Jk^a is found capable of causing alloimmunization when mistyped serologically as $Jk_{null\ (44)}$, (45). Distribution of this variant is found to vary highly among various global populations with an allele frequency as high as 40.6% in East Asians, 26.8% in South Asians, 18-19% in Latino/Admixed Americans and African/African Americans, 12% in Europeans of Finnish origin, 10% in Ashkenazi Jews to as low as 7% in Middle Easterners, 6% in Europeans of non-Finnish origins and 3% in Amish population. **Supplementary Table 4** enlists the complete details of weak/partial alleles identified in the study dataset. # Clinically significant blood group variants The KELL blood group system is significant in the field of transfusion medicine owing to the severe transfusion incompatible reactions induced by its antigens (46). This system comprises over 20 different antigens, of which K1 (K) has been well studied as a strong immunogen capable of causing hemolytic disease of the newborn in sensitized mothers. Approximately 9% of the random RBC donor samples were found to react against K1 (46,47). Anti-K1 is ranked third most clinically significant antibody after ABO and RH(D). HDN induced by anti-K is characterized by immune destruction of K+ erythroid (47) progenitor cells by macrophages in the fetal liver (48). Frequency of this variant in Middle Easterners was found to be 3.5% which was comparable to Europeans of non-Finnish origin (4.1%) and differ from South Asians (<1%) (49), (50) Anti-Cr^a is a rarely encountered antibody against the Cr(a) antigen of the CROMER blood group system. CROM:c.679G>C (rs60822372) variation in exon 6 of CROM gene is responsible for Cr(a-) phenotype which is characterized by the absence of Cr(a) antigen on the RBC membrane. Studies have shown negative crossmatching of individuals carrying the variant in homozygous state and positive while in heterozygous state (51). This variant was observed at a frequency of about 10% in Middle Eastern populations which was found to be comparable to African/African Americans and South Asians (52), (53),(54). ## Blood group phenotyping of Qatari subpopulations The genomic data of 1005 Qataris comprises 5 major subpopulations namely African
(n=70), Arabian (n=193), Bedouin (n=490), Persian (n=170) and South Asian (n=76). Distribution of blood group related variants in different subpopulations was identified and corresponding phenotypes were predicted. In addition, systematic comparisons of allele and phenotype frequencies among the subpopulations were performed. Comparison and statistical analysis of blood group variants/profiles among Middle Eastern population datasets Distinct differences in the minor allele frequencies of blood group alleles between the Middle Easterners and various other global populations were statistically estimated using Fisher's exact test. A total of 26 variants mapping back to 12 blood group systems were found statistically distinct in all the Middle Easterners (Qatar, GME and Iranome) in comparison to global datasets (1000 Genomes Project and gnomAD version?). Summary of these variants along with their p-value is provided in **Supplementary Table 5a.** In addition, differences in the pattern of distribution of these blood group variants were checked among the 5 major Qatari subpopulations. The Arabian subpopulation was found to carry the maximum number of variants whose frequencies were statistically distinct from the overall frequency in the Qatar dataset. Complete details of these variants are tabulated in **Supplementary Table 5b.** User friendly data access alnasab (Alleles and antigens in Arab and Persian populations associated with blood groups) is a user-friendly online search engine, composed of a comprehensive collection of blood group related variations mined from various population scale datasets of the Greater Middle Eastern region. The resource encompasses a total of 2149 blood group related variants fetched from about 47 blood group genes. The search interface enables the user to query the database based on gene name, variant name (chr-pos:ref>alt), nucleotide change and protein change. Variant information is provided in six different sections namely, (i) Blood group system, (ii) Variant details, (iii) Transcript details, (iv) Variant annotation, (v) Global allele frequencies and (vi) Allele frequencies - Greater Middle East. **Figure 4a and 4b** illustrate the search features and various sections of result display of the resource. ## **Discussions** Genomic analysis presented in this study provides the blood group genotype profiles of the Middle Eastern populations utilizing the genome sequencing datasets from Greater Middle East Variome, The Qatar genome and the Iranome. The study reports an array of weak, partial, null and putative novel and rare antigens which were predicted to have potential impact on the functionality. The analyzed and filtered blood group variants along with extensive functional annotations and allele frequencies are provided as a comprehensive online repository - **alnasab**, *Alleles and antigens in Arab and Persian populations associated with blood groups*. The resource is accessible at https://clingen.igib.res.in/alnasab/ ## Clinical impact An extended screening of blood group antigens between the donors and the recipients other than the major ABO, RH groups and minor DUFFY, KELL and KIDD groups is often triggered only after encountering clinical complications. Frequencies of a total of 26 variants belonging to 12 different blood group systems were found to differ significantly from other global populations. Fetal anaemia and Hemolytic disease of the fetus and newborn (HDFN) are the most serious consequences of transfusion in the majority of pregnancy settings (55). The clinically significant antibodies involved in such cases include Rh, C, E, c and e antigens with greater than 50% risk of mild to severe HDFN (56),(57). Our study reports a weak RHD allele (*RHD*weak D type 4.0*) with an overall frequency of 0.01% in the Middle eastern population. Often patients carrying this allele get serologically categorized to be transfused with D- RBCs. A recent report from a transfusion work group recommendation explained the necessity of RHD molecular genotyping in expectant mothers which would help categorize RHD