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Supplementary Materials

Additional file 1 — Stan code for the Bayesian multivariate hierarchical model

data {

int<lower=0> N; // number of observations

int<lower=0> D; // number of of binary outcomes

int<lower=2> L; // number of WHO categories

int<lower=0> P_main; // number of pre-treatment
characteristics in the main effects term

int<lower=0> P_inter; // number of pre-treatment
characteristics in the interaction effects term

int<lower=1,upper=L> y_ord[N]; // vector of ordinal outcomes

int<lower=0,upper=1> y_b[N,D]; // matrix of D binary outcomes (N x D
matrix)

int<lower=0,upper=1> A[N]; // treatment or control

row_vector [P_main] x_main[N]; // pre-treatment characteristics in
the main effects term (N x P_main matrix)

row_vector [P_inter] x_inter[N];// pre-treatment characteristics in
the interaction effects term (N x P_inter matrix)

parameters {

ordered [L-1] tau; // cut-points for cumulative odds
model

vector<lower=0>[(P_inter + 1)] sigma_beta; // sd of outcome-specific

treatment main effect and interaction effect

vector [D] beta_0; // outcome-specific intercepts for D
binary outcomes

matrix[P_main,(D + 1)] beta_1l; // covariates main effect for D
binary outcomes and 1 ordinal outcome (P_main x (D + 1) matrix)

vector [(P_inter + 1)] beta_star; // pooled treatment main effect and

pooled interaction effect across all outcomes

// non-central parameterization

matrix [(P_inter + 1),(D + 1)] z_beta_int;

transformed parameters {

matrix [(P_inter + 1) ,(D + 1)] beta_int; // outcome-specific
treatment main effect and interaction effect ((P_inter + 1) x (D +
1) matrix)
vector [D] yhat_b[N];
real yhat_ord[N];

for (j in 1:(P_inter + 1))

for (k in 1:(D + 1)){
beta_int[j,k] = beta_star[j] + sigma_betalj]l * z_beta_int[j,k];

for (i in 1:N){
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for (k in 1:D){

yhat_b[i,k] = Dbeta_O0[k] + x_main[i] * beta_1[,kl]

append_col (1, x_inter[i]) * beta_int[,k]) * A[il;

}

yhat_ord [i]

= x_main[i] * beta_1[,D+1] + (append_col(1,

i]) * beta_int[,D+1]) * A[i];

model {

// priors

sigma_beta

beta_star

exponential (1) ;

normal (0,2.5);

to_vector (beta_1) ~ normal(0,2.5);

to_vector (z_beta_int)

std_normal () ;

for (1 in 1:(L-1)){
tau[l] ~ student_t(3,0,8);

for (k in 1:D){

beta_0 [k]

student_t(3,0,8);

// outcome model

for (i in 1:N){

y_ord[i]

ordered_logistic (yhat_ord[I], tau);

for (k in 1:D){

y-bli,k]

bernoulli_logit (yhat_b[i,k]);

x_inter [
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Additional file 2 — Main analysis: comparing the performance of the Bayesian multivariate and univariate models
when the true ITR is determined by potential outcomes

To implement this potential outcomes-based ITR, we first consider the patient characteristics &; along with the true
values of parameters from the data generation process. Next, we use the simstudy package [43] to generate

potential primary ordinal outcomes for subjects receiving the control treatment (yfql=0) and the experimental

treatment (y;lil) The optimal ITR is derived from the indicator function I(y;lil < yi‘lzo), which evaluates
whether the experimental treatment outcome is better than the control treatment outcome.
Utilizing this new potential outcomes-based ITR, the subsequent plot (Figure Al) illustrates the comparison of PCD

and AUC values between the Bayesian multivariate and univariate models across varying training set sizes. In
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Figure Al Utilizing the new potential outcomes-based ITR: the boxplots of PCD and AUC in the
test sets, comparing the multivariate (orange) and the univariate (blue) models across different
training set sizes (as indicated in the x-axis).

comparison to Figure 1, the improvement in prediction using the multivariate model is less remarkable. This can be
attributed to the fact that generating potential outcomes based on probability inherently involves more randomness.
The gain in estimation is relatively small compared to the magnitude of this randomness. Consequently, when

considering prediction error, the improvement becomes less noticeable as it is overshadowed by the noise introduced

by the randomness.
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Additional file 3 — Sensitivity analysis: comparing the performance of the Bayesian multivariate and univariate

models when the true ITR is determined by potential outcomes
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2, and SD=0.3.

Figure A2 Utilizing the new potential outcomes-based ITR and different SD for random effects in
data generation: the boxplots of PCD and AUC in the test sets, comparing the multivariate
(orange) and univariate (blue) models across different training set sizes (as indicated in the

x-axis). Three different levels of SD for random effects are considered in data generation: SD=0.1,

Compared to Figure 2, the utilization of this new potential outcomes-based ITR yields less remarkable improvement

in the multivariate model's performance. This could be due to the probabilistic nature of generating potential

outcomes, which inherently involves more randomness. Despite the gain in estimation, the magnitude of this

randomness is relatively large, resulting in a small improvement that is overshadowed by the introduced noise when

considering prediction error.
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661  Additional file 4 — The WHO 11-point COVID-19 clinical status scale.