alleles that can further allow safe D+ transfusion (42). #### Literature comparison There exists a handful of research studies and reports documenting the blood group profiles of donors across various parts of the Arabian peninsula. Phenotypes of ABO, RH and various other minor blood group systems predicted by standard serological methods were found to match with the genotyping profiling results of the study. (50), (58), (58,59), (60), (61). Js^a (KEL6) is a low-incidence antigen reported in less than 1% of the general global populations, whereas on other hand, could be prevalent upto 19.5% in African Americans (62). Js(a+b-) phenotype which was not previously reported in serological studies was found in one sample from North East Africa. In compliance with earlier evidence, frequencies of minor blood group phenotypes including Fy(a+b+), K-k+, Lu(a-b+), Jk(a+b+), Do(a+b+), Co(a+) were found comparable. #### Limitations and future needs Owing to the limitations in the available public datasets, our study is mainly limited by the fact that RBC antigenic expressions regulated by large deletions and insertions (especially in RH and MNS blood groups) have not been profiled. In addition, the level of concordance with serology based phenotype predictions to investigate the functional implications of novel and rare variants remains to be explored and validated in future studies. ## Conclusion Middle Easterners represent one of the most genetically diverse populations with increased prevalence of genetic disorders owing to their consanguinity. Autosomal recessive genetic disorders including sickle cell disease (SCD), beta thalassemia hemoglobinopathies are found to be the most common in the Middle Eastern population (63), (18). Increased burden of anemia in women and children is also reported in this population ranging between 22.6-63% in pregnant women, 27-69.6% in women of reproductive age and 23.8-83.5% in children under age of 5 (64). The overall prevalence rates per 1000 population for beta thalassemia and SCD were found as 13.6 and 49.6 respectively (19). Severe forms of such disorders and other chronic illnesses require frequent blood transfusions often leading to dysfunction of multiple organs, if mismatched (65). Extensive population scale characterization of blood group antigen profiles can significantly increase the clinical outcomes of transfusion practices. Numerous national initiatives including Makkah Region Quality Program (MRQP), Central Board of Accreditation for Health Institutions (CBAHI), The Saudi Food and Drug Authority (SFDA), Western Region Transfusion Medicine Group and Saudi Society of Transfusion Medicine (SSTM) have been organized by the Ministry of Health of Saudi Arabia which aims at improving the blood transfusion services in the region (66). Our study showcases the utility of population scale genome sequencing datasets in elucidating the complete blood antigen profiles of the population to guide and improve transfusion practices and outcomes. ## **Funding** This work was supported by The Council of Scientific and Industrial Research, India (Grant: MLP2001/GenomeApp) # **Acknowledgements** VS conceived and designed the project. MR and VS contributed in writing the manuscript. KP designed the database. All authors approved the final manuscript. Authors acknowledge funding from CSIR India. The funders had no role in the preparation of the manuscript or decision to publish. The authors acknowledge the constructive suggestions given by Srashti Jyoti Agrawal and Vishu Gupta. ## **Conflicts of Interest** None declared. ## Visual abstract ## **Figures and Tables** - Figure 1. Schematic representation of the methodology followed for data analysis - **Figure 2.** Overview of the functional classification of blood group related variants in various datasets used in the study - **Figure 3.** Schematic illustration of the distribution of common variants with blood group associated phenotypes along with their corresponding allele frequencies. (A), Heatmap illustrating the similarities and differences in the allele frequencies among various datasets (B), Distribution of blood group related variants in various datasets used in the study (C) Distribution of common alleles among human blood group systems - **Figure 4.** Search query and sections of result display in alnasab. (A) Homepage of the web resource with query search examples. (B) Result display which provides an extensive summary of variant functional annotations in various sections - **Table 1.** Summary of variants with blood group associated phenotypes found commonly in all the Middle Eastern datasets used in the study - **Table 2.** Summary of phenotypes of common blood group variants along with their corresponding zygosity information Figure 1. Schematic representation of the methodology followed for data analysis **Figure 2.** Overview of the functional classification of blood group related variants in various datasets used in the study **Figure 3.** Schematic illustration of the distribution of common variants with blood group associated phenotypes along with their corresponding allele frequencies. (A), Heatmap illustrating the similarities and differences in the allele frequencies among various datasets (B), Distribution of blood group related variants in various datasets used in the study (C) Distribution of common alleles among human blood group systems **Figure 4.** Search query and sections of result display in alnasab. Homepage of the web resource with query search examples (top). Result display which provides an extensive summary of variant functional annotations in various sections (bottom) | CHR | POS | RSID | REF | ALT | BLOOD
GROUP
SYSTEM | GENE
NAME | CATEGO
RY | | QATAR_E | IRANOME_
EXOME_AF | EXAC_
AF | gnomA
D_AF |
------|---------------|-----------------|------|-----|--------------------------|--------------|----------------------------------|--------------------|----------|----------------------|--------------|---------------| | CIIK | 103 | | IXEI | ALI | SISILIN | IVAIVIE | Combinat | | XOWIL_AI | EXOME_AI | | | | 11 | 837514 | rs1390
42921 | С | Т | RAPH | CD151 | Mutation
s | 0.00252
016129 | 0.0064 | 0.000625 | 0.0001
09 | 0.0000
88 | | 1 | 20750
4467 | rs6082
2373 | G | С | CROMER | CD55 | SNVs | 0.00453
1722054 | 0.006 | 0.00125 | 0 | 0 | | 1 | 207760
773 | rs3737
002 | С | Т | KNOPS | CR1 | SNVs | 0.22205
43807 | 0 | 0.24875 | 0.2750
08 | 0.2824
56 | | 1 | 207782
856 | rs1704
7660 | А | G | KNOPS | CR1 | SNVs | 0.02970
795569 | 0 | 0.0025 | 0.02141
1 | 0.01815
6 | | 1 | 207782
889 | rs1704
7661 | А | G | KNOPS | CR1 | SNVs | 0.07552
870091 | 0 | 0.011875 | 0.0548
3 | 0.0460
45 | | 1 | 207782
931 | rs66911
17 | А | G | KNOPS | CR1 | SNVs | 0.32426
98892 | 0 | 0.33875 | 0.3341
07 | 0.3213
6 | | 12 | 149938
82 | rs2836
2798 | G | A | DOMBROCK | ART4 | SNVs | 0.00805
6394763 | 0.007 | 0.001875 | 0 | 0 | | 12 | 149939
09 | rs2836
2797 | С | A | DOMBROCK | ART4 | Combinat ion Mutation s | 0.00604
2296073 | 0.0032 | 0.000625 | 0.0050
74 | 0.0039
38 | | 1 | 256110
80 | rs23011
55 | С | Т | RH | RHD | SNVs | 0.00753
4983854 | 0.0133 | 0.00721785 | 0.0007
44 | 0.0008
14 | | 1 | 256111
01 | rs1995
09194 | G | Т | RH | RHD | Combinat
ion
Mutation
s | 0.01885
775862 | 0.0048 | 0.00197109 | 0.0066
53 | 0.0055
86 | | 1 | 256172
06 | rs11398
2491 | С | Т | RH | RHD | SNVs | 0.00371
5498938 | 0.0059 | 0.0026560
4 | 0.0066
54 | 0.0057
81 | | 1 | 256172
51 | rs17418
085 | A | С | RH | RHD | Combinat
ion
Mutation
s | 0.00641
7112299 | 0 | 0.0026809
7 | 0.0066
27 | 0.0054
44 | | 1 | 256275
52 | rs1053
355 | С | G | RH | RHD | SNVs | 0.01397
849462 | 0 | 0.0053404
5 | 0.0050
9 | 0.0046
95 | | 1 | 25628
043 | rs1053
356 | Т | G | RH | RHD | SNVs | 0.02355
460385 | 0.0171 | 0.0060402
7 | 0.01211
4 | 0.0103
46 | | 1 | 25628
050 | rs14801
4996 | С | Т | RH | RHD | Combinat ion Mutation s | 0.00319
8294243 | 0.0064 | 0.00134048 | 0.0040
99 | 0.0034
47 | | 1 | 25628
073 | rs1053
359 | G | С | RH | RHD | SNVs | 0.00373
5325507 | 0.0047 | 0.00201072 | 0 | 0 | | 1 | 256281
20 | rs1053
362 | С | Т | RH | RHD | SNVs | 0.00482
3151125 | 0.0021 | 0.0026738 | 0.0011
82 | 0.0010
57 | | 1 | 256298
18 | rs14183
3592 | Т | G | RH | RHD | SNVs | 0.002212
389381 | 0.0065 | 0.00134953 | 0.0045
2 | 0.0033 | | 1 | 256298
30 | rs1506
06530 | G | А | RH | RHD | SNVs | 0.011615
04425 | 0.0041 | 0.0026845
6 | 0.0042
9 | 0.0035
32 | | 1 | 256331
04 | rs1462
92192 | G | А | RH | RHD | SNVs | 0.00423
7288136 | 0.0021 | 0.0026809
7 | 0.0005
72 | 0.0005
91 | | 1 | 256331
72 | rs1382
35491 | Т | С | RH | RHD | SNVs | 0.00477
7070064 | 0.0021 | 0.00266312 | 0.0006
09 | 0.0006
39 | | 1 | 25648
421 | rs1500
59028 | G | A | RH | RHD | SNVs | 0.00826
9018743 | 0.0158 | 0.0087956
7 | 0.0041
84 | 0.0043
62 | | 1 | 257122
69 | rs11626
1244 | С | A | RH | RHCE | SNVs | 0.00100
7049345 | 0 | 0.00125 | 0.0035 | 0.0028
71 | |----|--------------|-----------------|---|---|----------|---------|----------------------------------|-------------------------|--------|-----------|--------------|--------------| | 1 | 257154
90 | rs11327
65 | T | С | RH | RHCE | SNVs | 0 | 0.0016 | 0.001875 | 0.0005
12 | 0.0004
66 | | 1 | 257173
08 | rs1053
361 | G | С | RH | RHCE | SNVs | 0.06344
410876 | 0.0368 | 0.008125 | 0.02271
9 | 0 | | 1 | 257173
29 | rs14416
3296 | Т | С | RH | RHCE | SNVs | 0.00402
8197382 | 0.0035 | 0.001875 | 0.0013
43 | 0.0009
51 | | 1 | 257173
65 | rs6093
20 | С | G | RH | RHCE | SNVs | 0.12990
93656 | 0.1716 | 0.161875 | 0.16218
6 | 0.1690
06 | | 1 | 257292
12 | rs1053
345 | Т | _ | RH | RHCE | SNVs | 0.00050
3524672
7 | 0.0006 | 0.006875 | 0.0019 | 0.0017
86 | | 1 | + | - | G | C | RH | RHCE | SNVs | 0.00541
5162455 | 0.0008 | 0.000875 | 0 | 0 | | 1 | 257471
56 | rs1382
68848 | Т | С | RH | RHCE | SNVs | 0.00850
3401361 | 0.0022 | 0.00875 | 0.0108 | 0.0102
45 | | 1 | 257471
73 | rs14297
1926 | G | A | RH | RHCE | SNVs | 0.00902 | 0.0035 | 0.000625 | 0 | 0 | | 15 | 747039
29 | rs74176 | Т | С | ЈМН | SEMA7A | Combinat ion Mutation s | 0.431017
1198 | 0.4922 | 0.431875 | 0 | 0 | | 18 | 433103
13 | rs11357
8396 | G | A | KIDD | SLC14A1 | Combinat
ion
Mutation
s | 0.02769
3857 | 0.026 | 0.009375 | 0.0065
67 | 0 | | 18 | 433104
15 | rs2298
720 | G | A | KIDD | SLC14A1 | Combinat ion Mutation s | 0.121852
9708 | 0.0796 | 0.1375 | 0.1474
59 | 0.15195
6 | | 18 | 433110
54 | rs11302
9149 | G | A | KIDD | SLC14A1 | Combinat
ion
Mutation
s | 0.02923
387097 | 0.0299 | 0.009375 | 0.0081
22 | 0.0069 | | 18 | 433111
31 | rs2899
4287 | G | А | KIDD | SLC14A1 | Combinat
ion
Mutation
s | 0.029471
54472 | 0 | 0.009375 | 0.0078
85 | 0.0066
44 | | 18 | 433164
61 | rs9948
825 | T | С | KIDD | SLC14A1 | SNVs | 0.001510
574018 | 0 | 0.000625 | 0.0015
07 | 0.00115 | | 18 | 433165
38 | rs2298
718 | A | G | KIDD | SLC14A1 | Combinat
ion
Mutation
s | 0.573011
0775 | 0.4562 | 0.590625 | 0.3642
7 | 0.3618
46 | | 18 | 433192
74 | rs1767
5299 | G | А | KIDD | SLC14A1 | SNVs | 0.03675
730111 | 0 | 0.053125 | 0 | 0 | | 18 | 433195
19 | rs1058
396 | G | А | KIDD | SLC14A1 | SNVs | 0.40584
08862 | 0.3323 | 0.439375 | 0.4695
4 | 0.4714
67 | | 18 | 433283
50 | rs5658
98944 | С | Т | KIDD | SLC14A1 | SNVs | 0 | 0 | 0.0025 | 0.0006
51 | 0.0006
6 | | 18 | 433298
41 | rs2889
8897 | Т | С | KIDD | SLC14A1 | Combinat
ion
Mutation
s | 0.017623
36354 | 0.0264 | 0.010625 | 0.0045
47 | 0.0046
67 | | 19 | 129967
40 | | A | G | KLF1 | KLF1 | Combinat
ion
Mutation
s | 0.29627
71458 | 0.2835 | 0.325448 | 0.4392
1 | 0.3685
99 | | 19 | 453154
45 | rs2839
9653 | G | A | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.01209
677419 | 0 | 0.0131579 | 0 | 0 | | | | | | | | | 0 | | | | | | |----|---------------|-----------------|---|---|-----------|--------------|----------------------------------|--------------------|--------|----------|--------------|--------------| | | | | | | | | Combinat ion | | | | | | | 19 | 453155
39 | rs3745
159 | G | А | LUTHERAN | ВСАМ | Mutation
s | 0.02620
967742 | 0.0278 | 0.02875 | 0.0234
69 | 0.0215 | | 19 | 453167
04 | rs2839
9656 | Т | А | LUTHERAN | BCAM | SNVs | 0.02769
3857 | 0.035 | 0.020025 | 0.0095
57 | 0.0094
85 | | 19 | 453168
04 | rs38101
41 | С | Т | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.07703
927492 | 0.0682 | 0.1025 | 0.0879
96 | 0.0862
07 | | 19 | 453168
07 | rs38101
40 | С | Т | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.07552
870091 | 0.0661 | 0.1025 | 0.0856
24 | 0.0841 | | | | | - | | | | Combinat | | | | | - | | 19 | 453223
16 | rs11773
7673 | С | Т | LUTHERAN | BCAM | ion
Mutation
s | 0.01560
926485 | 0.0095 | 0.02375 | 0.0222
28 | 0.0210
63 | | 19 | 453227
44 | rs11350