© o Na A Dd RO

-
=4

Dead

Uninfected, no viral RNA detected
Asymptomatic, viral RNA detected
Symptomatic, independent
Symptomatic, assistance needed
Hospitalized, no oxygen therapy

Hospitalized, oxygen by mask or nasal prongs

Hospitalized, oxygen by non-invasive ventilation or high flow

Intubation & mechanical ventilation, pO2/FiO2 > 150 (or SpO2/FiO2 > 200)¢
Mechanical ventilation, pO2/FiO2 < 150 (or SpO2/FiO2 < 200) or vasopressors
Mechanical ventilation, pO2/FiO2 < 150 and vasopressors, dialysis, or ECMOQ?

@pO2: partial pressure of oxygen, FiOz: fraction of inspired oxygen, SpO2: oxygen saturation.

bYECMO: extracorporeal membrane oxygenation.

Table A1 The WHO 11-point COVID-19 scale definition[39].

Control (n = 1097)

CCP (n = 1190)

WHO =0
WHO =1
WHO = 2
WHO =3
WHO =4
WHO =5
WHO =6
WHO =7
WHO =8
WHO =9
WHO = 10

114
151
365
134
45
86
29
23
23
33
94

150
168
386
142
45
84
52
30
36
22
75

Table A2 The number of patients at different clinical stages of COVID-19 measured on the WHO

11-point scale at day 14 by treatment group.
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Additional file 5 — Goodness-of-fit using posterior predictive checking

In evaluating the suitability of a statistical model, it is crucial to determine whether the model provides an accurate
representation of the observed data. This is particularly important for models like the co model, which is built upon
a strong assumption of proportional cumulative odds. Posterior predictive checking serves as an effective way of
assessing a model’s goodness-of-fit [47, 48]. This method operates on the premise that a well-fitted model should
enable the generation of replicated data (D"P) that resembles the observed data (D°&"2) [49].

The lack of fit can be measured by the Bayesian p-value, which represents the probability of the test statistic (e.g.,
P(Y <y),y=0,...,9) for D" being equal to or exceeding the test statistic for Deenl A Bayesian p-value
approaching zero or one signifies a potential issue with the model’s fit, whereas a value near 0.5 suggests that the
model captures the data well [42, 57]. We employed the procedure outlined in [41] to examine the co model’s fit to
the observed data and to compute the Bayesian p-value.

Table A3 provides the results of posterior predictive checking based on ten test statistics (along with their 95% Crls)
for both the multivariate model (6) and univariate model (7). Our analysis confirmed the satisfactory fit of both

models to the data.

Treatment Control Cccp
Test quantity: % subjects ~ T'(D°&n)  95% int. for T(D™)  Bayesian P value T(D°&"al)  95% int. for T'(D')  Bayesian P value

Multivariate model

WHO <0 10.39 [8.39, 12.94] 0.55 12.61 [10.08, 14.71] 0.39
WHO <1 24.16 [20.51, 26.80] 0.34 26.72 [23.28, 29.58] 0.41
WHO <2 57.43 [52.42, 59.43] 0.19 59.16 [55.71, 62.52] 0.48
WHO <3 69.64 [65.36, 71.93] 0.29 71.09 [68.24, 74.45] 0.55
WHO < 4 73.75 [69.92, 76.12] 0.32 74.87 [72.44, 78.32] 0.63
WHO <5 81.59 [78.21, 83.68] 0.34 81.93 [80.17, 85.29] 0.74
WHO < 6 84.23 [82.22, 87.15] 0.64 86.30 [83.78, 88.40] 0.44
WHO <7 86.33 [84.78, 89.43] 0.74 88.82 [86.13, 90.50] 0.33
WHO <8 88.42 [87.69, 91.89] 0.90 91.85 [88.82, 92.69] 0.14
WHO <9 91.43 [90.43, 94.07] 0.81 93.70 [91.26, 94.71] 0.22
Univariate model

WHO <0 10.39 [8.57, 13.13] 0.62 12.61 [9.83, 14.54] 0.32
WHO <1 24.16 [20.78, 27.07] 0.41 26.72 [23.03, 29.41] 0.36
WHO <2 57.43 [52.42, 59.80] 0.23 59.16 [55.55, 62.44] 0.46
WHO <3 69.64 [65.45, 72.20] 0.31 71.09 [68.15, 74.45] 0.55
WHO < 4 73.75 [69.83, 76.30] 0.34 74.87 [72.44, 78.40] 0.62
WHO <5 81.59 [78.12, 83.87] 0.35 81.93 [80.17, 85.29] 0.74
WHO <6 84.23 [82.04, 87.24] 0.64 86.30 [83.78, 88.49] 0.45
WHO <7 86.33 [84.69, 89.52] 0.74 88.82 [86.13, 90.50] 0.34
WHO < 8 88.42 [87.60, 91.89] 0.89 91.85 [88.82, 92.69] 0.14
WHO <9 91.43 [90.34, 94.17] 0.81 93.70 [91.34, 94.79] 0.23

Table A3 Summary of posterior predictive checking based on the ten test statistics.
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