62 | A | G | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.330312
1853 | 0.2964 | 0.275 | 0.2753
29 | 0.2725
9 | | 19 | 453228
91 | rs2839
9658 | С | Т | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.03776
435045 | 0.0643 | 0.0575 | 0.0315
62 | 0.0296
53 | | 19 | 453229
62 | rs2839
9659 | A | Т | LUTHERAN | ВСАМ | Combinat
ion
Mutation
s | 0.03850
050659 | 0.066 | 0.055625 | 0.0348
72 | 0.0297
57 | | 19 | 49254
504 | rs2071
699 | G | A | н | FUT1 | SNVs | 0.041792
54783 | 0.0462 | 0.065625 | 0.0578
46 | 0.0590
25 | | 2 | 22008
0845 | rs6032
2991 | С | Т | LANGEREIS | ABCB6 | SNVs | 0.008611
95542 | 0.0201 | 0.00125 | 0.01911 | 0.0109
4 | | 2 | 220081
416 | rs5746
7915 | G | A | LANGEREIS | АВСВ6 | SNVs | 0.00405
2684904 | 0.0006 | 0.000625 | 0.0189
5 | 0.0087
83 | | 22 | 43088
971 | rs9623
659 | С | Т | P1PK | A4GALT | Combinat
ion
Mutation
s | 0.41683
46774 | 0.4468 | 0.340625 | 0.3523
91 | 0.3503
11 | | 22 | 43089
849 | rs11541
159 | Т | С | P1PK | A4GALT | SNVs | 0.41809
909 | 0.4485 | 0.341875 | 0.3867 | 0.3491
5 | | 3 | 160804
167 | rs22312
57 | С | Т | GLOB | B3GALNT
1 | SNVs | 0.04833
836858 | 0.0711 | 0.06 | 0.0456
55 | 0.0448
4 | | 4 | 144920
596 | rs7683
365 | G | A | MNS | GYPB | Combinat
ion
Mutation
s | 0.33383
6858 | 0 | 0.360625 | 0.3456
92 | 0 | | 4 | 890134
96 | | С | Т | JUNIOR | ABCG2 | SNVs | 0.00860
3238866 | | 0.0175 | 0.0055
56 | 0.0052
04 | | 4 | 89052
323 | rs22311
42 | G | Т | JUNIOR | ABCG2 | Combinat
ion
Mutation
s | 0.05186
304129 | 0.0517 | 0.07625 | 0.11801
7 | 0.1246
55 | | 4 | 890611
14 | rs22311
37 | С | Т | JUNIOR | ABCG2 | Combinat
ion
Mutation
s | 0.106243
7059 | 0 | 0.11125 | 0.1075
81 | 0.11418
9 | | 6 | 105867
27 | rs5610
6312 | G | А | 1 | GCNT2 | SNVs | 0.002517
623364 | 0.0043 | 0.0025 | 0 | 0 | | 6 | 49580
247 | rs1687
9498 | С | Т | RHAG | RHAG | Combinat
ion
Mutation
s | 0.05945
121951 | 0 | 0.036875 | 0.0434
54 | 0.0420
61 | | 7 | 142640
004 | rs8176
039 | Т | С | KELL | KEL | Combinat
ion
Mutation
s | 0.02416
918429 | 0.0328 | 0.0075 | 0.0209
58 | 0.0173
51 | |---|---------------|-----------------|---
---|---------|-------|----------------------------------|--------------------|--------|----------|--------------|--------------| | 7 | 142640
113 | rs8176
038 | А | G | KELL | KEL | SNVs | 0.011077
5428 | 0 | 0.001875 | 0.0083
55 | 0.0067
38 | | 7 | 142640
596 | rs8176
036 | Т | G | KELL | KEL | Combinat
ion
Mutation
s | 0.03373
615307 | 0.0274 | 0.02125 | 0.0528
12 | 0.0504
72 | | 7 | 142640
916 | rs8176
034 | G | Т | KELL | KEL | SNVs | 0.02668
680765 | 0 | 0.003125 | 0 | 0 | | 7 | 142641
752 | rs1908
90637 | G | А | KELL | KEL | SNVs | 0.001510
574018 | 0 | 0.0025 | 0.0002
16 | 0.0002
11 | | 7 | 142651
354 | rs8176
059 | G | A | KELL | KEL | Combinat
ion
Mutation
s | 0.00352
4672709 | 0.0023 | 0.0025 | 0.0071 | 0.0069
76 | | 7 | 142655
008 | rs8176
058 | G | A | KELL | KEL | Combinat
ion
Mutation
s | 0.04481
369587 | 0.0478 | 0.03125 | 0.0274
38 | 0.0268
98 | | 7 | 309516
58 | rs2836
2692 | С | Т | | AQP1 | SNVs | 0.00805
6394763 | 0.004 | 0.005625 | 0.0264
68 | 0 | | 7 | 309516
64 | rs3775
06522 | A | G | | AQP1 | SNVs | 0.00201
4098691 | 0.0011 | 0.004375 | 0.0001
91 | 0.0001
99 | | 9 | 136029
645 | rs3589
8523 | G | Т | FORS | GBGT1 | SNVs | 0.09182
643794 | 0.1328 | 0.1 | 0 | 0 | | 9 | 136037
742 | rs2073
924 | G | A | FORS | GBGT1 | SNVs | 0.222557
9053 | 0.2193 | 0.232704 | 0.27771
1 | 0.11379
3 | | 9 | 136136
773 | rs8176
696 | С | Т | АВО | ABO | SNVs | 0.01359
516616 | 0 | 0.009375 | 0 | 0 | | 1 | 43296
572 | rs3395
4154 | С | Т | SCIANNA | ERMAP | Combinat
ion
Mutation
s | 0.00856
8548387 | 0.0037 | 0.000625 | 0.0081
39 | 0.0063
98 | **Table 1.** Summary of variants with blood group associated phenotypes found commonly in all the Middle Eastern datasets used in the study | BLOOD
GROUP | CHR | POS | RSID | REF | ALT | GENE
NAME | PHENOTYPE
DESCRIPTION | VARIAN
T TYPE | QAT
AR
HO
M
COU
NT | QAT
AR
HET
COU
NT | IRANO
ME
HOM
COUNT | IRANO
ME HET
COUNT | GME
HOM
COUN
T | GME HET | |----------------|-----|-------------------|---------------------|-----|-----|--------------|-------------------------------|---------------------------------|-----------------------------------|-------------------------------|-----------------------------|--------------------------|-------------------------|---------| | RAPH | 11 | 837
514 | rs13
904
2921 | С | Т | CD151 | RAPH:- 1 or
MER2- | Combin
ation
mutatio
n | | | 0 | 2 | 0 | 5 | | CROMER | 1 | 207
504
467 | rs60
822
373 | G | С | CD55 | Cr(a-) - Altered
phenotype | SNVs | 1 | 9 | 0 | 2 | 1 | 7 | | | 1 | 207
760
773 | rs37
370
02 | С | Т | CR1 | Yk(a-) | SNVs | 4 | 27 | 53 | 292 | 74 | 293 | | KNOPS | 1 | 207
782
856 | rs17
047
660 | A | G | CR1 | McC(b+) | SNVs | 1 | 3 | 0 | 4 | 7 | 45 | | | 1 | 207
782
889 | rs17
047
661 | A | G | CR1 | Vil+ | SNVs | 4 | 10 | 1 | 17 | 17 | 116 | | | 1 | 207
782 | rs66
9111 | _ | _ | CD1 | KCAM | CNIV _C | 15 | 26 | 107 | 220 | 124 | 306 | |--------|----|------------------|-------------------------|---|---|------|---|---------------------------------|----|----|-----|-----|-----|-----| | | 1 | 931 | 7
rs28 | Α | G | CR1 | KCAM- | SNVs
Combin
ation | 15 | 36 | 107 | 328 | 124 | 396 | | DOMBRO | 12 | 938
82 | 362
798 | G | Α | ART4 | DO:-5 or Jo(a-) | mutatio
n | 0 | 14 | 0 | 3 | 1 | 14 | | СК | 12 | 149
939
09 | rs28
362
797 | С | A | ART4 | DO:-4 or Hy
Combination
mutation with
rs11276 | SNVs | 0 | 6 | 0 | 1 | 0 | 12 | | | 1 | 256
110
80 | rs23
0115
5 | С | Т | RHD | Weak D
expression -
Combination
with 25648439
pos | Combin
ation
mutatio
n | 1 | 23 | 0 | 11 | 0 | 14 | | | 1 | 256
1110
1 | rs19
950
9194 | G | Т | RHD | | Combin
ation
mutatio
n | 2 | 5 | 1 | 1 | 1 | 33 | | | 1 | 256
172
06 | rs113
982
491 | С | Т | RHD | Del or weak D | Combin
ation
mutatio
n | 3 | 5 | 1 | 2 | 2 | 3 | | | 1 | 256
172
51 | rs17
418
085 | A | С | RHD | | Combin
ation
mutatio
n | 2 | 8 | 1 | 2 | 4 | 4 | | | 1 | 256
275
52 | rs10
533
55 | С | G | RHD | RHD*01W.40 -
Weak D
expression | SNVs | 0 | 3 | 2 | 4 | 8 | 10 | | | 1 | 256
280
43 | rs10
533
56 | Т | G | RHD | RHD*08.01 | SNVs | 6 | 20 | 2 | 5 | 12 | 20 | | | 1 | 256
280
50 | rs14
801
499
6 | С | Т | RHD | | Combin
ation
mutatio
n | 1 | 10 | 1 | 0 | 2 | 2 | | RH | 1 | 256
280
73 | rs10
533
59 | G | С | RHD | RHD*05.04/RH
D*05.05 | SNVs | 1 | 6 | 0 | 3 | 1 | 5 | | | 1 | 256
281
20 | rs10
533
62 | С | Т | RHD | | Combin
ation
mutatio
n | 0 | 4 | 1 | 2 | 1 | 7 | | | 1 | 256
298
18 | rs141
833
592 | Т | G | RHD | RHD*01N.18 (D
negative) | SNVs | 1 | 10 | 1 | 0 | 2 | 1 | | | 1 | 256
298
30 | rs15
060
653
0 | G | A | RHD | | Combin
ation
mutatio
n | 2 | 3 | 1 | 2 | 7 | 7 | | | 1 | 256
331
04 | rs14
629
2192 | G | А | RHD | | Combin
ation
mutatio
n | 0 | 4 | 1 | 2 | 2 | 4 | | | 1 | 256
331
72 | rs13
823
5491 | | С | RHD | | Combin
ation
mutatio
n | 0 | 4 | 1 | 2 | 2 | 5 | | | 1 | 256 | rs15
005
902
8 | G | A | RHD | RHD*01W.45
Weak D
expression | SNVs | 10 | 7 | 1 | 11 | 3 | 9 | | | 1 | 257
122
69 | rs11
6261
244 | С | A | RHCE | | Combin | 0 | 3 | 0 | 2 | 0 | 2 | | | | | | | | | | mutatio | | | | | | | |------|----|------------------|-------------------------|---|---|-------------|---|---------------------------------|-----|-----|-----|-----|-----|-----| | | | | | | | | | n | | | | | | | | | 1 | 257
154 | rs113
276 | _ | | DUGE | | Combin
ation
mutatio | | 2 | | 2 | | | | | 1 | 90
257 | 5
rs10 | Т | С | RHCE | | n | 0 | 3 | 0 | 3 | 0 | 0 | | | 1 | 173
08 | 533
61 | G | С | RHCE | c+ partial e+
partial/ C+e+ | SNVs | 5 | 64 | 0 | 13 | 17 | 92 | | | | 257
173 | rs14
4163 | | | | | Combin
ation
mutatio | | | | | | | | | 1 | 29 | 296 | Т | С | RHCE | | n | 0 | 7 | 0 | 3 | 0 | 8 | | | 1 | 257
173
65 | rs60
932
0 | С | G | RHCE | | Combin
ation
mutatio
n | 28 | 289 | 23 | 213 | 26 | 206 | | | 1 | 257
292
12 | rs10
533
45 | Т | А | RHCE | | Combin
ation
mutatio
n | 0 | 1 | 1 | 9 | 0 | 1 | | | 1 | 257
352
55 | rs57
992
529 | G | С | RHCE | e+ weak partial | SNVs | 1 | 1 | 0 | 1 | 4 | 1 | | | 1 | 257
471
56 | rs13
826
884
8 | Т | С | RHCE | RH:8 (Cw+) or
partial C+ partial
e+ RH:8 (Cw+)
RH:-51(MAR-) | SNVs | 0 | 7 | 1 | 12 | 4 | 7 | | | 1 | 257
471
73 | rs14
2971
926 | G | A | RHCE | | | 0 | 7 | 0 | 1 | 0 | 16 | | ЈМН | 15 | 747
039
29 | rs74
1761 | Т | С | SEMA7 | JMH: -7 or
JMHN
Combination
with
rs140707085
and
rs140128092 | Combin
ation
mutatio
n | 214 | 397 | 167 | 357 | 207 | 442 | | | 18 | 433
103
13 | rs113
578
396 | | A | SLC14A | Jk(a+W) ;
Jk(a+W -
Combination
with
rs113029149 ;
JK:-3 or
Jk(a-b-) -
Combination
with
rs113029149,
rs28994287
and rs2298718 | SNVs | 2 | 48 | 0 | 15 | 6 | 43 | | KIDD | 18 | 433
104
15 | rs22
987
20 | G | А | SLC14A | Jk(a+W);
Jk(b+W); JK:-3
or Jk(a-b-) -
Combination
mutation | SNVs | 16 | 128 | 19 | 182 | 31 | 180 | | | 18 | 433
110
54 | rs113
0291
49 | | A | SLC14A | Jk(a+W);
Jk(a+W) -
Combination
with
rs113578396;
Jk(a-b-) -
Combination
with
rs113578396,
rs28994287
and rs2298718 | SNVs | 2 | 56 | 0 | 15 | 5 | 48 | | | 18 | | rs28
994
287 | G | А | SLC14A
1 | JK:-3 or
Jk(a-b-) -
Combination | Combin
ation | 0 | 4 | 0 | 15 | 7 | 44 | | | | | | | | | with
rs113578396,
rs113029149
and rs2298718 | mutatio
n | | | | | | | |--------------|----|------------------|-------------------------|---|---|-------------|---|---------------------------------|-----|-----|-----|-----|-----|-----| | | 18 | 433
164
61 | rs99
488
25 | Т | С | SLC14A
1 | Jk(a+W | SNVs | 0 | 1 | 0 | 1 | 0 | 3 | | | 18 | 433
165
38 | rs22
9871
8 | A | G | SLC14A | Jk(a+W);
Jk(b+W); JK:-3
or Jk(a-b-) -
Combination
mutation | SNVs | 229 | 459 | 283 | 379 | 369 | 400 | | | 18 | 433
192
74 | rs17
675
299 | G | A | SLC14A | JK:-3 or
Jk(a-b-) -
Combination
with
rs113578396,
rs113029149
and rs2298718 | SNVs | 0 | 3 | 2 | 81 | 9 | 55 | | | 18 | 433
1951
9 | | G | А | SLC14A
1 | | SNVs | 123 | 422 | 166 | 371 | 192 | 422 | | | 18 | 433
283
50 | rs56
589
894
4 | С | Т | SLC14A | JK:-3 or
Jk(a-b-); JK:-3
or Jk(a-b-).
Both JK*01 and
JK*02 | SNVs | 0 | 1 | 0 | 4 | 0 | 0 | | | 18 | 433
298
41 | rs28
898
897 | Т | С | SLC14A | Jk(b+W) -
Combination
mutation with
rs774982134 | Combin
ation
mutatio
n | 1 | 51 | 2 | 13 | 5 | 25 | | KLF1 | 19 | 129
967
40 | rs20
725
97 | A | G | KLF1 | *Obsolete* Normal BG phenotype; In(Lu) - Combination mutation; | Obsolet
e
mutatio
n | 83 | 346 | 86 | 337 | 125 | 323 | | | 19 | 453
154
45 | rs28
399
653 | G | A | ВСАМ | LU:1 or Lu(a+);
LU:-16 -
Combination
mutation;
LU:1,19 -
Combination
mutation | SNVs | 0 | 1 | 1 | 19 | 2 | 20 | | | 19 | 453
155
39 | rs37
4515
9 | G | A | всам | LU:-27, LUYA
Combination
mutation |
Combin
ation
mutatio
n | 1 | 53 | 2 | 42 | 3 | 46 | | | 19 | 453
167
04 | rs28
399
656 | Т | А | всам | LU:-8,14 | SNVs | 2 | 65 | 0 | 32 | 4 | 47 | | LUTHER
AN | 19 | | rs38
1014
1 | С | Т | всам | | SNVs | 10 | 114 | 9 | 146 | 15 | 123 | | | 19 | | rs38
1014
0 | С | Т | ВСАМ | LU:-24, LUGA
Combination
mutation | Combin
ation
mutatio
n | 9 | 112 | 9 | 146 | 15 | 120 | | | 19 | 453
223
16 | | С | Т | BCAM | LU:-13 -
Combination
mutation ;
Lu(b+w) -
Combination
mutation | Combin
ation
mutatio
n | 1 | 17 | 0 | 38 | 4 | 23 | | | 19 | | rs113
506
2 | A | G | всам | LU:1,19 -
Combination
mutation;
LU:-18,19 or | SNVs | 94 | 390 | 67 | 306 | 130 | 396 | | | | | | | | | 1 | | | | | | | | |--------|----|-------------------|--------------------|---|---|--------------|---|---------------------------------|-----|-----|-----|-----|-----|-----| | | | | | | | | Au(a-b+);
LU:-18,19,-8,14 -
Combination
mutation | | | | | | | | | | 19 | 453
228
91 | rs28
399
658 | С | Т | ВСАМ | Lu(b+w); LU:-13
- Combination
mutations | | 5 | 116 | 1 | 90 | 5 | 65 | | | 19 | 453
229
62 | rs28
399
659 | Α | Т | ВСАМ | Lu(b+w); LU:-13
- Combination
mutations | | 5 | 114 | 1 | 87 | 8 | 60 | | Н | 19 | 492
545
04 | rs20
7169
9 | G | A | FUT1 | H+ | SNVs | 3 | 86 | 3 | 99 | 5 | 73 | | LANGER | 2 | 220
080
845 | rs60
322
991 | С | Т | АВСВ6 | Lan weak | SNVs | 0 | 33 | 0 | 2 | 1 | 15 | | EIS | 2 | 220
081
416 | rs57
467
915 | G | A | АВСВ6 | Lan weak | SNVs | 0 | 1 | 0 | 1 | 0 | 8 | | P1PK | 22 | 430
889
71 | rs96
236
59 | С | Т | A4GAL
T | p - Combination
mutation | Combin
ation
mutatio
n | 208 | 466 | 89 | 367 | 198 | 431 | | | 22 | 430
898
49 | rs11
5411
59 | Т | С | A4GAL
T | P1+/-, Pk+ | SNVs | 211 | 466 | 90 | 367 | 193 | 441 | | GLOB | 3 | 160
804
167 | rs22
3125
7 | С | Т | B3GAL
NT1 | GLOB:1 (P+) | SNVs | 6 | 131 | 5 | 86 | 6 | 84 | | MNS | 4 | 144
920
596 | rs76
833
65 | G | А | GYPB | MNS:3 or S+ | SNVs | 12 | 43 | 111 | 355 | 128 | 407 | | | 4 | 890
134
96 | rs34
783
571 | С | Т | ABCG2 | Jr(a+w) | SNVs | 0 | 13 | 1 | 26 | 1 | 15 | | JUNIOR | 4 | 890
523
23 | rs22
3114
2 | G | Т | ABCG2 | Jr(a+w) ; Jr(a-) -
Combination
mutation | Combin
ation
mutatio
n | 3 | 98 | 5 | 112 | 9 | 85 | | | 4 | 890
6111
4 | rs22
3113
7 | С | Т | ABCG2 | Jr(a-) -
Combination
mutation; | Combin
ation
mutatio
n | 0 | 16 | 7 | 164 | 19 | 173 | | ı | 6 | 105 | rs56
1063
12 | G | A | GCNT2 | I+W | Combin
ation
mutatio
n | 1 | 6 | 0 | 4 | 0 | 5 | | RHAG | 6 | 495
802
47 | rs16 | С | Т | RHAG | Rhnull -
Combination
mutation | Combin
ation
mutatio
n | 0 | 7 | 2 | 55 | 12 | 93 | | | 7 | 142
640
004 | | Т | С | KEL | Kmod -
Combination
mutation | Combin
ation
mutatio
n | 5 | 56 | 0 | 12 | 3 | 42 | | KELL | 7 | 142
640
113 | rs81
760
38 | A | G | KEL | KEL:6,-7 or
Js(a+b-) | SNVs | 0 | 3 | 0 | 3 | 1 | 20 | | | 7 | 142
640
596 | | Т | G | KEL | Kmod -
Combination
mutation | Combin
ation
mutatio
n | 1 | 53 | 1 | 32 | 3 | 61 | | ı | | | | | | | | | | | | | | | |-------------|---|-------------------|-------------------------|---|---|-------|--|---------------------------------|----|-----|----|-----|----|-----| | | 7 | 142
640
916 | rs81
760
34 | G | Т | KEL | KEL:2 or k+/Ko | SNVs | 0 | 3 | 0 | 5 | 5 | 43 | | | 7 | 142
641
752 | rs19
089
063
7 | G | A | KEL | KEL:-36 or
KETI- | SNVs | 0 | 1 | 0 | 4 | 0 | 3 | | | 7 | 142
651
354 | rs81
760
59 | G | A | KEL | KEL:1weak,3 or
K+w, Kp(a+) -
Combined with
rs8176058;
KEL:3,-4,-21 or
Kp(a+b-c-); KO
- Combined
with
rs1268359042;
Kmod -
Combined with
rs777011308 | SNVs | 0 | 4 | 0 | 4 | 0 | 7 | | | 7 | 142
655
008 | rs81
760
58 | G | A | KEL | KEL:1,-2 or K+k-;
KEL:1weak,3 or
K+w, Kp(a+) -
Combined with
rs8176059; K0
- Combination
mutation; Kmod
- Combination
mutation | SNVs | 4 | 88 | 1 | 48 | 4 | 81 | | | 7 | 309
516
58 | rs28
362
692 | С | Т | AQP1 | CO:2 or Co(b+) | SNVs | 0 | 8 | 0 | 9 | 0 | 16 | | COLTON | 7 | 309
516
64 | rs37
750
652
2 | A | G | AQP1 | CO:-1,-2,3,-4 | SNVs | 0 | 2 | 1 | 5 | 0 | 4 | | FORC | 9 | 136
029
645 | rs35
898
523 | G | Т | GBGT1 | FORS:-1
(FORS-) | SNVs | 22 | 223 | 7 | 146 | 22 | 138 | | FORS | 9 | 136
037
742 | rs20
739
24 | G | A | GBGT1 | FORS:-1
(FORS-) | SNVs | 44 | 341 | 53 | 264 | 61 | 320 | | ABO | 9 | 1361
367
73 | rs81
766
96 | С | Т | АВО | | Combin
ation
mutatio
n | 0 | 2 | 0 | 15 | 0 | 27 | | SCIANN
A | 1 | 432
965
72 | rs33
9541
54 | С | Т | ERMAP | SC:-9 or SCAC-
- Combination
mutation | SNVs | 0 | 7 | 0 | 1 | 2 | 13 | **Table 2.** Summary of phenotypes of common blood group variants along with their corresponding zygosity information # **Supplementary Datasets** **Supplementary Table 1.** Brief tabulation of number of variants found associated with human blood group genes in the datasets used in the study. Summary of blood group variants in study datasets **Supplementary Table 2.** Tabulation of blood group alleles predicted to match ISBT approved phenotypes and reference genome nomenclature in Middle Eastern population datasets Predicted phenotypes of blood group systems in Middle Eastern population **Supplementary Table 3.** Summary of distribution of novel and rare blood group variants in GME datasets predicted to be deleterious by at least three or more computational tools. Tabulation of potentially novel and deleterious blood group variants in GME datasets **Supplementary Table 4.** Comprehensive tabulation of weak/partial or null allele variants found in Middle Eastern populations along with their zygosity information. Summary of weak or partial antigens identified in the study dataset **Supplementary Table 5a.** Summary of statistically distinct blood group variants identified between the Middle East and global population datasets <u>Distinct blood group variants between the Middle East and global populations</u> **Supplementary Table 5b.** Summary of statistically distinct blood group variants observed among the Qatari subpopulations Distinct blood group variants among Qatari subpopulations **Supplementary Figure 1.** Distribution of statistically distinct blood group variants in various Middle Eastern datasets and among Qatari subpopulations **Supplementary Figure 1.** Distribution of statistically distinct blood group variants. (A) Summary of blood group variants which were found statistically distinct in various Middle Eastern datasets in comparison to global population data. (B) Distribution of statistically distinct blood group variants among the major Qatari subpopulations in comparison to the overall Qatar frequencies. #### References - 1. Seltsam, A. and Doescher, A. (2009) Sequence-Based Typing of Human Blood Groups. Sequence-Based Typing of Human Blood Groups. *Transfusion Medicine and Hemotherapy* (2009), 36, 204–212. - 2. Reid, M.E. (2007) Overview of molecular methods in immunohematology. *Transfusion*, **47**, 10S–6S. - 3. Liu, Z., Liu, M., Mercado, T., Illoh, O. and Davey, R. (2014) Extended blood group molecular typing and next-generation sequencing. *Transfus. Med. Rev.*, **28**, 177–186. - 4. Hershkovitz, I., Weber, G.W., Quam, R., Duval, M., Grün, R., Kinsley, L., Ayalon, A., Bar-Matthews, M., Valladas, H., Mercier, N., et al. (2018) The earliest modern humans outside Africa. *Science*, **359**, 456–459. - 5. Groucutt, H.S., Grün, R., Zalmout, I.A.S., Drake, N.A., Armitage, S.J., Candy, I., Clark-Wilson, R., Louys, J., Breeze, P.S., Duval, M., et al. (2018) Homo sapiens in Arabia by 85,000 years ago. Nat Ecol Evol, **2**, 800–809. - 6. Hellenthal, G., Busby, G.B.J., Band, G., Wilson, J.F., Capelli, C., Falush, D. and Myers, S. (2014) A genetic atlas of human admixture history. *Science*, **343**, 747–751. - 7. Arauna, L.R., Mendoza-Revilla, J., Mas-Sandoval, A., Izaabel, H., Bekada, A., Benhamamouch, S., Fadhlaoui-Zid, K., Zalloua, P., Hellenthal, G. and Comas, D. (2017) Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa. *Mol. Biol. Evol.*, **34**, 318–329. - 8. Banihashemi, K. (2009) Iranian human genome project: Overview of a research process among Iranian ethnicities. *Indian J. Hum. Genet.*, **15**, 88–92. - 9. Fattahi, Z., Beheshtian, M., Mohseni, M., Poustchi, H., Sellars, E., Nezhadi, S.H., Amini, A., Arzhangi, S., Jalalvand, K., Jamali, P., *et al.* (2019) Iranome: A catalog of genomic variations in the Iranian population. *Hum. Mutat.*, **40**, 1968–1984. - 10. Fakhro, K.A., Staudt, M.R., Ramstetter, M.D., Robay, A., Malek, J.A., Badii, R., Al-Marri, A.A.-N., Khalil, C.A., Al-Shakaki, A., Chidiac, O., *et al.* (2016) The Qatar genome: a population-specific tool for precision medicine in the Middle East. *Human Genome Variation*, **3**, 1–7. - 11. Mbarek, H., Gandhi, G.D., Selvaraj, S., Al-Muftah, W., Badji, R., Al-Sarraj, Y., Saad, C., Darwish, D., Alvi, M., Fadl, T., et al. (2021) Qatar Genome: Insights on Genomics from the Middle East. *medRxiv*, 2021.09.19.21263548. - 12. Razali, R.M., Rodriguez-Flores, J., Ghorbani, M., Naeem, H., Aamer, W., Aliyev, E., Jubran, A., Clark, A.G., Fakhro, K.A. and Mokrab, Y. (2021) Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. *Nat. Commun.*, **12**, 1–16. - 13. Bashwari, L.A.,
Al-Mulhim, A.A., Ahmad, M.S. and Ahmed, M.A. (2001) Frequency of ABO blood groups in the Eastern region of Saudi Arabia. *Saudi Med. J.*, **22**, 1008–1012. - 14. Owaidah, A.Y., Naffaa, N.M., Alumran, A. and Alzahrani, F. (2020) Phenotype Frequencies of Major Blood Group Systems (Rh, Kell, Kidd, Duffy, MNS, P, Lewis, and Lutheran) Among Blood Donors in the Eastern Region of Saudi Arabia. *J. Blood Med.*, **11**, 59–65. - 15. Sarhan, M.A., Saleh, K.A. and Bin-Dajem, S.M. (2009) Distribution of ABO blood groups and rhesus factor in Southwest Saudi Arabia. *Saudi Med. J.*, **30**, 116–119. - 16. Ameen, R., Al Shemmari, S., Harris, S., Teramura, G. and Delaney, M. (2020) Classification of major and minor blood group antigens in the Kuwaiti Arab population. *Transfus. Apher. Sci.*, **59**, 102748. - 17. Yip, S.P., Choi, P.S., Lee, S.Y., Leung, K.H., El-Zawahri, M.M. and Luqmani, Y.A. (2006) ABO blood group in Kuwaitis: detailed allele frequency distribution and identification of novel - alleles. Transfusion . 46. 773-779. - 18. Natarajan, J. and Joseph, M.A. (2021) Premarital screening for genetic blood disorders an integrated review on the knowledge and attitudes of Middle Eastern university students. Premarital screening for genetic blood disorders an integrated review on the knowledge and attitudes of Middle Eastern university students. *Middle East Fertility Society Journal* (2021), 26. - 19. Alsaeed, E.S., Farhat, G.N., Assiri, A.M., Memish, Z., Ahmed, E.M., Saeedi, M.Y., Al-Dossary, M.F. and Bashawri, H. (2017) Distribution of hemoglobinopathy disorders in Saudi Arabia based on data from the premarital screening and genetic counseling program, 2011–2015. Distribution of hemoglobinopathy disorders in Saudi Arabia based on data from the premarital screening and genetic counseling program, 2011–2015. *Journal of Epidemiology and Global Health* (2017), 7, S41. - 20. Bailey, M., Gibbs, M., Dani, N., Mendell, A. and Thompson, M. (2019) Burden of Illness of Sickle Cell Disease in Countries of the Middle East: A Systematic Literature Review. Burden of Illness of Sickle Cell Disease in Countries of the Middle East: A Systematic Literature Review. *Blood* (2019), 134, 5867–5867. - 21. Scott, E.M., Halees, A., Itan, Y., Spencer, E.G., He, Y., Azab, M.A., Gabriel, S.B., Belkadi, A., Boisson, B., Abel, L., *et al.* (2016) Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. *Nat. Genet.*, **48**, 1071–1076. - 22. MacArthur, J.A.L., Morales, J., Tully, R.E., Astashyn, A., Gil, L., Bruford, E.A., Larsson, P., Flicek, P., Dalgleish, R., Maglott, D.R., *et al.* (2014) Locus Reference Genomic: reference sequences for the reporting of clinically relevant sequence variants. *Nucleic Acids Res.*, **42**. D873–8. - 23. Rophina, M., Teh, L.K., Sivasubbu, S., Scaria, V. and Salleh, M.Z. (2021) Genomic map of blood group alleles in Malaysian indigenous Orang Asli population from whole genome sequences. *medRxiv*, 2021.12.04.21267232. - 24. Storry, J.R., Clausen, F.B., Castilho, L., Chen, Q., Daniels, G., Denomme, G., Flegel, W.A., Gassner, C., de Haas, M., Hyland, C., et al. (2019) International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sang., 114, 95–102. - 25. Patnaik, S.K., Helmberg, W. and Blumenfeld, O.O. (2014) BGMUT Database of Allelic Variants of Genes Encoding Human Blood Group Antigens. *Transfus. Med. Hemother.*, **41**, 346–351. - 26. Möller, M., Jöud, M., Storry, J.R. and Olsson, M.L. (2016) Erythrogene: a database for in-depth analysis of the extensive variation in 36 blood group systems in the 1000 Genomes Project. *Blood Adv*, **1**, 240–249. - 27. Wagner, F.F. and Flegel, W.A. (2014) The Rhesus Site. *Transfus. Med. Hemother.*, **41**, 357–363. - 28. Lane, W.J., Vege, S., Mah, H.H., Lomas-Francis, C., Aguad, M., Smeland-Wagman, R., Koch, C., Killian, J.M., Gardner, C.L., De Castro, M., *et al.* (2019) Automated typing of red blood cell and platelet antigens from whole exome sequences. *Transfusion*, **59**, 3253–3263. - 29. Lane, W.J., Westhoff, C.M., Gleadall, N.S., Aguad, M., Smeland-Wagman, R., Vege, S., Simmons, D.P., Mah, H.H., Lebo, M.S., Walter, K., *et al.* (2018) Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. *Lancet Haematol*, **5**, e241–e251. - 30. Rophina, M., Pandhare, K., Jadhao, S., Nagaraj, S.H. and Scaria, V. (2021) BGvar: A comprehensive resource for blood group immunogenetics. *Transfus. Med.* - 31. Ng, P.C. and Henikoff, S. (2003) SIFT: Predicting amino acid changes that affect protein - function. Nucleic Acids Res., 31, 3812-3814. - 32. Adzhubei, I., Jordan, D.M. and Sunyaev, S.R. (2013) Predicting functional effect of human missense mutations using PolyPhen-2. *Curr. Protoc. Hum. Genet.*, **Chapter 7**, Unit7.20. - 33. Gnad, F., Baucom, A., Mukhyala, K., Manning, G. and Zhang, Z. (2013) Assessment of computational methods for predicting the effects of missense mutations in human cancers. *BMC Genomics*, **14 Suppl 3**, S7. - 34. Shihab, H.A., Gough, J., Cooper, D.N., Stenson, P.D., Barker, G.L.A., Edwards, K.J., Day, I.N.M. and Gaunt, T.R. (2013) Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. *Hum. Mutat.*, **34**, 57–65. - 35. Choi, Y. and Chan, A.P. (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. *Bioinformatics*, **31**, 2745–2747. - 36. Rentzsch, P., Witten, D., Cooper, G.M., Shendure, J. and Kircher, M. (2019) CADD: predicting the deleteriousness of variants throughout the human genome. *Nucleic Acids Res.*, **47**, D886–D894. - 37. Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow, A. and Batzoglou, S. (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. *PLoS Comput. Biol.*, **6**, e1001025. - 38. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R. and Siepel, A. (2010) Detection of nonneutral substitution rates on mammalian phylogenies. *Genome Res.*, **20**, 110–121. - 39. Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.*, **38**, e164. - 40. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., *et al.* (2011) The variant call format and VCFtools. *Bioinformatics*, **27**, 2156–2158. - 41. Lane, W.J., Westhoff, C.M., Uy, J.M., Aguad, M., Smeland-Wagman, R., Kaufman, R.M., Rehm, H.L., Green, R.C., Silberstein, L.E. and MedSeq Project (2016) Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. *Transfusion*, **56**, 743–754. - 42. Yin, Q., Srivastava, K., Brust, D.G. and Flegel, W.A. (2021) Transfusion support during childbirth for a woman with anti-U and the allele. *Immunohematology*, **37**, 1–4. - 43. Lawler, S.D. and Van Loghem, J.J., Jr (1947) The rhesus antigen CW causing haemolytic disease of the newborn. *Lancet*, **2**, 545. - 44. Wester, E.S., Storry, J.R. and Olsson, M.L. (2011) Characterization of Jk(a+(weak)): a new blood group phenotype associated with an altered JK*01 allele. *Transfusion*, **51**, 380–392. - 45. Wu, P.C., Chyan, T.-W., Feng, S.-H., Chen, M.-H. and Pai, S.-C. (2019) Genotyping and serotyping profiles showed weak Jk presentation for previously typed as Jk donors. *Vox Sang.*, **114**, 268–274. - 46. Huang H.J. and Tagawa H. (1982) [Hemolytic disease of the newborn due to anti-Ku (author's transl)]. *Nihon Sanka Fujinka Gakkai Zasshi*, **34**, 119–121. - 47. Lee, S., Wu, X., Reid, M., Zelinski, T. and Redman, C. (1995) Molecular basis of the Kell (K1) phenotype. Molecular basis of the Kell (K1) phenotype. *Blood* (1995), 85, 912–916. - 48. Daniels, G., Hadley, A. and Green, C.A. (2003) Causes of fetal anemia in hemolytic disease due to anti-K. *Transfusion*, **43**, 115–116. - 49. Felimban, R.I. and Sumeda, S.M. (2021) Distribution of Kell antigens K, k, Kp, and Kp among blood donors in Jeddah city of Western Saudi Arabia. *Asian J. Transfus. Sci.*, **15**, 75–81. - 50. Alalshaikh, M., Almalki, Y., Hasanato, R., Almomen, A., Alsughayir, A., Alabdullateef, A., Sabbar, A. and Alsuhaibani, O. (2021) Frequency of Rh and K antigens in blood donors in Riyadh. Frequency of Rh and K antigens in blood donors in Riyadh. *Hematology, Transfusion and Cell Therapy* (2021). - 51. Vendrame, T.A.P., Silva, F.S.A., Aravechia, M.G., Santos, L.D., Costa, T.H., Sirianni, M.F.M., Pedro, T., Cortez, A.J.P., Castilho, L., Latini, F., et al. (2021) ANTI-CRA: A FAMILY STUDY OF A BRAZILIAN FAMILY IN MOLECULAR TIMES. ANTI-CRA: A FAMILY STUDY OF A BRAZILIAN FAMILY IN MOLECULAR TIMES. Hematology, Transfusion and Cell Therapy (2021), 43, S314–S315. - 52. Kwon, M.Y., Su, L., Arndt, P.A., Garratty, G. and Blackall, D.P. (2004) Clinical significance of anti-Jra: report of two cases and review of the literature. *Transfusion*, **44**, 197–201. - 53. Peyrard, T., Pham, B.-N., Arnaud, L., Fleutiaux, S., Brossard, Y., Guerin, B., Desmoulins, I., Rouger, P. and Le Pennec, P.-Y. (2008) Fatal hemolytic disease of the fetus and newborn associated with anti-Jra. Fatal hemolytic disease of the fetus and newborn associated with anti-Jra. *Transfusion* (2008), 48, 1906–1911. - 54. Levene, C., Sela, R., Dvilansky, A., Yermiahu, T. and Daniels, G. (1986) The Jr(a-) phenotype and anti-Jra in two Beduin Arab women in Israel. The Jr(a-) phenotype and anti-Jra in two Beduin Arab women in Israel. *Transfusion* (1986), 26, 119–120. - 55. Liu, S., Ajne, G., Wikman, A., Lindqvist, C., Reilly, M. and Tiblad, E. (2021) Management and clinical consequences of red blood cell antibodies in pregnancy: A population-based cohort study. *Acta Obstet. Gynecol. Scand.*, **100**, 2216–2225. - 56.
Sheeladevi, C.S., Suchitha, S., Manjunath, G.V. and Murthy, S. (2013) Hemolytic Disease of the Newborn Due to Anti-c Isoimmunization: A Case Report. *Indian J. Hematol. Blood Transfus.*, **29**, 155–157. - 57. Shastry, S. and Bhat, S. (2014) Severe hemolytic disease of newborn in a rh d-positive mother: time to mandate the antenatal antibody screening. *J. Obstet. Gynaecol. India*, **64**, 291–292. - 58. Flesch, B.K., Scherer, V., Just, B., Opitz, A., Ochmann, O., Janson, A., Steitz, M. and Zeiler, T. (2020) Molecular Blood Group Screening in Donors from Arabian Countries and Iran Using High-Throughput MALDI-TOF Mass Spectrometry and PCR-SSP. *Transfus. Med. Hemother.*, **47**, 396–408. - 59. [No title] https://www.jrmds.in/articles/abo-and-rhesus-blood-groups-distribution-in-healthy-indi viduals-an-update-cross-sectional-study-from-tertiary-care-cente.pdf (accessed Mar 21, 2022). - 60. Elsayid, M., Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences and Riyadh (2017) Phenotypic Profile of Kell Blood Group System among Saudi Donors at King Abdulaziz Medical City-Riyadh. Phenotypic Profile of Kell Blood Group System among Saudi Donors at King Abdulaziz Medical City-Riyadh. *Journal of Medical Science And clinical Research* (2017), 05, 15654–15657. - 61. Sajwani, F.H., Amer, A.M., Khamis, F.M. and AlShamsi, S.R. (2021) Prevalence of major blood group antigens in blood donors at a main donation center in United Arab Emirates. Prevalence of major blood group antigens in blood donors at a main donation center in United Arab Emirates. *Immunohematology* (2021), 37, 171–177. - 62. Lee, S., Wu, X., Reid, M. and Redman, C. (2003) Molecular basis of the K:6,-7 [Js(a b-)] phenotype in the Kell blood group system. Molecular basis of the K:6,-7 [Js(a b-)] phenotype in the Kell blood group system. *Transfusion* (2003), 35, 822–825. - 63. Williams, T.N. and Weatherall, D.J. (2012) World distribution, population genetics, and health burden of the hemoglobinopathies. *Cold Spring Harb. Perspect. Med.*, **2**, a011692. - 64. Al-Jawaldeh, A., Taktouk, M., Doggui, R., Abdollahi, Z., Achakzai, B., Aguenaou, H., Al-Halaika, M., Almamary, S., Barham, R., Coulibaly-Zerbo, F., *et al.* (2021) Are Countries of the Eastern Mediterranean Region on Track towards Meeting the World Health Assembly Target for Anemia? A Review of Evidence. *Int. J. Environ. Res. Public Health*, **18**. - 65. El-Hazmi, M.A.F., Al-Hazmi, A.M. and Warsy, A.S. (2011) Sickle cell disease in Middle East Arab countries. *Indian J. Med. Res.*, **134**, 597–610. - 66. Hindawi, S. (2020) Evolution of Blood Transfusion Medicine in Saudi Arabia. *Transfusion*, **60 Suppl 1**, S2–S3.